Facebook
TwitterIn 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
Lung cancer
Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
Breast cancer
Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.
Facebook
TwitterIn 2022, the mortality rate of breast cancer in women in Europe was **** per 100,000 women. Cyprus had the highest mortality rate at **** per 100,000, followed by Slovakia with **** per 100,000 women. Conversely, Spain had the lowest mortality rate at **** per 100,000. This statistic depicts the mortality rate of breast cancer in Europe in 2022 in women population, by country.
Facebook
TwitterIn 2022, the incidence of lung cancer among men in Europe was highest in Hungary at ***** per 100,000, while Sweden had the lowest incidence. The incidence of lung cancer recorded among women in Denmark was over ** per 100,000 population. Across the European Union overall, the rate of lung cancer diagnoses was **** per 100,000 among men and **** per 100,000 among women. Smoking and lung cancer risk The connection between smoking and the increased risk of health problems is well established. As of 2021, Hungary had one of the highest daily smoking rates in Europe, with over a quarter of adults smoking daily in the Central European country. The only other countries with a higher share of smoking adults were Bulgaria and Turkey. A positive development though, is the share of adults smoking every day has decreased in almost every European country since 2011. The rise of vaping Originally marketed as a device to help smokers quit, e-cigarettes or vapes have seen increased popularity among people who never smoked cigarettes, especially young people. The use of vapes among young people was reported to be highest in Estonia, Czechia, and Ireland. The dangers of vaping have not been examined over the long term. In the EU there have been attempts to make ‘vapes’ less accessible and appealing for young people, which would include such things as banning flavors and stopping the sale of disposable e-cigarettes.
Facebook
TwitterBy Noah Rippner [source]
This dataset offers a unique opportunity to examine the pattern and trends of county-level cancer rates in the United States at the individual county level. Using data from cancer.gov and the US Census American Community Survey, this dataset allows us to gain insight into how age-adjusted death rate, average deaths per year, and recent trends vary between counties – along with other key metrics like average annual counts, met objectives of 45.5?, recent trends (2) in death rates, etc., captured within our deep multi-dimensional dataset. We are able to build linear regression models based on our data to determine correlations between variables that can help us better understand cancers prevalence levels across different counties over time - making it easier to target health initiatives and resources accurately when necessary or desired
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This kaggle dataset provides county-level datasets from the US Census American Community Survey and cancer.gov for exploring correlations between county-level cancer rates, trends, and mortality statistics. This dataset contains records from all U.S counties concerning the age-adjusted death rate, average deaths per year, recent trend (2) in death rates, average annual count of cases detected within 5 years, and whether or not an objective of 45.5 (1) was met in the county associated with each row in the table.
To use this dataset to its fullest potential you need to understand how to perform simple descriptive analytics which includes calculating summary statistics such as mean, median or other numerical values; summarizing categorical variables using frequency tables; creating data visualizations such as charts and histograms; applying linear regression or other machine learning techniques such as support vector machines (SVMs), random forests or neural networks etc.; differentiating between supervised vs unsupervised learning techniques etc.; reviewing diagnostics tests to evaluate your models; interpreting your findings; hypothesizing possible reasons and patterns discovered during exploration made through data visualizations ; Communicating and conveying results found via effective presentation slides/documents etc.. Having this understanding will enable you apply different methods of analysis on this data set accurately ad effectively.
Once these concepts are understood you are ready start exploring this data set by first importing it into your visualization software either tableau public/ desktop version/Qlikview / SAS Analytical suite/Python notebooks for building predictive models by loading specified packages based on usage like Scikit Learn if Python is used among others depending on what tool is used . Secondly a brief description of the entire table's column structure has been provided above . Statistical operations can be carried out with simple queries after proper knowledge of basic SQL commands is attained just like queries using sub sets can also be performed with good command over selecting columns while specifying conditions applicable along with sorting operations being done based on specific attributes as required leading up towards writing python codes needed when parsing specific portion of data desired grouping / aggregating different categories before performing any kind of predictions / models can also activated create post joining few tables possible , when ever necessary once again varying across tools being used Thereby diving deep into analyzing available features determined randomly thus creating correlation matrices figures showing distribution relationships using correlation & covariance matrixes , thus making evaluations deducing informative facts since revealing trends identified through corresponding scatter plots from a given metric gathered from appropriate fields!
