Facebook
TwitterIn 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
Lung cancer
Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
Breast cancer
Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.
Facebook
TwitterIn 2022, the incidence of lung cancer among men in Europe was highest in Hungary at ***** per 100,000, while Sweden had the lowest incidence. The incidence of lung cancer recorded among women in Denmark was over ** per 100,000 population. Across the European Union overall, the rate of lung cancer diagnoses was **** per 100,000 among men and **** per 100,000 among women. Smoking and lung cancer risk The connection between smoking and the increased risk of health problems is well established. As of 2021, Hungary had one of the highest daily smoking rates in Europe, with over a quarter of adults smoking daily in the Central European country. The only other countries with a higher share of smoking adults were Bulgaria and Turkey. A positive development though, is the share of adults smoking every day has decreased in almost every European country since 2011. The rise of vaping Originally marketed as a device to help smokers quit, e-cigarettes or vapes have seen increased popularity among people who never smoked cigarettes, especially young people. The use of vapes among young people was reported to be highest in Estonia, Czechia, and Ireland. The dangers of vaping have not been examined over the long term. In the EU there have been attempts to make ‘vapes’ less accessible and appealing for young people, which would include such things as banning flavors and stopping the sale of disposable e-cigarettes.
Facebook
TwitterBy Noah Rippner [source]
This dataset offers a unique opportunity to examine the pattern and trends of county-level cancer rates in the United States at the individual county level. Using data from cancer.gov and the US Census American Community Survey, this dataset allows us to gain insight into how age-adjusted death rate, average deaths per year, and recent trends vary between counties – along with other key metrics like average annual counts, met objectives of 45.5?, recent trends (2) in death rates, etc., captured within our deep multi-dimensional dataset. We are able to build linear regression models based on our data to determine correlations between variables that can help us better understand cancers prevalence levels across different counties over time - making it easier to target health initiatives and resources accurately when necessary or desired
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
This kaggle dataset provides county-level datasets from the US Census American Community Survey and cancer.gov for exploring correlations between county-level cancer rates, trends, and mortality statistics. This dataset contains records from all U.S counties concerning the age-adjusted death rate, average deaths per year, recent trend (2) in death rates, average annual count of cases detected within 5 years, and whether or not an objective of 45.5 (1) was met in the county associated with each row in the table.
To use this dataset to its fullest potential you need to understand how to perform simple descriptive analytics which includes calculating summary statistics such as mean, median or other numerical values; summarizing categorical variables using frequency tables; creating data visualizations such as charts and histograms; applying linear regression or other machine learning techniques such as support vector machines (SVMs), random forests or neural networks etc.; differentiating between supervised vs unsupervised learning techniques etc.; reviewing diagnostics tests to evaluate your models; interpreting your findings; hypothesizing possible reasons and patterns discovered during exploration made through data visualizations ; Communicating and conveying results found via effective presentation slides/documents etc.. Having this understanding will enable you apply different methods of analysis on this data set accurately ad effectively.
Once these concepts are understood you are ready start exploring this data set by first importing it into your visualization software either tableau public/ desktop version/Qlikview / SAS Analytical suite/Python notebooks for building predictive models by loading specified packages based on usage like Scikit Learn if Python is used among others depending on what tool is used . Secondly a brief description of the entire table's column structure has been provided above . Statistical operations can be carried out with simple queries after proper knowledge of basic SQL commands is attained just like queries using sub sets can also be performed with good command over selecting columns while specifying conditions applicable along with sorting operations being done based on specific attributes as required leading up towards writing python codes needed when parsing specific portion of data desired grouping / aggregating different categories before performing any kind of predictions / models can also activated create post joining few tables possible , when ever necessary once again varying across tools being used Thereby diving deep into analyzing available features determined randomly thus creating correlation matrices figures showing distribution relationships using correlation & covariance matrixes , thus making evaluations deducing informative facts since revealing trends identified through corresponding scatter plots from a given metric gathered from appropriate fields!
- Building a predictive cancer incidence model based on county-level demographic data to identify high-risk areas and target public health interventions.
- Analyzing correlations between age-adjusted death rate, average annual count, and recent trends in order to develop more effective policy initiatives for cancer prevention and healthcare access.
- Utilizing the dataset to construct a machine learning algorithm that can predict county-level mortality rates based on socio-economic factors such as poverty levels and educational attainment rates
If you use this dataset i...
