At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.
The United States has an average elevation of roughly 2,500 feet (763m) above sea level, however there is a stark contrast in elevations across the country. Highest states Colorado is the highest state in the United States, with an average elevation of 6,800 feet (2,074m) above sea level. The 10 states with the highest average elevation are all in the western region of the country, as this is, by far, the most mountainous region in the country. The largest mountain ranges in the contiguous western states are the Rocky Mountains, Sierra Nevada, and Cascade Range, while the Appalachian Mountains is the longest range in the east - however, the highest point in the U.S. is Denali (Mount McKinley), found in Alaska. Lowest states At just 60 feet above sea level, Delaware is the state with the lowest elevation. Delaware is the second smallest state, behind Rhode Island, and is located on the east coast. Larger states with relatively low elevations are found in the southern region of the country - both Florida and Louisiana have an average elevation of just 100 feet (31m) above sea level, and large sections of these states are extremely vulnerable to flooding and rising sea levels, as well as intermittent tropical storms.
At 20,310 feet (6.2km) above sea level, the highest point in the United States is Denali, Alaska (formerly known as Mount McKinley). The highest point in the contiguous United States is Mount Whitney, in the Sierra Nevada mountain range in California; followed by Mount Elbert, Colorado - the highest point in the Rocky Mountains. When looking at the highest point in each state, the 13 tallest peaks are all found in the western region of the country, while there is much more diversity across the other regions and territories.
Despite being approximately 6,500 feet lower than Denali, Hawaii's Mauna Kea is sometimes considered the tallest mountain (and volcano) on earth. This is because its base is well below sea level - the mountain has a total height of 33,474 feet, which is almost 4,500 feet higher than Mount Everest.
IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 1.168 % in 2010. This stayed constant from the previous number of 1.168 % for 2000. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 1.168 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 1.168 % in 2010 and a record low of 1.168 % in 2010. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Land area below 5m is the percentage of total land where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The sea level rise (SLR) coastal inundation layers were created using existing federal products: the (1) NOAA Coastal Digital Elevation Models (DEMs) and (2) 2022 Interagency Sea Level Rise Technical Report Data Files. The DEMs for the Continental United States (CONUS) are provided in North American Vertical Datum 1988 (NAVD 88) and were converted to Mean Higher High Water (MHHW) using the NOAA VDatum conversion surfaces; the elevation values are in meters (m). The NOAA Scenarios of Future Mean Sea Level are provided in centimeters (cm). The MHHW DEMs for CONUS were merged and converted to cm and Scenarios of Future Mean Sea Level were subtracted from the merged DEM. Values below 0 represent areas that are below sea level and are “remapped” to 1, all values above 0 are remapped to “No Data”, creating a map that shows only areas impacted by SLR. Areas protected by levees in Louisiana and Texas were then masked or removed from the results.Scenario: For each of the 5 GMSL scenarios (identified by the rise amounts in meters by 2100--0.3 m , 0.5 m. 1.0 m, 1.5 m and 2.0 m), there is a low, medium (med) and high value, corresponding to the 17th, 50th, and 83rd percentiles. Scenarios (15 total): 0.3 - MED, 0.3 - LOW, 0.3 - HIGH, 0.5 - MED, 0.5 - LOW, 0.5 - HIGH, 1.0 - MED, 1.0 - LOW, 1.0 - HIGH, 1.5 - MED, 1.5 - LOW, 1.5 - HIGH, 2.0 - MED, 2.0 - LOW, and 2.0 - HIGH Years (15 total): 2005, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120, 2130, 2140, and 2150Report Website: https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.htmlGeneral DisclaimerThe data and maps in this tool illustrate the scale of potential flooding, not the exact location, and do not account for erosion, subsidence, or future construction. Water levels are relative to Mean Higher High Water (MHHW) (excludes wind driven tides). The data, maps, and information provided should be used only as a screening-level tool for management decisions. As with all remotely sensed data, all features