This statistic shows a ranking of the ten lowest dry land points on earth. The lowest land point is the Dead Sea Depression with an elevation amounting to approximately 413 meters below sea level, however, this elevation is an estimate and tends to fluctuate. The shoreline of the Dead Sea is the lowest dry land in the world.
This statistic shows a ranking of the ten lowest places on earth based on elevation below sea level. The world's lowest place on earth is the Dead Sea located in Jordan and Israel, with an elevation amounting to approximately 414 meters below sea level.
This statistic shows the ten lowest points on earth. The world's lowest point is the Kola Borehole in Russia with a depth of 40,230 feet. The Kola Borehole is a result of a Soviet Union's drilling project which started in 1970 and was abandoned in 1989 due to temperatures that reached 180 degrees Celsius. The only purpose for this project was to drill as deep as possible into the Earth's crust.
At 282 feet below sea level, Death Valley in the Mojave Desert, California is the lowest point of elevation in the United States (and North America). Coincidentally, Death Valley is less than 85 miles from Mount Whitney, the highest point of elevation in the mainland United States. Death Valley is one of the hottest places on earth, and in 1913 it was the location of the highest naturally occurring temperature ever recorded on Earth (although some meteorologists doubt its legitimacy). New Orleans Louisiana is the only other state where the lowest point of elevation was below sea level. This is in the city of New Orleans, on the Mississippi River Delta. Over half of the city (up to two-thirds) is located below sea level, and recent studies suggest that the city is sinking further - man-made efforts to prevent water damage or flooding are cited as one reason for the city's continued subsidence, as they prevent new sediment from naturally reinforcing the ground upon which the city is built. These factors were one reason why New Orleans was so severely impacted by Hurricane Katrina in 2005 - the hurricane itself was one of the deadliest in history, and it destroyed many of the levee systems in place to prevent flooding, and the elevation exacerbated the damage caused. Highest low points The lowest point in five states is over 1,000 feet above sea level. Colorado's lowest point, at 3,315 feet, is still higher than the highest point in 22 states or territories. For all states whose lowest points are found above sea level, these points are located in rivers, streams, or bodies of water.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 1.168 % in 2010. This stayed constant from the previous number of 1.168 % for 2000. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 1.168 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 1.168 % in 2010 and a record low of 1.168 % in 2010. United States US: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Land Use, Protected Areas and National Wealth. Land area below 5m is the percentage of total land where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Saudi Arabia SA: Rural Land Area Where Elevation is Below 5 Meters data was reported at 6,212.060 sq km in 2010. This stayed constant from the previous number of 6,212.060 sq km for 2000. Saudi Arabia SA: Rural Land Area Where Elevation is Below 5 Meters data is updated yearly, averaging 6,212.060 sq km from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 6,212.060 sq km in 2010 and a record low of 6,212.060 sq km in 2010. Saudi Arabia SA: Rural Land Area Where Elevation is Below 5 Meters data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Saudi Arabia – Table SA.World Bank: Land Use, Protected Areas and National Wealth. Rural land area below 5m is the total rural land area in square kilometers where the elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Sum;
The Low Elevation Coastal Zone (LECZ) Global Delta Urban-Rural Population and Land Area Estimates, Version 1 data set provides country-level estimates of urban, quasi-urban, rural, and total population (count), land area (square kilometers), and built-up areas in river delta- and non-delta contexts for 246 statistical areas (countries and other UN-recognized territories) for the years 1990, 2000, 2014 and 2015. The population estimates are disaggregated such that compounding risk factors including elevation, settlement patterns, and delta zones can be cross-examined. The Intergovernmental Panel on Climate Change (IPCC) recently concluded that without significant adaptation and mitigation action, risk to coastal commUnities will increase at least one order of magnitude by 2100, placing people, property, and environmental resources at greater risk. Greater-risk zones were then generated: 1) the global extent of two low-elevation zones contiguous to the coast, one bounded by an upper elevation of 10m (LECZ10), and one by an upper elevation of 5m (LECZ05); 2) the extent of the world's major deltas; 3) the distribution of people and built-up area around the world; 4) the extents of urban centers around the world. The data are layered spatially, along with political and land/water boundaries, allowing the densities and quantities of population and built-up area, as well as levels of urbanization (defined as the share of population living in "urban centers") to be estimated for any country or region, both inside and outside the LECZs and deltas, and at two points in time (1990 and 2015). In using such estimates of populations living in 5m and 10m LECZs and outside of LECZs, policymakers can make informed decisions based on perceived exposure and vulnerability to potential damages from sea level rise.
IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Aruba AW: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 6.252 % in 2015. This records a decrease from the previous number of 6.535 % for 2000. Aruba AW: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 6.535 % from Dec 1990 (Median) to 2015, with 3 observations. The data reached an all-time high of 7.005 % in 1990 and a record low of 6.252 % in 2015. Aruba AW: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Aruba – Table AW.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Rural land area below 5m is the percentage of total land where the rural land elevation is 5 meters or less.;Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. 2021. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/d1x1-d702.;Weighted average;
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Bermuda BM: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 35.965 % in 2015. This stayed constant from the previous number of 35.965 % for 2000. Bermuda BM: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 35.965 % from Dec 1990 (Median) to 2015, with 3 observations. The data reached an all-time high of 35.965 % in 2015 and a record low of 35.965 % in 2015. Bermuda BM: Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Bermuda – Table BM.World Bank.WDI: Environmental: Land Use, Protected Areas and National Wealth. Land area below 5m is the percentage of total land where the elevation is 5 meters or less.;Center for International Earth Science Information Network - CIESIN - Columbia University, and CUNY Institute for Demographic Research - CIDR - City University of New York. 2021. Low Elevation Coastal Zone (LECZ) Urban-Rural Population and Land Area Estimates, Version 3. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/d1x1-d702.;Weighted average;
This data set contains the monthly Global Ocean Mass Anomalies (goma) since 04/2002, as measured by the GRACE and GRACE Follow-On (G/GFO) satellite missions. The data are averaged over the global ocean domain, at monthly intervals (note: data gaps exist). This file contains the goma time series based on the spherical harmonic gravity fields provided by the G/GFO SDS centers: JPL, CSR, GFZ. The data are frequently updated as new monthly observations are acquired by the GFO mission. The processing of the spherical harmonics gravity field coefficients is as follows: (1) GAD + GSM: the monthly de-aliasing product GAD is added back to the GSM L2 gravity fields; (2) [GSM + GAD] coefficients are averaged over the global ocean with a coastal buffer of 300 km (to avoid land-ocean leakage); (3) the spatial mean of atmospheric loading of the entire global ocean domain is removed (via the GAA L2 data product). A GIA correction using the ICE-6GD model (Peltier et al., 2018) is applied.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Norway NO: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 1.712 % in 2010. This stayed constant from the previous number of 1.712 % for 2000. Norway NO: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 1.712 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 1.712 % in 2010 and a record low of 1.712 % in 2010. Norway NO: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Norway – Table NO.World Bank: Land Use, Protected Areas and National Wealth. Rural land area below 5m is the percentage of total land where the rural land elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;
This metadata record describes bottom-mounted ADCP data collected at Terrace Point, California, USA, by PISCO. Measurements were collected using a RDI 600 kHz Workhorse Sentinel ADCP beginning 2007-12-13. The instrument depth was 018 meters, in an overall water depth of 18 meters (both relative to Mean Sea Level, MSL). The instrument was programmed with a sampling interval of 2.0 minutes and a vertical resolution of 1 meter.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Sudan SD: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data was reported at 0.069 % in 2010. This stayed constant from the previous number of 0.069 % for 2000. Sudan SD: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data is updated yearly, averaging 0.069 % from Dec 1990 (Median) to 2010, with 3 observations. The data reached an all-time high of 0.069 % in 2010 and a record low of 0.069 % in 2010. Sudan SD: Rural Land Area Where Elevation is Below 5 Meters: % of Total Land Area data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Sudan – Table SD.World Bank: Land Use, Protected Areas and National Wealth. Rural land area below 5m is the percentage of total land where the rural land elevation is 5 meters or less.; ; Center for International Earth Science Information Network (CIESIN)/Columbia University. 2013. Urban-Rural Population and Land Area Estimates Version 2. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/lecz-urban-rural-population-land-area-estimates-v2.; Weighted Average;