- Building a predictive cancer incidence model based on county-level demographic data to identify high-risk areas and target public health interventions.
- Analyzing correlations between age-adjusted death rate, average annual count, and recent trends in order to develop more effective policy initiatives for cancer prevention and healthcare access.
- Utilizing the dataset to construct a machine learning algorithm that can predict county-level mortality rates based on socio-economic factors such as poverty levels and educational attainment rates
If you use this dataset i...
Facebook
TwitterIn 2022, Australia had the fourth-highest total number of skin cancer cases worldwide and the highest age-standardized rate, with roughly 37 cases of skin cancer per 100,000 population. The graph illustrates the rate of skin cancer in the countries with the highest skin cancer rates worldwide in 2022.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Major cancers are associated with lifestyle, and previous studies have found that the non-immigrant populations in the Nordic countries have higher incidence rates of most cancers than the immigrant populations. However, rates are changing worldwide – so these differences may disappear with time. Here we present recent cancer incidence rates among immigrant and non-immigrant men and women in Norway and investigate whether previous differences still exist. We took advantage of a recent change in the Norwegian Cancer Registry regulations that allow for the registry to have information on country of birth. The number of person years for 2014–2018 was aggregated for every combination of sex, five-year age-group and country of birth, by summing up each year’s population in these groups. The number of cancer cases was then counted for the same groups, and age-standardised incidence rates calculated by weighing the age-specific incidence rates by the Nordic and World standard populations. Further, we calculated incidence rate ratios using the non-immigrant population as a reference. Immigrants from Eastern Europe, the Middle East, Africa and Asia had lower incidence of total cancer compared to the non-immigrant population in Norway and immigrants born in the other Nordic or high-income countries. However, some cancers were more common in certain immigrant groups. Asian men and women had threefold the incidence of liver cancer than non-immigrant men and women. Men from the other Nordic countries and from Eastern Europe had higher lung cancer rates than non-immigrant men. National registries should continuously monitor and present cancer incidence stratified on important population subgroups such as country of birth. This can help assess population subgroup specific needs for cancer prevention and treatment, and could eventually help reduce the morbidity and mortality of cancer.
Facebook
TwitterIn 2022, the mortality rate of prostate cancer in Europe was **** per 100,000. Estonia had the highest mortality rate at **** per 100,000, followed by Latvia with **** per 100,000 men. Conversely, Italy had the lowest mortality rate at **** per 100,000. This statistic depicts the mortality rate of prostate cancer Europe in 2022, by country.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains real-world information about colorectal cancer cases from different countries. It includes patient demographics, lifestyle risks, medical history, cancer stage, treatment types, survival chances, and healthcare costs. The dataset follows global trends in colorectal cancer incidence, mortality, and prevention.
Use this dataset to build models for cancer prediction, survival analysis, healthcare cost estimation, and disease risk factors.
Dataset Structure Each row represents an individual case, and the columns include:
Patient_ID (Unique identifier) Country (Based on incidence distribution) Age (Following colorectal cancer age trends) Gender (M/F, considering men have 30-40% higher risk) Cancer_Stage (Localized, Regional, Metastatic) Tumor_Size_mm (Randomized within medical limits) Family_History (Yes/No) Smoking_History (Yes/No) Alcohol_Consumption (Yes/No) Obesity_BMI (Normal/Overweight/Obese) Diet_Risk (Low/Moderate/High) Physical_Activity (Low/Moderate/High) Diabetes (Yes/No) Inflammatory_Bowel_Disease (Yes/No) Genetic_Mutation (Yes/No) Screening_History (Regular/Irregular/Never) Early_Detection (Yes/No) Treatment_Type (Surgery/Chemotherapy/Radiotherapy/Combination) Survival_5_years (Yes/No) Mortality (Yes/No) Healthcare_Costs (Country-dependent, $25K-$100K+) Incidence_Rate_per_100K (Country-level prevalence) Mortality_Rate_per_100K (Country-level mortality) Urban_or_Rural (Urban/Rural) Economic_Classification (Developed/Developing) Healthcare_Access (Low/Moderate/High) Insurance_Status (Insured/Uninsured) Survival_Prediction (Yes/No, based on factors)