should be verified with a site visit. Hydroconnectivity was not considered in the mapping process. The data and maps in this tool are provided “as is,” without warranty to their performance, merchantable state, or fitness for any particular purpose. The entire risk associated with the results and performance of these data is assumed by the user. This tool should be used strictly as a planning reference tool and not for navigation, permitting, or other legal purposes.SLR data are not available for Hawaii, Alaska, or U.S. territories at this time.Levees DisclaimerEnclosed levee areas are displayed as gray areas on the maps.Major federal leveed areas were assumed high enough and strong enough to protect against inundation depicted in this viewer, and therefore no inundation was mapped in these regions. Major federal leveed areas were taken from the National Levee Database.Minor (nonfederal) leveed areas were mapped using the best available elevation data that capture leveed features. In some cases, however, breaks in elevation occur along leveed areas because of flood control features being removed from elevation data, limitations of the horizontal and vertical resolution of the elevation data, the occurrence of levee drainage features, and so forth. Flooding behind levees is only depicted if breaks in elevation data occur or if the levee elevations are overtopped by the water surface. At some flood levels, alternate pathways around—not through—levees, walls, dams, and flood gates may exist that allow water to flow into areas protected at lower levels. In general, imperfect levee and elevation data make assessing protection difficult, and small data errors can have large consequences.Citations2022 Sea Level Rise Technical Report - Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nostechrpt01-global-regional-SLR-scenarios-US.pdf
Severe drought across the Western United States has caused water levels at Lake Mead in Nevada to drop in recent decades. Since 1970, the lowest end of month water level of Lake Mead at Hoover Dam was recorded in July 2022, at 1,040 feet above sea level. This was also the lowest level since the 1930s when the lake was formed by the Hoover Dam. Seven of the 10 lowest water levels recorded since 1970 were in 2022, while three were recorded in 2023. Lake Mead is considered at full capacity when water levels reach 1,220 feet above sea level, but it’s able to hold a maximum of 1,229 feet of water. The last time the lake approached this capacity was in the summer of 1983.
Lake Mead, the largest artificial reservoir by volume in the United States, generates electricity and supplies drinking water to California, Arizona, Nevada, and parts of Mexico.
Lake Mead's water elevation at the end of February 2025 was 1,068.18 feet above sea level, a small increase in comparison to the previous month. In July 2022, the reservoir reached the lowest monthly water level recorded since Lake Mead was first formed by the Hoover Dam in the 1930s. At full capacity, Lake Mead has a water level of 1,229 feet above sea level. Lake Mead nearing dead pool status Situated on the border of Arizona and Nevada, Lake Mead is the largest reservoir in the United States. It is a crucial water source that provides drinking water to tens of millions of people in the states of Arizona, California, and Nevada. However, experts have warned that if the lake continues to recede due to the severe droughts across the Southwestern United States, it will become a dead pool. This means that there will not be enough water for the Hoover Dam to produce hydropower or deliver water downstream to metropolitan centers. U.S. water resources are depleting With large swathes of western U.S. recently suffering from a megadrought, which is a period of prolonged drought that spans more than two decades, many other lakes have been severely depleted in recent years. Water levels of major reservoirs in California have fallen to all-time lows in recent years. California’s two largest reservoirs, Shasta Lake and Oroville Lake, were at less than half capacity in July 2022.
The highest city in the world with a population of more than one million is La Paz. The Capital of Bolivia sits 3,869 meters above sea level, and is more than 1,000 meters higher than the second ranked city - Quito. La Paz is also higher than Mt. Fuji in Japan, which has a height of 3,776 meters. Many of the world's highest cities are located in South America. The only city in North America that makes the top 20 list is Denver, Colorado, which has an altitude of 1,673 meters.