Facebook
TwitterIn 2022, Australia had the fourth-highest total number of skin cancer cases worldwide and the highest age-standardized rate, with roughly 37 cases of skin cancer per 100,000 population. The graph illustrates the rate of skin cancer in the countries with the highest skin cancer rates worldwide in 2022.
Facebook
TwitterIn 2022, the mortality rate of breast cancer in women in Europe was **** per 100,000 women. Cyprus had the highest mortality rate at **** per 100,000, followed by Slovakia with **** per 100,000 women. Conversely, Spain had the lowest mortality rate at **** per 100,000. This statistic depicts the mortality rate of breast cancer in Europe in 2022 in women population, by country.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Major cancers are associated with lifestyle, and previous studies have found that the non-immigrant populations in the Nordic countries have higher incidence rates of most cancers than the immigrant populations. However, rates are changing worldwide – so these differences may disappear with time. Here we present recent cancer incidence rates among immigrant and non-immigrant men and women in Norway and investigate whether previous differences still exist. We took advantage of a recent change in the Norwegian Cancer Registry regulations that allow for the registry to have information on country of birth. The number of person years for 2014–2018 was aggregated for every combination of sex, five-year age-group and country of birth, by summing up each year’s population in these groups. The number of cancer cases was then counted for the same groups, and age-standardised incidence rates calculated by weighing the age-specific incidence rates by the Nordic and World standard populations. Further, we calculated incidence rate ratios using the non-immigrant population as a reference. Immigrants from Eastern Europe, the Middle East, Africa and Asia had lower incidence of total cancer compared to the non-immigrant population in Norway and immigrants born in the other Nordic or high-income countries. However, some cancers were more common in certain immigrant groups. Asian men and women had threefold the incidence of liver cancer than non-immigrant men and women. Men from the other Nordic countries and from Eastern Europe had higher lung cancer rates than non-immigrant men. National registries should continuously monitor and present cancer incidence stratified on important population subgroups such as country of birth. This can help assess population subgroup specific needs for cancer prevention and treatment, and could eventually help reduce the morbidity and mortality of cancer.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This dataset contains real-world information about colorectal cancer cases from different countries. It includes patient demographics, lifestyle risks, medical history, cancer stage, treatment types, survival chances, and healthcare costs. The dataset follows global trends in colorectal cancer incidence, mortality, and prevention.
Use this dataset to build models for cancer prediction, survival analysis, healthcare cost estimation, and disease risk factors.
Dataset Structure Each row represents an individual case, and the columns include:
Patient_ID (Unique identifier) Country (Based on incidence distribution) Age (Following colorectal cancer age trends) Gender (M/F, considering men have 30-40% higher risk) Cancer_Stage (Localized, Regional, Metastatic) Tumor_Size_mm (Randomized within medical limits) Family_History (Yes/No) Smoking_History (Yes/No) Alcohol_Consumption (Yes/No) Obesity_BMI (Normal/Overweight/Obese) Diet_Risk (Low/Moderate/High) Physical_Activity (Low/Moderate/High) Diabetes (Yes/No) Inflammatory_Bowel_Disease (Yes/No) Genetic_Mutation (Yes/No) Screening_History (Regular/Irregular/Never) Early_Detection (Yes/No) Treatment_Type (Surgery/Chemotherapy/Radiotherapy/Combination) Survival_5_years (Yes/No) Mortality (Yes/No) Healthcare_Costs (Country-dependent, $25K-$100K+) Incidence_Rate_per_100K (Country-level prevalence) Mortality_Rate_per_100K (Country-level mortality) Urban_or_Rural (Urban/Rural) Economic_Classification (Developed/Developing) Healthcare_Access (Low/Moderate/High) Insurance_Status (Insured/Uninsured) Survival_Prediction (Yes/No, based on factors)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveWe investigated whether there are differences in cancer incidence by geographical area of origin in North-eastern Italy.MethodsWe selected all incident cases recorded in the Veneto Tumour Registry in the period 2015-2019. Subjects were classified, based on the country of birth, in six geographical areas of origin (Italy, Highly Developed Countries-HDC, Eastern Europe, Asia, Africa, South-central America). Age-standardized incidence rates and incidence rate ratio (IRR) were calculated, for all cancer sites and for colorectal, liver, breast and cervical cancer separately.ResultsWe recorded 159,486 all-site cancer cases; 5.2% cases occurred in subjects born outside Italy, the majority from High Migratory Pressure Countries (HMPC) (74.3%). Incidence rates were significantly lower in subjects born in HMPC in both sexes. Immigrants, in particular born in Asia and Africa, showed lower rates of all site cancer incidence. The lowest IRR for colorectal cancer was observed in males from South-Central America (IRR 0.19, 95%CI 0.09-0.44) and in females from Asia (IRR 0.32, 95%CI 0.18-0.70). The IRR of breast cancer appeared significantly lower than Italian natives in all female populations, except for those coming from HDC. Females from Eastern Europe showed a higher IRR for cervical cancer (IRR 2.02, 95%CI 1.57-2.61).ConclusionCancer incidence was found lower in subjects born outside Italy, with differences in incidence patterns depending on geographical area of origin and the cancer type in question. Further studies, focused on the country of birth of the immigrant population, would help to identify specific risk factors influencing cancer incidence.