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics, specifically incidence and mortality worldwide for the 27 major types of cancer. Background Cancer Mondial is maintained by the Section of Cancer Information (CIN) of International Agency for Research on Cancer by the World Health Organization. Users can access CIN databases including GLOBOCAN, CI5(Cancer Incidence in Five Continents), WHO, ACCIS(Automated Childhood Cancer Information System), ECO (European Cancer Observatory), NORDCAN and Survcan. User functionality Users can access a variety of databases. CIN Databases: GLOBOCAN provides acces s to the most recent estimates (for 2008) of the incidence of 27 major cancers and mortality from 27 major cancers worldwide. CI5 (Cancer Incidence in Five Continents) provides access to detailed information on the incidence of cancer recorded by cancer registries (regional or national) worldwide. WHO presents long time series of selected cancer mortality recorded in selected countries of the world. Collaborative projects: ACCIS (Automated Childhood Cancer Information System) provides access to data on cancer incidence and survival of children collected by European cancer registries. ECO (European Cancer Observatory) provides access to the estimates (for 2008) of the incidence of, and mortality f rom 25 major cancers in the countries of the European Union (EU-27). NORDCAN presents up-to-date long time series of cancer incidence, mortality, prevalence and survival from 40 cancers recorded by the Nordic countries. SurvCan presents cancer survival data from cancer registries in low and middle income regions of the world. Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveWe investigated whether there are differences in cancer incidence by geographical area of origin in North-eastern Italy.MethodsWe selected all incident cases recorded in the Veneto Tumour Registry in the period 2015-2019. Subjects were classified, based on the country of birth, in six geographical areas of origin (Italy, Highly Developed Countries-HDC, Eastern Europe, Asia, Africa, South-central America). Age-standardized incidence rates and incidence rate ratio (IRR) were calculated, for all cancer sites and for colorectal, liver, breast and cervical cancer separately.ResultsWe recorded 159,486 all-site cancer cases; 5.2% cases occurred in subjects born outside Italy, the majority from High Migratory Pressure Countries (HMPC) (74.3%). Incidence rates were significantly lower in subjects born in HMPC in both sexes. Immigrants, in particular born in Asia and Africa, showed lower rates of all site cancer incidence. The lowest IRR for colorectal cancer was observed in males from South-Central America (IRR 0.19, 95%CI 0.09-0.44) and in females from Asia (IRR 0.32, 95%CI 0.18-0.70). The IRR of breast cancer appeared significantly lower than Italian natives in all female populations, except for those coming from HDC. Females from Eastern Europe showed a higher IRR for cervical cancer (IRR 2.02, 95%CI 1.57-2.61).ConclusionCancer incidence was found lower in subjects born outside Italy, with differences in incidence patterns depending on geographical area of origin and the cancer type in question. Further studies, focused on the country of birth of the immigrant population, would help to identify specific risk factors influencing cancer incidence.
Facebook
TwitterBackgroundThe nationwide HUN-CANCER EPI study examined cancer incidence and mortality rates in Hungary from 2011 to 2019.MethodsUsing data from the National Health Insurance Fund (NHIF) and Hungarian Central Statistical Office (HCSO), our retrospective study analyzed newly diagnosed malignancies between Jan 1, 2011, and Dec 31, 2019. Age-standardized incidence and mortality rates were calculated for all and for different tumor types using both the 1976 and 2013 European Standard Populations (ESP).FindingsThe number of newly diagnosed cancer cases decreased from 60,554 to 56,675 between 2011–2019. Age-standardized incidence rates were much lower in 2018, than previously estimated (475.5 vs. 580.5/100,000 person-years [PYs] in males and 383.6 vs. 438.5/100,000 PYs in females; ESP 1976). All-site cancer incidence showed a mean annual decrease of 1.9% (95% CI: 2.4%-1.4%) in men and 1.0% (95% CI:1.42%-0.66%) in women, parallel to mortality trends (-1.6% in males and -0.6% in females; ESP 2013). In 2018, the highest age-standardized incidence rates were found for lung (88.3), colorectal (82.2), and prostate cancer (62.3) in men, and breast (104.6), lung (47.7), and colorectal cancer (45.8) in women. The most significant decreases in incidence rates were observed for stomach (4.7%), laryngeal (4.4%), and gallbladder cancers (3.5%), with parallel decreases in mortality rates (3.9%, 2.7% and 3.2%, respectively).InterpretationWe found a lower incidence of newly diagnosed cancer cases for Hungary compared to previous estimates, and decreasing trends in cancer incidence and mortality, in line with global findings and the declining prevalence of smoking.