Low-altitude (80-100 meters above ground level) Unmanned Aircraft Systems (UAS) imagery of Town Neck Beach in Sandwich, Massachusetts, were used in a structure-from-motion (SfM) photogrammetry workflow to create high-resolution topographic datasets. Imagery was collected at close to low tide on twelve days to observe changes in beach and dune morphology. Ground control points (GCPs), which are temporary targets on the ground located by using a real-time kinematic global navigation satellite system (RTK-GNSS) base station and rover, were used to constrain the SfM process. Photoscan (v. 1.2-1.4) was used to create a digital elevation model and orthomosaic for each data collection day. Collection of these data was supported by the U.S. Geological Survey Coastal/Marine Hazards and Resources Program and were conducted under USGS field activity numbers 2016-013-FA, 2016-043-FA, 2016-053-FA, 2016-054-FA, 2016-055-FA, 2017-005-FA, 2017-008-FA, 2017-010-FA, 2017-014-FA, 2017-027-FA, 2017-029-FA, and 2017-050-FA.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Increased frequency and intensity of storms, saltwater intrusion, sea level rise, and warming temperatures are affecting forests along the mid-Atlantic, Southeastern, and Gulf coasts of the US. However, we still lack a clear understanding of how the structure of coastal forests is being altered by climate change drivers. Here, we used data from the Forest Inventory and Analyses program of the United States Forest Service to examine structure and biomass change in forests along the mid-Atlantic, Southeastern, and Gulf coasts of the US. We selected plots that have been resampled at low (5 m) and mid (30-50 m) elevations in coastal areas of states from Texas to New Jersey, allowing us to determine change in live trees, standing dead wood, and downed dead wood biomass (and carbon) stocks across a decade. We estimated forest attributes at the county level for each elevational class. Forest area increased by 1.9% in low elevation counties and by 0.3% in mid elevation counties. Live tree biomass density increased by 13% in low elevation counties, and by 16% in mid elevation counties. Standing dead biomass decreased in low elevation counties by 9.2% and by 2.8% in mid elevation counties. On average, downed dead wood increased by 22% in low elevation counties and decreased by 50% in mid elevation counties. Changes in the stock of C in standing and downed dead wood (0.45 to 9.1 Tg C) are similar to soil marsh C loss (9.54 Tg C). Annualized growth and harvest were both higher (16% and 58% respectively) in mid elevation counties than low elevation counties, while annualized mortality was 25% higher in low elevation counties. Annualized growth in low elevation counties was negatively correlated to sea level rise rates, and positively correlated to number of storms, illustrating tradeoffs associated with different climate change drivers. Overall, our results illustrate the vulnerability of US southeastern coastal low and mid elevation forests to climate change and sea level rise with indications that the complexity and rate of change in associated ecosystem functions (e.g., growth, mortality, and carbon storage) within the greater social environment (e.g., agricultural abandonment) may increase. Methods We used data from the National Forest Inventory and Analysis (FIA) program which, administered by the USDA Forest Service, provides a comprehensive statistical inventory and associated database of forests across the United States. The program applies standardized techniques to measure forest characteristics across a national plot sampling network of approximately one plot per 2,428 ha, with plot locations determined using a hexagonal sampling framework designed to be as spatially balanced as possible. The plot location within each 2,428 ha hexagon was visited by field crews if remotely sensed data indicated it was in forest land use (having ≥ 10% tree canopy cover, or evidence of such cover) that was at least 0.4 ha in area and 37 m wide. We focused on data for the mid-Atlantic and Southeast coast of the US, from Texas to New Jersey. We selected information from forested plots located in low (~5m) and mid elevation (30-50 m) areas with slopes less than 15%, and had either hydric conditions, or were near a water feature, which are indicative of forested wetlands. We used the FIA methodologies to estimate forest resources attributes from plot level to the county level. We looked at changes in live trees (biomass and C), standing dead wood (SD, biomass and C), and downed dead wood (biomass and C, DD). The systematic FIA sample design further allowed for statistical population-level estimates of various forest attributes, such as the area of a low-elevation forest in a county, using an “expansion factor” assigned to each plot condition. Using a design-based approach to population inference, expansion factors can be summed across plots in a population to provide an estimate of the total area within that population. Similarly, the FIA sample design allows individual trees inventoried on plots to be scaled via an expansion factor to estimate the total C of trees within an area. In this case, we calculated the area and biomass (from standing live, standing dead, and downed dead) of low-elevation and mid-elevation forests in low-elevation and mid-elevation counties, respectively, and within each state. Field crews collected a wide variety of data using standardized protocols from each FIA plot, which covered 0.067 hectares within four 7.31-m radius subplots arranged at the vertices and center of a triangle. This included the diameter, height, and species for every live and dead tree with a diameter at breast height (DBH) ≥ 12.7 cm. All trees with DBH ≥ 2.54 cm but < 12.7 cm were measured in a single 2.07-m-radius microplot within each of the plot’s