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Users can access data about cancer statistics, specifically incidence and mortality worldwide for the 27 major types of cancer. Background Cancer Mondial is maintained by the Section of Cancer Information (CIN) of International Agency for Research on Cancer by the World Health Organization. Users can access CIN databases including GLOBOCAN, CI5(Cancer Incidence in Five Continents), WHO, ACCIS(Automated Childhood Cancer Information System), ECO (European Cancer Observatory), NORDCAN and Survcan. User functionality Users can access a variety of databases. CIN Databases: GLOBOCAN provides acces s to the most recent estimates (for 2008) of the incidence of 27 major cancers and mortality from 27 major cancers worldwide. CI5 (Cancer Incidence in Five Continents) provides access to detailed information on the incidence of cancer recorded by cancer registries (regional or national) worldwide. WHO presents long time series of selected cancer mortality recorded in selected countries of the world. Collaborative projects: ACCIS (Automated Childhood Cancer Information System) provides access to data on cancer incidence and survival of children collected by European cancer registries. ECO (European Cancer Observatory) provides access to the estimates (for 2008) of the incidence of, and mortality f rom 25 major cancers in the countries of the European Union (EU-27). NORDCAN presents up-to-date long time series of cancer incidence, mortality, prevalence and survival from 40 cancers recorded by the Nordic countries. SurvCan presents cancer survival data from cancer registries in low and middle income regions of the world. Data Notes Data is available in different formats depending on which type of data is accessed. Some data is available in table, PDF, and html formats. Detailed information about the data is available.
Facebook
TwitterIn 2022, the mortality rate of prostate cancer in Europe was **** per 100,000. Estonia had the highest mortality rate at **** per 100,000, followed by Latvia with **** per 100,000 men. Conversely, Italy had the lowest mortality rate at **** per 100,000. This statistic depicts the mortality rate of prostate cancer Europe in 2022, by country.
Facebook
TwitterBackgroundThe nationwide HUN-CANCER EPI study examined cancer incidence and mortality rates in Hungary from 2011 to 2019.MethodsUsing data from the National Health Insurance Fund (NHIF) and Hungarian Central Statistical Office (HCSO), our retrospective study analyzed newly diagnosed malignancies between Jan 1, 2011, and Dec 31, 2019. Age-standardized incidence and mortality rates were calculated for all and for different tumor types using both the 1976 and 2013 European Standard Populations (ESP).FindingsThe number of newly diagnosed cancer cases decreased from 60,554 to 56,675 between 2011–2019. Age-standardized incidence rates were much lower in 2018, than previously estimated (475.5 vs. 580.5/100,000 person-years [PYs] in males and 383.6 vs. 438.5/100,000 PYs in females; ESP 1976). All-site cancer incidence showed a mean annual decrease of 1.9% (95% CI: 2.4%-1.4%) in men and 1.0% (95% CI:1.42%-0.66%) in women, parallel to mortality trends (-1.6% in males and -0.6% in females; ESP 2013). In 2018, the highest age-standardized incidence rates were found for lung (88.3), colorectal (82.2), and prostate cancer (62.3) in men, and breast (104.6), lung (47.7), and colorectal cancer (45.8) in women. The most significant decreases in incidence rates were observed for stomach (4.7%), laryngeal (4.4%), and gallbladder cancers (3.5%), with parallel decreases in mortality rates (3.9%, 2.7% and 3.2%, respectively).InterpretationWe found a lower incidence of newly diagnosed cancer cases for Hungary compared to previous estimates, and decreasing trends in cancer incidence and mortality, in line with global findings and the declining prevalence of smoking.