Facebook
TwitterIn 2022, the mortality rate of lung cancer in the European was **** per 100,000 men and **** per 100,000 women. Among men the mortality rate was highest in Hungary and lowest in Sweden being *** and **** per 100,000 respectively. Hungary was also the country with the highest lung cancer mortality rate in women with **** per 100,000 women. The lowest was in Lithuania with **** per 100,000 women. In most EU countries, there was a marked difference between the mortality of lung cancer in men and women.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveWe investigated whether there are differences in cancer incidence by geographical area of origin in North-eastern Italy.MethodsWe selected all incident cases recorded in the Veneto Tumour Registry in the period 2015-2019. Subjects were classified, based on the country of birth, in six geographical areas of origin (Italy, Highly Developed Countries-HDC, Eastern Europe, Asia, Africa, South-central America). Age-standardized incidence rates and incidence rate ratio (IRR) were calculated, for all cancer sites and for colorectal, liver, breast and cervical cancer separately.ResultsWe recorded 159,486 all-site cancer cases; 5.2% cases occurred in subjects born outside Italy, the majority from High Migratory Pressure Countries (HMPC) (74.3%). Incidence rates were significantly lower in subjects born in HMPC in both sexes. Immigrants, in particular born in Asia and Africa, showed lower rates of all site cancer incidence. The lowest IRR for colorectal cancer was observed in males from South-Central America (IRR 0.19, 95%CI 0.09-0.44) and in females from Asia (IRR 0.32, 95%CI 0.18-0.70). The IRR of breast cancer appeared significantly lower than Italian natives in all female populations, except for those coming from HDC. Females from Eastern Europe showed a higher IRR for cervical cancer (IRR 2.02, 95%CI 1.57-2.61).ConclusionCancer incidence was found lower in subjects born outside Italy, with differences in incidence patterns depending on geographical area of origin and the cancer type in question. Further studies, focused on the country of birth of the immigrant population, would help to identify specific risk factors influencing cancer incidence.
Facebook
TwitterIn 2022, the mortality rate of colorectal cancer in Europe was, among men, **** per 100,000, while among women it stood at **** per 100,000. For men, Croatia had the highest mortality rate at **** per 100,000, while Luxembourg had the lowest at **** per 100,000. For women, Croatia also had the highest mortality rate at **** per 100,000, while Austria had the lowest at **** per 100,000. This statistic depicts the mortality rate of colorectal cancer in Europe in 2022, by country and gender.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundBreast cancer is the most common cancer in women worldwide. Considerable funding and efforts are invested in breast cancer research and healthcare, but only a fraction of this reaches women and healthcare systems in low income countries. Surgical treatment is an essential part of breast cancer care, but access to surgery is in general very limited in low income countries such as Uganda. In this study, the previously unknown nationwide rate of breast cancer surgery was investigated.Methods and findingsThis was a multicenter, retrospective study, investigating breast cancer surgery in the public healthcare system in Uganda. Data were collected from operating theater registries at primary, secondary and tertiary level healthcare centres throught the country, including 14 general hospitals, the 14 regional referral hospitals and the national referral hospital. Patients who underwent major surgery for breast cancer at these hospitals during 2013 and 2014 were included. The number of breast cancer procedures performed, geographical variation, level of healthcare staff performing surgery and patient characteristics were investigated. After correction for missing data, a total of 137 breast cancer procedures were performed each year within the public healthcare system, corresponding to 5.7% of the breast cancer incidence in the country at that time. Most procedures (n = 161, 59.0%) were performed at the national referral hospital by qualified surgeons. Many of the patients were young; 30.1% being less than 40 years old. The proportion of male breast cancers in the study was large (6.2%).ConclusionsThe rate of breast cancer surgery in Uganda is minimal and in several parts of the country breast cancer surgery is not performed at all. More resources must be directed towards breast cancer in low income countries such as Uganda. The fact that the patients were young calls for further research, prevention and treatment specifically targeting young women in the study setting.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Despite lung cancer’s high mortality rate, many countries still lack organized lung cancer screening programs. This review aims to evaluate the impact of low-dose computed tomography (LDCT) screening on lung cancer diagnosis, mortality, and overall clinical outcomes. Following the Joanna Briggs Institute methodology for umbrella reviews, a comprehensive search was conducted in PubMed, Embase, and the Cochrane Library for reviews published between January 2013 and December 2023. Eligible meta-analyses included studies comparing LDCT screening with chest X-ray (CXR) or no screening, reporting outcomes such as sensitivity, specificity, and lung cancer mortality. The methodological quality of the included reviews was assessed using AMSTAR-2. Out of 801 citations, 14 meta-analyses met the inclusion criteria. LDCT demonstrated high sensitivity (0.97, 95% CI: 0.94–0.98) and