four subplots. Using the component ratio method, the FIA program estimates the aboveground dry biomass of each tree with DBH ≥ 2.54 cm in pounds. Biomass and C densities were calculated by scaling plot-level data to per hectare estimates for the counties. We estimated change in the stocks of different pools by subtracting time 2 from time 1. We also looked at changes in different size classes and decay classes (for dead wood). We used data from the two latest survey evaluation periods, spanning a decade of change (Table 1). We estimated forest biomass standing stocks and change among key structural components using data from 1700 plots in low elevation counties and 3200 plots in mid elevation counties. We estimated population level values for 126 low elevation counties and 179 mid elevation counties (Fig 1). We excluded counties for which there were less than three plots in any survey year. To examine potential climate change drivers of forest dynamics we used publicly available datasets. We obtained sea level rise rates for 43 of the National Oceanic and Atmospheric Administration (NOAA) tide gauges from the Permanent Service for Mean Sea Level (PSMSL, Supplementary Table 1). We used the website to estimate rates of sea level rise from 2010-2020 to match the FIA dataset, given reports of accelerating rates of sea level rise in the Southeastern US. We calculated mean annual temperature and mean annual precipitation from the GridMet dataset (4 km2 spatial resolution), accessed through the Climate Engine portal (https://app.climateengine.org/climateEngine) for the period 2010-2020, to roughly match the FIA measurements. We also estimated change in temperature and precipitation by estimating the sen slope of each factor over the same time period using the Climate Engine portal. We used the NOAA National Hurricane Center Atlantic Hurricane Catalog (HURDAT2), accessed through Google Earth Engine, to count the number of tropical cyclones that passed through a 100 km radius buffer of the NOAA tide gauges for the same period. On average, low elevation counties were located 22.4 ± 2.6 km, while mid elevation counties were 108 ± 5.9 km from the NOAA tide gauges.
This statistic shows a ranking of the estimated average elevation of the land area in 2020 in Latin America, differentiated by country.The shown data are an excerpt of Statista's Key Market Indicators (KMI). The KMI are a collection of primary and secondary indicators on the macro-economic, demographic and technological environment in more than 150 countries and regions worldwide. All input data are sourced from international institutions, national statistical offices, and trade associations. All data has been are processed to generate comparable datasets (see supplementary notes under details for more information).
This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.
A high-resolution (10-meter per pixel) digital elevation model (DEM) was created for the Sacramento-San Joaquin Delta using both bathymetry and topography data. This DEM is the result of collaborative efforts of the U.S. Geological Survey (USGS) and the California Department of Water Resources (DWR). The base of the DEM is from a 10-m DEM released in 2004 and updated in 2005 (Foxgrover and others, 2005) that used Environmental Systems Research Institute(ESRI), ArcGIS Topo to Raster module to interpolate grids from single beam bathymetric surveys collected by DWR, the Army Corp of Engineers (COE), the National Oceanic and Atmospheric Administration (NOAA), and the USGS, into a continuous surface. The Topo to Raster interpolation method was specifically designed to create hydrologically correct DEMs from point, line, and polygon data (Environmental Systems Research Institute, Inc., 2015). Elevation contour lines were digitized based on the single beam point data for control of channel morphology during the interpolation process. Checks were performed to ensure that the interpolated surfaces honored the source bathymetry, and additional contours and(or) point data were added as needed to help constrain the data. The original data were collected in the tidal datum Mean Lower or Low Water (MLLW), or the National Geodetic Vertical Datum of 1929 (NGVD29). All data were converted to NGVD29. The 2005 USGS DEM was updated by DWR, first by converting the DEM to the current modern datum of National Geodetic Vertical Datum of 1988 (NGVD88) and then by following the methodology of the USGS DEM, established for the 2005 DEM (Foxgrover and others, 2005) for adding newly collected single and multibeam bathymetric data. They then included topographic data from lidar surveys, providing the first DEM that included the land/water interface (Wang and Ateljevich, 2012). The USGS further updated and expanded the DWR DEM with the inclusion of USGS interpolated sections of single beam bathymetry data collected by the COE and USGS scientists, expanding the DEM to include the northernmost areas of the Sacramento-San Joaquin Delta, and by making use of a two-meter seamless bathymetric/topographic DEM from the USGS EROS Data Center (2013) of the San Francisco Bay region. The resulting 10-meter USGS DEM encompasses the entirety of Suisun Bay, beginning with the Carquinez Strait in the west, east to California Interstate 5, north following the path of the Yolo Bypass and the Sacramento River up to Knights Landing, and the American River northeast to the Nimbus Dam, and south to areas around Tracy. The DEM incorporates the newest available bathymetry data at the time of release, as well as including, at minimum, a 100-meter band of available topography data adjacent to most shorelines. No data areas within the DEM are areas where no elevation data exists, either due to a gap in the land/water interface, or because lidar was collected over standing water that was then cut out of the DEM.