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveWe investigated whether there are differences in cancer incidence by geographical area of origin in North-eastern Italy.MethodsWe selected all incident cases recorded in the Veneto Tumour Registry in the period 2015-2019. Subjects were classified, based on the country of birth, in six geographical areas of origin (Italy, Highly Developed Countries-HDC, Eastern Europe, Asia, Africa, South-central America). Age-standardized incidence rates and incidence rate ratio (IRR) were calculated, for all cancer sites and for colorectal, liver, breast and cervical cancer separately.ResultsWe recorded 159,486 all-site cancer cases; 5.2% cases occurred in subjects born outside Italy, the majority from High Migratory Pressure Countries (HMPC) (74.3%). Incidence rates were significantly lower in subjects born in HMPC in both sexes. Immigrants, in particular born in Asia and Africa, showed lower rates of all site cancer incidence. The lowest IRR for colorectal cancer was observed in males from South-Central America (IRR 0.19, 95%CI 0.09-0.44) and in females from Asia (IRR 0.32, 95%CI 0.18-0.70). The IRR of breast cancer appeared significantly lower than Italian natives in all female populations, except for those coming from HDC. Females from Eastern Europe showed a higher IRR for cervical cancer (IRR 2.02, 95%CI 1.57-2.61).ConclusionCancer incidence was found lower in subjects born outside Italy, with differences in incidence patterns depending on geographical area of origin and the cancer type in question. Further studies, focused on the country of birth of the immigrant population, would help to identify specific risk factors influencing cancer incidence.
Facebook
TwitterIn 2022, the mortality rate of colorectal cancer in Europe was, among men, **** per 100,000, while among women it stood at **** per 100,000. For men, Croatia had the highest mortality rate at **** per 100,000, while Luxembourg had the lowest at **** per 100,000. For women, Croatia also had the highest mortality rate at **** per 100,000, while Austria had the lowest at **** per 100,000. This statistic depicts the mortality rate of colorectal cancer in Europe in 2022, by country and gender.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundDespite rising incidence and mortality rates in Africa, cancer has been given low priority in the research field and in healthcare services. Indeed, 57% of all new cancer cases around the world occur in low income countries exacerbated by lack of awareness, lack of preventive strategies, and increased life expectancies. Despite recent efforts devoted to cancer epidemiology, statistics on cancer rates in Africa are often dispersed across different registries. In this study our goal included identifying the most promising prevention and treatment approaches available in Africa. To do this, we collated and analyzed the incidence and fatality rates for the 10 most common and fatal cancers in 56 African countries grouped into 5 different regions (North, West, East, Central and South) over 16-years (2002–2018). We examined temporal and regional trends by investigating the most important risk factors associated to each cancer type. Data were analyzed by cancer type, African region, gender, measures of socioeconomic status and the availability of medical devices.ResultsWe observed that Northern and Southern Africa were most similar in their cancer incidences and fatality rates compared to other African regions. The most prevalent cancers are breast, bladder and liver cancers in Northern Africa; prostate, lung and colorectal cancers in Southern Africa; and esophageal and cervical cancer in East Africa. In Southern Africa, fatality rates from prostate cancer and cervical cancer have increased. In addition, these three cancers are less fatal in Northern and Southern Africa compared to other regions, which correlates with the Human Development Index and the availability of medical devices. With the exception of thyroid cancer, all other cancers have higher incidences in males than females.ConclusionOur results show that the African continent suffers from a shortage of medical equipment, research resources and epidemiological expertise. While recognizing that risk factors are interconnected, we focused on risk factors more or less specific to each cancer type. This helps identify specific preventive and therapeutic options in Africa. We see a need for implementing more accurate preventive strategies to tackle this disease as many cases are likely preventable. Opportunities exist for vaccination programs for cervical and liver cancer, genetic testing and use of new targeted therapies for breast and prostate cancer, and positive changes in lifestyle for lung, colorectal and bladder cancers. Such recommendations should be tailored for the different African regions depending on their disease profiles and specific needs.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundThe exponential growth of the cancer burden attributable to metabolic factors deserves global attention. We investigated the trends of cancer mortality attributable to metabolic factors in 204 countries and regions between 1990 and 2019.MethodsWe extracted data from the Global Burden of Disease Study (GBD) 2019 and assessed the mortality, age-standardized death rate (ASDR), and population attributable fractions (PAFs) of cancers attributable to metabolic factors. Average annual percentage changes (AAPCs) were calculated to assess the changes in the ASDR. The cancer mortality burden was evaluated according to geographic location, SDI quintiles, age, sex, and changes over time.ResultsCancer attributable to metabolic factors contributed 865,440 (95% UI, 447,970-140,590) deaths in 2019, a 167.45% increase over 1990. In the past 30 years, the increase in the number of deaths and ASDR in lower SDI regions have been significantly higher than in higher SDI regions (from high to low SDIs: the changes in death numbers were 108.72%, 135.7%, 288.26%, 375.34%, and 288.26%, and the AAPCs were 0.42%, 0.58%, 1.51%, 2.36%, and 