Landforms are large recognizable features such as mountains, hills and plains; they are an important determinant of ecological character, habitat definition and terrain analysis. Landforms are important to the distribution of life in natural systems and are the basis for opportunities in built systems, and therefore landforms play a useful role in all natural science fields of study and planning disciplines.Dataset SummaryPhenomenon Mapped: LandformsUnits: MetersCell Size: 231.91560581932 metersSource Type: ThematicPixel Type: 8-bit unsigned integerData Coordinate System: WGS 1984Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: EsriPublication Date: May 2016ArcGIS Server URL: https://landscape7.arcgis.com/arcgis/In February 2017, Esri updated the World Landforms - Improved Hammond Method service with two display functions: Ecological Land Units landform classes and Ecological Facets landform classes. This layer represents Ecological Facets landform classes. You can view the Ecological Land Units landform classes by choosing Image Display, and changing the Renderer. This layer was produced using the Improved Hammond Landform Classification Algorithm produced by Esri in 2016. This algorithm published and described by Karagulle et al. 2017: Modeling global Hammond landform regions from 250-m elevation data in Transactions in GIS.The algorithm, which is based on the most recent work in this area by Morgan, J. & Lesh, A. 2005: Developing Landform Maps Using Esri’s Model Builder., Esri converted Morgan’s model into a Python script and revised it to work on global 250-meter resolution GMTED2010 elevation data. Hammond’s landform classification characterizes regions rather than identifying individual features, thus, this layer contains sixteen classes of landforms:Nearly flat plainsSmooth plains with some local reliefIrregular plains with moderate relief Irregular plains with low hillsScattered moderate hillsScattered high hillsScattered low mountainsScattered high mountainsModerate hillsHigh hills Tablelands with moderate reliefTablelands with considerable reliefTablelands with high relief Tablelands with very high relief Low mountainsHigh mountainsTo produce these classes, Esri staff first projected the 250-meter resolution GMTED elevation data to the World Equidistant Cylindrical coordinate system. Each cell in this dataset was assigned three characteristics: slope based on 3-km neighborhood, relief based on 6 km neighborhood, and profile based on 6-km neighborhood. The last step was to overlay the combination of these three characteristics with areas that are exclusively plains. Slope is the percentage of the 3-km neighborhood occupied by gentle slope. Hammond specified 8% as the threshold for gentle slope. Slope is used to define how flat or steep the terrain is. Slope was classified into one of four classes:
Percent of neighborhood over 8% of slope
Slope Classes
0 - 20%
400
21% -50%
300
51% - 80%
200
81%
100
Local Relief is the difference between the maximum and minimum elevation within in the 6-km neighborhood. Local relief is used to define terrain how rugged or the complexity of the terrain's texture. Relief was assigned one of six classes:
Change in elevation
Relief Class ID
0 – 30 meters
10
31 meter – 90 meters
20
91 meter – 150 meters
30
151 meter – 300 meters
40
301 meter – 900 meters
50
900 meters
60
The combination of slope and relief begin to define terrain as mountains, hills and plains. However, the difference between mountains or hills and tablelands cannot be distinguished using only these parameters. Profile is used to determine tableland areas. Profile identifies neighborhoods with upland and lowland areas, and calculates the percent area of gently sloping terrain within those upland and lowland areas. A 6-km circular neighborhood was used to calculate the profile parameter. Upland/lowland is determined by the difference between average local relief and elevation. In the 6-km neighborhood window, if the difference between maximum elevation and cell’s elevation is smaller than half of the local relief it’s an upland. If the difference between maximum elevation and cell’s elevation is larger than half of the local relief it’s a lowland. Profile was assigned one of five classes:
Percent of neighborhood over 8% slope in upland or lowland areas
Profile Class
Less than 50% gentle slope is in upland or lowland
0
More than 75% of gentle slope is in lowland
1
50%-75% of gentle slope is in lowland
2
50-75% of gentle slope is in upland
3
More than 75% of gentle slope is in upland
4
Early reviewers of the resulting classes noted one confusing outcome, which was that areas were classified as "plains with low mountains", or "plains with hills" were often mostly plains, and the hills or mountains were part of an adjacent set of exclusively identified hills or mountains. To address this areas that are exclusively plains were produced, and used to override these confusing areas. The hills and mountains within those areas were converted to their respective landform class.The combination of slope, relief and profile merged with the areas of plains, can be better understood using the following diagram, which uses the colors in this layer to show which classes are present and what parameter values produced them:What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The points in this layer represent the water level station mean sea level rise projections in centimeters (cm) for years 2020 to 2150. Each location includes five different Global Mean Sea Level (GMSL) scenarios and three different uncertainty confidence limits (percentiles). The difference in GMSL uses the year 2000 as a "baseline" (0.0m).