Between January and March 2010, lidar data was collected in southeast/coastal Georgia under a multi-agency partnership between the Coastal Georgia Regional Development Center, USGS, FEMA, NOAA and local county governments. Data acquisition is for the full extent of coastal Georgia, approximately 50 miles inland, excluding counties with existing high-resolution lidar derived elevation data. The data capture area consists of an area of approximately 5703 square miles. This project is within the Atlantic Coastal Priority Area as defined by the National Geospatial Program (NGP) and supports homeland security requirements of the National Geospatial-Intelligence Agency (NGA). This project also supports the National Spatial Data Infrastructure (NSDI) and will advance USGS efforts related to The National Map and the National Elevation Dataset.
The data were delivered in LAS format version 1.2 in 5000 x 5000 foot tiles. The data are classified according to ASPRS LAS 1.2 classification scheme:
Class 1 - Unclassified Class 2 - Bare Earth Class 7 - Low Point (Noise) Class 9 - Water Class 10 - Land below sea level Class 12 - Overlap
Coral reefs serve as natural barriers that protect adjacent shorelines from coastal hazards such as storms, waves and erosion but projections indicate global degradation of coral reefs due to anthropogenic impacts and climate change will cause a transition to net erosion by mid-century. The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center conducted research to quantify the combined effect of all constructive and destructive processes on modern coral reef ecosystems by measuring regional-scale changes in seafloor elevation. USGS staff assessed five coral reef ecosystems in the Atlantic Ocean (Upper and Lower Florida Keys), Caribbean Sea (U.S. Virgin Islands: Saint Thomas and Buck Island, St. Croix), and Pacific Ocean (Maui, Hawaii), including both coral-dominated and adjacent, non-coral dominated habitats. Scientists used historical bathymetric data from the 1930s to 1980s and contemporary light detection and ranging (lidar) digital elevation models (DEMs) from the late 1990s to 2000s to calculate changes in seafloor elevation for each study site over time periods reflecting low to high anthropogenic impacts. STC_ElevationChange.zip contains the location, elevation, and elevation change data for Buck Island-St.Croix, U.S. Virgin Islands. Using these changes in elevation, further analysis was done to calculate corresponding changes in seafloor volume for all study areas and habitat types within each site.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The United States Virgin Islands Topographic LiDAR Task Order involved collecting and delivering topographic elevation point data derived from multiple return light detection and ranging (LiDAR) measurements on the islands of St. Thomas, St. John, St. Croix and numerous smaller islands and islets in the United States Virgin Islands. The data collected for the project area will exhibit Hydro Flattened DEMs (1m resolution) for inclusion into the NED. The purpose of the data is for use in coastal management decision making, including applications such as flood plain mapping and water rights management. LiDAR was collected at an average of 0.7 meter point spacing for all acquired project areas. Overall the DEMs were acceptable, but appear oversampled as a result of low ground point density (heavy vegetation), and is not a contractor issue as a 1 m DEM was specified. Incremental improvements to the DEMs were earned through breakline adjustments. Another characteristic of the USVI lidar data that was observed on all islands is the appearance of divots where there is a single tree or a narrow line of trees that lie in areas of open, bare terrain. The cause appeared to be sub-canopy points that were lower than the surrounding land. In most cases these low points were lower than the true ground surface at those locations, but were classified as ground and retained in the point cloud for use in DEM generation. This issue was not addressed during revisions.