1.96%). Equatorial Guinea (AAPC= 5.71%), Cabo Verde (AAPC=4.54%), and Lesotho (AAPC=4.42%) had the largest increase in ASDR. Large differences were observed in the ASDRs by sex across different SDIs, and the male-to-female ratios of ASDR were 1.42, 1.50, 1.32, 0.93, and 0.86 in 2019. The core population of death in higher SDI regions is the age group of 70 years and above, and the lower SDI regions are concentrated in the age group of 50-69 years. The proportion of premature deaths in lower SDI regions is significantly higher than that in higher SDI regions (from high to low SDIs: 2%, 4%, 7%, 7%, and 9%). Gastrointestinal cancers were the core burden, accounting for 50.11% of cancer deaths attributable to metabolic factors, among which the top three cancers were tracheal, bronchus, and lung cancer, followed by colon and rectum cancer and breast cancer.ConclusionsThe cancer mortality burden attributable to metabolic factors is shifting from higher SDI regions to lower SDI regions. Sex differences show regional heterogeneity, with men having a significantly higher burden than women in higher SDI regions but the opposite is observed in lower SDI regions. Lower SDI regions have a heavier premature death burden. Gastrointestinal cancers are the core of the burden of cancer attributable to metabolic factors.
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to cognitive market research, the global lung cancer therapeutics market size was valued at USD xx billion in 2024 and is expected to reach USD xx billion at a CAGR of xx% during the forecast period.
The lungs are two spongy organs in the chest that control breathing. Lung cancer is the leading cause of cancer deaths worldwide. People who smoke have the greatest risk of lung cancer. The risk of lung cancer increases with the length of time and number of cigarettes smoked.
The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals
The chemotherapy segment dominated the lung cancer therapeutics market revenue in 2024 and is projected to be the fastest-growing segment during the forecast period. Chemotherapy goes throughout the entire body for tumor cells, whereas radiation and surgery target a single region of the body.
Moreover, this market dominance is a result of consumers' growing propensity to buy pharmaceuticals from hospital pharmacies due to the availability of a large variety of medicines.
There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the instruments adds up to the total cost.
Market Dynamics of the Lung Cancer Therapeutics
Key Drivers of the Lung Cancer Therapeutics
The strong prevalence of lung cancer is notably driving market growth.
One of the most prevalent forms of cancer is lung cancer. Several reasons, including the aging population and lifestyle changes, have contributed to a notable increase in the number of new instances of cancer, particularly lung cancer, in recent years. In the United States, 6.2% of the population is at risk of developing lung cancer. Lung cancer still has a very high death rate, even with recent declines in the rate, which presents a market potential for suppliers. The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals. • For instance, according to the 2022 report by the American Lung Association, while the disease remains the leading cause of cancer deaths among women and men, the survival rate over the past five years has increased from 21% nationally to 25% yet remains significantly lower among communities of color at 20%. Hence, the increasing prevalence of cancer and the need for effective treatment is likely to contribute to market growth. (Source:https://www.lung.org/research/state-of-lung-cancer/key-findings)
Rising pollution due to rapid industrialization increases the incidences of lung cancer
Air pollution (outdoor and indoor particulate matter and ozone) is closely linked to the rising prevalence of heart disease and strokes, lung cancer, lower respiratory infections, diabetes, and chronic obstructive pulmonary disease (COPD). The Global Burden of Disease Study Report (2019) ranks air pollution as the third leading cause of death worldwide. Globally, air pollution is responsible for 6.82 million deaths annually, of which 33% are caused by interior pollution and 66% by outdoor pollution. • For instance, According to the conference organized by the Associated Chambers of Commerce and Industry of India (ASSOCHAM), ‘Lung Cancer- Awareness, Prevention, Challenges & Treatment’, air pollution is the leading cause of the rise of lung cancer in the country. Around 63 out of the 100 most polluted places on earth belong to India. (Source:https://www.assocham.org/press-release-page.php?release-name=air-pollution-is-the-major-cause-of-lung-cancer-in-india-say-health-experts)
Restraints of the Lung Cancer Therapeutics
Regional disparities in treatment will hamper the market for lung cancer therapeutics
Lung cancer is the most prevalent cause of cancer-related deaths globally, and its impact is particularly felt in lower- and middle-income countries (LMICs), where access to early and effective diagnosis and treatment is often restricted. WHO data show that whereas 90% of cancer patients in high-income countries have access to therapy, only roughly 30% of cancer patients in low-income countries do. There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the i...