specificity (0.87, 95% CI: 0.82–0.91). It significantly increased early-stage lung cancer detection (RR: 1.31, 95% CI: 1.18–1.45) and reduced lung cancer mortality by 18% (RR: 0.82, 95% CI: 0.75–0.90). However, the reduction in all-cause mortality (RR: 0.91, 95% CI: 0.75–1.06) was not statistically significant. Overdiagnosis and false positives remain essential challenges. This umbrella review confirms that LDCT screening effectively reduces lung cancer mortality, particularly in high-risk populations. Lung cancer was the most commonly diagnosed cancer worldwide in 2022, leading to over 2.5 million new cases and 1.8 million deaths. Although lung cancer has a high death rate, many countries still do not have screening programs in place to detect it early. This review examined the effectiveness of a special type of scan, known as low-dose computed tomography (LDCT), in detecting lung cancer early and saving lives. Researchers searched several major medical databases for studies published between 2013 and 2023. They focused on studies that compared LDCT scans with regular chest X-rays or no screening and checked the quality of the studies they included. Out of 801 studies found, 14 high-quality reviews were selected. The results showed that LDCT scans are very good at correctly detecting lung cancer. They helped find cancer earlier and reduced deaths from lung cancer by 18%. There were also concerns about finding cancers that may not have caused problems (overdiagnosis) and false alarms (false positives). In conclusion, LDCT screening can help save lives by detecting lung cancer early, especially in people at high risk, but some challenges need to be carefully managed.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to cognitive market research, the global lung cancer therapeutics market size was valued at USD xx billion in 2024 and is expected to reach USD xx billion at a CAGR of xx% during the forecast period.
The lungs are two spongy organs in the chest that control breathing. Lung cancer is the leading cause of cancer deaths worldwide. People who smoke have the greatest risk of lung cancer. The risk of lung cancer increases with the length of time and number of cigarettes smoked.
The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals
The chemotherapy segment dominated the lung cancer therapeutics market revenue in 2024 and is projected to be the fastest-growing segment during the forecast period. Chemotherapy goes throughout the entire body for tumor cells, whereas radiation and surgery target a single region of the body.
Moreover, this market dominance is a result of consumers' growing propensity to buy pharmaceuticals from hospital pharmacies due to the availability of a large variety of medicines.
There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the instruments adds up to the total cost.
Market Dynamics of the Lung Cancer Therapeutics
Key Drivers of the Lung Cancer Therapeutics
The strong prevalence of lung cancer is notably driving market growth.
One of the most prevalent forms of cancer is lung cancer. Several reasons, including the aging population and lifestyle changes, have contributed to a notable increase in the number of new instances of cancer, particularly lung cancer, in recent years. In the United States, 6.2% of the population is at risk of developing lung cancer. Lung cancer still has a very high death rate, even with recent declines in the rate, which presents a market potential for suppliers. The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals. • For instance, according to the 2022 report by the American Lung Association, while the disease remains the leading cause of cancer deaths among women and men, the survival rate over the past five years has increased from 21% nationally to 25% yet remains significantly lower among communities of color at 20%. Hence, the increasing prevalence of cancer and the need for effective treatment is likely to contribute to market growth. (Source:https://www.lung.org/research/state-of-lung-cancer/key-findings)
Rising pollution due to rapid industrialization increases the incidences of lung cancer
Air pollution (outdoor and indoor particulate matter and ozone) is closely linked to the rising prevalence of heart disease and strokes, lung cancer, lower respiratory infections, diabetes, and chronic obstructive pulmonary disease (COPD). The Global Burden of Disease Study Report (2019) ranks air pollution as the third leading cause of death worldwide. Globally, air pollution is responsible for 6.82 million deaths annually, of which 33% are caused by interior pollution and 66% by outdoor pollution. • For instance, According to the conference organized by the Associated Chambers of Commerce and Industry of India (ASSOCHAM), ‘Lung Cancer- Awareness, Prevention, Challenges & Treatment’, air pollution is the leading cause of the rise of lung cancer in the country. Around 63 out of the 100 most polluted places on earth belong to India. (Source:https://www.assocham.org/press-release-page.php?release-name=air-pollution-is-the-major-cause-of-lung-cancer-in-india-say-health-experts)
Restraints of the Lung Cancer Therapeutics
Regional disparities in treatment will hamper the market for lung cancer therapeutics
Lung cancer is the most prevalent cause of cancer-related deaths globally, and its impact is particularly felt in lower- and middle-income countries (LMICs), where access to early and effective diagnosis and treatment is often restricted. WHO data show that whereas 90% of cancer patients in high-income countries have access to therapy, only roughly 30% of cancer patients in low-income countries do. There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the i...