NOAA's National Geophysical Data Center (NGDC) is building high-resolution digital elevation models (DEMs) for select U.S. coastal regions in the Gulf of Mexico. These integrated bathymetric-topographic DEMs were developed for NOAA Coastal Survey Development Laboratory (CSDL) through the American Recovery and Reinvestment Act (ARRA) of 2009 to evaluate the utility of the Vertical Datum Transformation tool (VDatum), developed jointly by NOAA's Office of Coast Survey (OCS), National Geodetic Survey (NGS), and Center for Operational Oceanographic Products and Services (CO-OPS). Bathymetric, topographic, and shoreline data used in DEM compilation are obtained from various sources, including NGDC, the U.S. Coastal Services Center (CSC), the U.S. Office of Coast Survey (OCS), the U.S. Army Corps of Engineers (USACE), and other federal, state, and local government agencies, academic institutions, and private companies. DEMs are referenced to the vertical tidal datum of North American Vertical Datum of 1988 (NAVD 88), Mean High Water (MHW) or Mean Lower Low Water (MLLW) and horizontal datum of North American Datum of 1983 (NAD 83). Cell size ranges from 1/3 arc-second (~10 meters) to 1 arc-second (~30 meters). The NOAA VDatum DEM Project was funded by the American Recovery and Reinvestment Act (ARRA) of 2009 (http://www.recovery.gov/).The DEM Global Mosaic is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), along with the global GEBCO_2014 grid: http://www.gebco.net/data_and_products/gridded_bathymetry_data. NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service is a general-purpose global, seamless bathymetry/topography mosaic. It combines DEMs from a variety of near sea-level vertical datums, such as mean high water (MHW), mean sea level (MSL), and North American Vertical Datum of 1988 (NAVD88). Elevation values have been rounded to the nearest meter, with DEM cell sizes going down to 1 arc-second. Higher-resolution DEMs, with greater elevation precision, are available in the companion NAVD88: http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042 and MHW: http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799 mosaics. By default, the DEMs are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Please see NCEI's corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. In this visualization, the elevations/depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png.A map service showing the location and coverage of land and seafloor digital elevation models (DEMs) available from NOAA's National Centers for Environmental Information (NCEI). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. Layers available in the map service: Layers 1-4: DEMs by Category (includes various DEMs, both hosted at NCEI, and elsewhere on the web); Layers 6-11: NCEI DEM Projects (DEMs hosted at NCEI, color-coded by project); Layer 12: All NCEI Bathymetry DEMs (All bathymetry or bathy-topo DEMs hosted at NCEI).This is an image service providing access to bathymetric/topographic digital elevation models stewarded at NOAA's National Centers for Environmental Information (NCEI), with vertical units referenced to mean high water (NAVD88). NCEI builds and distributes high-resolution, coastal digital elevation models (DEMs) that integrate ocean bathymetry and land topography to support NOAA's mission to understand and predict changes in Earth's environment, and conserve and manage coastal and marine resources to meet our Nation's economic, social, and environmental needs. They can be used for modeling of coastal processes (tsunami inundation, storm surge, sea-level rise, contaminant dispersal, etc.), ecosystems management and habitat research, coastal and marine spatial planning, and hazard mitigation and community preparedness. This service provides data from many individual DEMs combined together as a mosaic. By default, the rasters are drawn in order of cell size, with higher-resolution grids displayed on top of lower-resolution grids. If overlapping DEMs have the same resolution, the newer one is shown. Alternatively, a single DEM or group of DEMs can be isolated using a filter/definition query or using the 'Lock Raster 'mosaic method in ArcMap. This is one of three services displaying collections of DEMs that are referenced to common vertical datums: North American Vertical Datum of 1988 (NAVD88): http://noaa.maps.arcgis.com/home/item.html?id=e9ba2e7afb7d46cd878b34aa3bfce042, Mean High Water (MHW): http://noaa.maps.arcgis.com/home/item.html?id=3bc7611c1d904a5eaf90ecbec88fa799, and Mean Higher High Water: http://noaa.maps.arcgis.com/home/item.html?id=9471f8d4f43e48109de6275522856696. In addition, the DEM Global Mosaic is a general-purpose global, seamless bathymetry/topography mosaic containing all the DEMs together. Two services are available: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff Elevation Values: http://noaa.maps.arcgis.com/home/item.html?id=c876e3c96a8642ab8557646a3b4fa0ff and Color Shaded Relief: http://noaa.maps.arcgis.com/home/item.html?id=feb3c625dc094112bb5281c17679c769. Please see the corresponding DEM Footprints map service: http://noaa.maps.arcgis.com/home/item.html?id=d41f39c8a6684c54b62c8f1ab731d5ad for polygon footprints and more information about the individual DEMs used to create this composite view. This service has several server-side functions available. These can be selected in the ArcGIS Online layer using 'Image Display ', or in ArcMap under 'Processing Templates '. None: The default. Provides elevation/depth values in meters relative to the NAVD88 vertical datum. ColorHillshade: An elevation-tinted hillshade visualization. The depths are displayed using this color ramp: http://gis.ngdc.noaa.gov/viewers/images/dem_color_scale.png. GrayscaleHillshade: A simple grayscale hillshade visualization. SlopeMapRGB: Slope in degrees, visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/SlopeMapLegend_V7b.png. SlopeNumericValues: Slope in degrees, returning the actual numeric values. AspectMapRGB: Orientation of the terrain (0-360 degrees), visualized using these colors: http://downloads.esri.com/esri_content_doc/landscape/AspectMapLegendPie_V7b.png. AspectNumericValues: Aspect in degrees, returning the actual numeric values.