Facebook
TwitterBackgroundTo report the burden of cancers attributable to high fasting plasma glucose (HFPG) by sex, age, location, cancer type and Socio-demographic Index (SDI) over the period 1990 to 2019 for 204 countries and territories.MethodsUsing the Comparative Risk Assessment approach of Global Burden of Disease (GBD) study 2019, the burden of cancers attributable to HFPG was reported in 1990 and 2019.ResultsGlobally, in 2019 there were an estimated 419.3 thousand cancer deaths (95% UI: 115.7 to 848.5) and 8.6 million cancer DALYs (2.4 to 17.6) attributable to HFPG. By sex, 4.6 (1.1 to 9.9) and 4.0 (1.1 to 8.4) million global cancer DALYs were attributable to HFPG in men and women, respectively. The global age-standardized death and DALY rates of cancers attributable to HFPG (per 100,000) have increased by 27.8% (20.5 to 38.7%) and 24.5% (16.4 to 35.6%), respectively, since 1990. High-income North America (9.5 [2.7 to 18.8]) and Eastern Sub-Saharan Africa (2.0 [0.5 to 4.2]) had the highest and lowest regional age-standardized death rates, respectively, for cancers attributable to HFPG. In 2019, the global number of attributable cancer DALYs were highest in 65-69 age group. Moreover, there was an overall positive association between SDI and the regional age-standardized DALY rate for HFPG-attributable cancers.ConclusionsHFPG was associated with more burden in 2019. Preventive programs for diabetes and screening of individuals with diabetes for cancers, especially in older males living in developed countries, are required to arrest the large increases in HFPG-attributable cancers.
Facebook
TwitterIn 2022, the incidence rate of colorectal cancer in the EU was, among men, **** per 100,000, while among women it stood at **** per 100,000. For men, Hungary had the highest incidence rate at ***** per 100,000, while Austria had the lowest at **** per 100,000. For women, Denmark had the highest incidence rate at **** per 100,000, while Austria had the lowest at **** per 100,000. This statistic depicts the incidence rate of colorectal cancer in the EU in 2022, by country and gender (per 100,000 population).
Facebook
Twitterhttps://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to cognitive market research, the global solid tumor therapeutics market size was valued at USD xx billion in 2024 and is expected to reach USD xx billion at a CAGR of xx% during the forecast period.
A solid tumor is a mass of abnormal cells developing in several organs. Drugs and other therapeutic modalities target and treat solid tumors with reliable tumor treatments.
The cancer medications are administered by needle through an inserting tube into the body, even though chemotherapy has negative effects.
Pharmaceutical companies make investments in future research to release premium drugs. Large pharmaceutical companies are increasing the effectiveness of their R&D by working with R&D centers throughout the world and making significant expenditures in R&D to guarantee extended returns on investments.
The government's awareness campaigns to inform the public about early detection and treatment of breast cancer also contribute to the market's growth.
North America is anticipated to occupy a sizable portion of the market during the forecast period.
Market Dynamics of the Solid Tumor Therapeutics Market
Key Drivers of the Solid Tumor Therapeutics Market
The increasing prevalence of cancer is driving the global solid tumor therapeutics market growth.