Facebook
TwitterRelative one-year cancer survival rates in the Baltic states are lower than the European mean; in the Nordic countries they are higher than the mean. This study investigated the likelihood of General Practitioners (GPs) investigating or referring patients with a low but significant risk of cancer in these two regions, and how this was affected by GP demographics. A survey of GPs using clinical vignettes. General Practice in Denmark, Estonia, Finland, Latvia, Lithuania, Norway, and Sweden. General Practitioners. A regional comparison of GPs’ stated immediate diagnostic actions (whether or not they would perform a key diagnostic test and/or refer to a specialist) for patients with a low but significant risk of cancer (between 1.2 and 3.6%). Of the 427 GPs that completed the questionnaire, those in the Baltic states, and GPs that were more experienced, were more likely to arrange a key diagnostic test and/or refer their patient to a specialist than those in Nordic Countries or who were less experienced (p < 0.001 for both measures). Neither GP sex nor practice location within a country showed a significant association with these measures. While relative one-year cancer survival rates are lower in the Baltic states than in four Nordic countries, we found no evidence that this is due to their GPs’ reluctance to take immediate diagnostic action, as GPs in the Baltic states were more likely to investigate and/or refer at the first consultation. Research on patient and secondary care factors is needed to explain the survival differences.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Objective: While Hungary is often reported to have the highest incidence and mortality rates of lung cancer, until 2018 no nationwide epidemiology study was conducted to confirm these trends. The objective of this study was to estimate the occurrence of lung cancer in Hungary based on a retrospective review of the National Health Insurance Fund (NHIF) database.Methods: Our retrospective, longitudinal study included patients aged ≥20 years who were diagnosed with lung cancer (ICD-10 C34) between 1 Jan 2011 and 31 Dec 2016. Age-standardized incidence and mortality rates were calculated using both the 1976 and 2013 European Standard Populations (ESP).Results: Between 2011 and 2016, 6,996 – 7,158 new lung cancer cases were recorded in the NHIF database annually, and 6,045 – 6,465 all-cause deaths occurred per year. Age-adjusted incidence rates were 115.7–101.6/100,000 person-years among men (ESP 1976: 84.7–72.6), showing a mean annual change of − 2.26% (p = 0.008). Incidence rates among women increased from 48.3 to 50.3/100,000 person-years (ESP 1976: 36.9–38.0), corresponding to a mean annual change of 1.23% (p = 0.028). Age-standardized mortality rates varied between 103.8 and 97.2/100,000 person-years (ESP 1976: 72.8–69.7) in men and between 38.3 and 42.7/100,000 person-years (ESP 1976: 27.8–29.3) in women.Conclusion: Age-standardized incidence and mortality rates of lung cancer in Hungary were found to be high compared to Western-European countries, but lower than those reported by previous publications. The incidence of lung cancer decreased in men, while there was an increase in incidence and mortality among female lung cancer patients.
Facebook
Twitterhttps://www.expertmarketresearch.com/privacy-policyhttps://www.expertmarketresearch.com/privacy-policy
Metastatic prostate cancer affects approximately 700,000 men worldwide, predominantly older adults, and remains a major clinical challenge, underscoring the need for early detection, effective treatment, and improved global management strategies. The metastatic prostate cancer epidemiology forecast by expert market research indicates that western countries report high incidence but low metastatic rates (due to screening), whereas low- and middle-income countries (LMICs) report lower incidence but higher proportion of metastatic disease.
Facebook
TwitterIn 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
Lung cancer
Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
Breast cancer
Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.