This project merged recently collected topographic, bathymetric, and acoustic elevation data along the entire California coastline from approximately the 10 meter elevation contour out to California's 3 mile state water's boundary. This metadata record describes the Digital Elevation Model (DEM) created from the lidar and multibeam data. The DEM has a 1m cell size. Topographic LiDAR: The topographic lidar data used in this merged project was the 2009-2011 CA Coastal Conservancy Lidar Project. The data were collected between October 2009 and August 2011. This collection was a joint effort by the NOAA Office for Coastal Management (OCM); the California State Coastal Conservancy (SCC) Ocean Protection Council (OPC); Scripps Institution of Oceanography; and the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX). The data coverage extends landward 500 m from the shoreline, along the entire California coastline. The LAS classifications are as follows: 1-Unclassified, 2-Ground, 7-Noise, 9-Water, 10- Mudflats, 12-Overlap. The LAS points were manually re-classified from water and unclassified to ground in offshore areas where necessary. Bathymetric LiDAR: The bathymetric lidar data used in this merged project was 2009-2010 U.S. Army Corps of Engineers (USACE) Joint Airborne Lidar Bathymetry Center of Expertise (JALBTCX) lidar, provided by JALBTCX. The data were collected for the California Coastal Mapping Project (CCMP). The original data were in ASCII format and were converted to LAS v1.2. The LAS data were classified as follows: 21-Non-submerged Bathymetry, 22-Bathymetry, 23-Ignored Submerged Bathymetry/Overlap. Multibeam Acoustic Data: The acoustic data data used in this merged project were provided by the California Seafloor Mapping Program (CSMP) Ocean Protection Council and NOAA's National Geophysical Data Center (NGDC). The original data were in ASCII format and were converted to LAS v1.2. NOAA's VDatum software was used to vertically transform soundings from mean lower low water (MLLW) tidal datum to NAVD88 orthometric datum where necessary. The LAS data were classified as follows: 25-Submerged Acoustic, 26-Ignored Submerged Acoustic/Overlap. Upon receipt of the data, the NOAA Office for Coastal Management (OCM) converted some of the classifications for data storage and Digital Coast provisioning purposes. The following are the classifications of data available from the NOAA Digital Coast: 1 - Unclassified, 2 - Ground, 7 - Low point (noise), 9 - Water, 11 - Bathymetry, 12 - Overlap, 13 - Submerged Acoustic, 14 - Non-Submerged Bathymetry, 15 - Ignored Submerged Bathymetry/Overlap, 16 - Ignored Submerged Acoustic/Overlap
In 2016, the U.S. Army Corps of Engineers (USACE) started collecting high-resolution multibeam echosounder (MBES) data on Lake Koocanusa. The survey originated near the International Boundary (River Mile (RM) 271.0) and extended down the reservoir, hereinafter referred to as downstream, about 1.4 miles downstream of the Montana 37 Highway Bridge near Boulder Creek (about RM 253). USACE continued the survey in 2017, completing a reach that extended from about RM 253 downstream to near Tweed Creek (RM 244.5). In 2018, the U.S. Geological Survey (USGS) Idaho Water Science Center completed the remaining portion of the reservoir from RM 244.5 downstream to Libby Dam (RM 219.9). The MBES data collected in 2016 and 2017 by the USACE was combined with the MBES data collected in 2018 by the USGS. The USGS also developed an elevation-area-capacity table at one-foot intervals from the minimum pool elevation (2,290.84 ft) to the maximum pool elevation (2462.84 ft) using the new bathymetry data. The updated stage-capacity table will be compared to the current usable storage estimate of 4,979,500 acre-feet and published in a USGS Scientific Investigations Report. A 10-ft digital elevation model (DEM) and minimum and maximum pool contours also were generated from the bathymetric data and are provided in this data release.
At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.