The rising number of cases of various forms of metastatic cancer is expected to support market growth. Every day, the occurrence of many malignant illnesses rises. More tumor testing will be necessary for lung, colorectal, breast, and liver cancers, which will propel the market upward. Brain and neuroblastomas are the most prevalent forms of solid tumors; osteosarcoma and rhabdomyosarcoma are thought to be less common solid cancer types. The aging population and changing lifestyle habits, such as poor eating habits and inactivity, have contributed to a rise in the occurrence of cancer. • For instance, according to the European Breast Cancer Coalition 2022 report 1 in 11 women in the European Union develop breast cancer before the age of 74. (Source:https://www.europadonna.org/breast-cancer/ )
Rising government initiatives towards cancer cases significantly boost the market
The market for solid tumor cancer treatments is anticipated to expand between 2024 and 2031 as a result of growing government efforts, increased spending on research and development (R&D), advancements in sophisticated medical technology, and an increase in early cancer detection tests. Governments from many different nations have actively worked to raise knowledge about cancer treatment. Comprehensive cancer control programs are being implemented by several countries throughout the globe to lower cancer incidence and fatality rates. These initiatives frequently involve clinical trial assistance, medication development subsidies, and money for research and development. • For instance, the Indian government has started raising about treating cancer cases not only over offline media (boards, hoardings, in-store advertisements, in-mall activations) but also over online channels (social media channels, TV, radio, and others) (Source:https://assets.ey.com/content/dam/ey-sites/ey-com/en_in/topics/media-and-entertainment/2024/03/ey-in-india-s-media-entertainment-sector-is-innovating-for-the-future-03-2024-v2.pdf ) • For instance, in May 2022, the United States Department of Health and Human Services (HHS) awarded funding worth USD 5 million to community health centers to increase equitable access to life-saving cancer screenings. (Source:https://www.hhs.gov/about/news/2022/05/11/hhs-announces-5-million-funding-advance-equity-cancer-screening-health-centers.html )
Restraints of the Solid Tumor Therapeutics Market
Side effects associated with solid tumor therapeutics are hampering the global solid tumor therapeutics market growth.
Solid tumor therapy, like any other medication or medical procedure, can have several side effects. The quality of life of patients may be impacted by the toxicity and side effects of solid tumor therapies. An essential component of effective tumor therapy is controlling toxicity and side effects associated with the treatment. The patient and the therapy being employed might affect the individual side effects. The adverse effects of chemotherapy include an increased risk of infections, low blood...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundBreast cancer is the most common cancer in women worldwide. Considerable funding and efforts are invested in breast cancer research and healthcare, but only a fraction of this reaches women and healthcare systems in low income countries. Surgical treatment is an essential part of breast cancer care, but access to surgery is in general very limited in low income countries such as Uganda. In this study, the previously unknown nationwide rate of breast cancer surgery was investigated.Methods and findingsThis was a multicenter, retrospective study, investigating breast cancer surgery in the public healthcare system in Uganda. Data were collected from operating theater registries at primary, secondary and tertiary level healthcare centres throught the country, including 14 general hospitals, the 14 regional referral hospitals and the national referral hospital. Patients who underwent major surgery for breast cancer at these hospitals during 2013 and 2014 were included. The number of breast cancer procedures performed, geographical variation, level of healthcare staff performing surgery and patient characteristics were investigated. After correction for missing data, a total of 137 breast cancer procedures were performed each year within the public healthcare system, corresponding to 5.7% of the breast cancer incidence in the country at that time. Most procedures (n = 161, 59.0%) were performed at the national referral hospital by qualified surgeons. Many of the patients were young; 30.1% being less than 40 years old. The proportion of male breast cancers in the study was large (6.2%).ConclusionsThe rate of breast cancer surgery in Uganda is minimal and in several parts of the country breast cancer surgery is not performed at all. More resources must be directed towards breast cancer in low income countries such as Uganda. The fact that the patients were young calls for further research, prevention and treatment specifically targeting young women in the study setting.
Facebook
TwitterIn 2022, the highest cancer rate for men and women among European countries was in Denmark with 728.5 cancer cases per 100,000 population. Ireland and the Netherlands followed, with 641.6 and 641.4 people diagnosed with cancer per 100,000 population, respectively.
Lung cancer
Lung cancer is the deadliest type of cancer worldwide, and in Europe, Germany was the country with the highest number of lung cancer deaths in 2022, with 47.7 thousand deaths. However, when looking at the incidence rate of lung cancer, Hungary had the highest for both males and females, with 138.4 and 72.3 cases per 100,000 population, respectively.
Breast cancer
Breast cancer is the most common type of cancer among women with an incidence rate of 83.3 cases per 100,000 population in Europe in 2022. Cyprus was the country with the highest incidence of breast cancer, followed by Belgium and France. The mortality rate due to breast cancer was 34.8 deaths per 100,000 population across Europe, and Cyprus was again the country with the highest figure.