Global Mean Sea Level in year 2100
Scenario Name
0.3 m
Low
0.5 m
Intermediate-Low
1.0 m
Intermediate
1.5 m
Intermediate-High
2.0 m
High
The Global Mean Sea Level impacts regions differently due to issues such as vertical land movement/subsidence, regional ocean dynamics, glacier and ice sheet melt, etc.
Percentile
Name
17th
Low
50th
Medium
83rd
High
These percentiles are intended to capture uncertainty associated with extrapolating the rate of sea level rise acceleration based on historical observations for each location. Water level stations collect water levels in real time that can be used for operational purposes (vessel navigation, etc.). Some water level stations have been collecting information for over a century. This information is used to determine a trend and also in predictions about the different sea level rise scenarios into the future. This is an example water level station in Sewells Point, Virginia that has been collecting water level data since 1927: Station HomeMost stations also have a Sea Level Trend that can be viewed for better understanding of the changes over time. Sea Level TrendThere are 5 different scenarios and 3 different percentiles that provide a total of 15 different possibilities for interpreting sea level rise for a given location. Using this layer, you can “Filter” the data to select what is most appropriate for your work. Here is how you do that:These data were obtained from the Sea Level Rise Technical Report “Data and Tools” section. The Sea Level Rise Technical Report Application Guide provides a wealth of documentation for interpreting and using the various data products from the Sea Level Rise Technical Report. This water level station layer has a companion layer of the U.S. Sea Level Rise Projections - Grid. Source: Mean Sea Level Dataset for "Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines" Citation: Sweet, W.V., B.D. Hamlington, R.E. Kopp, C.P. Weaver, P.L. Barnard, D. Bekaert, W. Brooks, M. Craghan, G. Dusek, T. Frederikse, G. Garner, A.S. Genz, J.P. Krasting, E. Larour, D. Marcy, J.J. Marra, J. Obeysekera, M. Osler, M. Pendleton, D. Roman, L. Schmied, W. Veatch, K.D. White, and C. Zuzak, 2022: Global and Regional Sea Level Rise Scenarios for the United States: Updated Mean Projections and Extreme Water Level Probabilities Along U.S. Coastlines. NOAA Technical Report NOS 01. National Oceanic and Atmospheric Administration, National Ocean Service, Silver Spring, MD, 111 pp. https://oceanservice.noaa.gov/hazards/sealevelrise/noaa-nos-techrpt01-global-regional-SLR-scenarios-US.pdf Scenario: For each of the 5 GMSL scenarios (identified by the rise amounts in meters by 2100 - 0.3 m , 0.5 m. 1.0 m, 1.5 m and 2.0 m), there is a low, medium (med) and high value, corresponding to the 17th, 50th, and 83rd percentiles. Scenarios (15 total): 0.3 - MED, 0.3 - LOW, 0.3 - HIGH, 0.5 - MED, 0.5 - LOW, 0.5 - HIGH, 1.0 - MED, 1.0 - LOW, 1.0 - HIGH, 1.5 - MED, 1.5 - LOW, 1.5 - HIGH, 2.0 - MED, 2.0 - LOW, and 2.0 - HIGH Years (15 total): 2005, 2020, 2030, 2040, 2050, 2060, 2070, 2080, 2090, 2100, 2110, 2120, 2130, 2140, and 2150 More Info: https://oceanservice.noaa.gov/hazards/sealevelrise/sealevelrise-tech-report.html
This metadata record describes bottom-mounted ADCP data collected at Point Sal, California, USA, by PISCO. Measurements were collected using an RDI 600 kHz Workhorse Sentinel ADCP beginning 2004-02-12. The instrument depth was 015 meters, in an overall water depth of 15 meters (both relative to Mean Sea Level, MSL). The instrument was programmed with a sampling interval of 2.0 minutes and a vertical resolution of 1 meter.
The Low Elevation Coastal Zone (LECZ) Urban-Rural Population Estimates consists of country-level estimates of urban, rural and total population and land area country-wide and in the LECZ, if applicable. Additionally, the data set provides the number of urban extents, their population and land area that intersect the LECZ, by city-size population classifications of less than 100,000, 100,000 to 500,000, 500,000 to 1,000,000, 1,000,000 to 5,000,000, and more than 5,000,000. All estimates are based on GRUMP Alpha data products. The LECZ was generated using SRTM Digital Elevation Model data and includes all land area that is contiguous with the coast and 10 meters or less in elevation. All grids used for population, land area, urban mask, and LECZ were of 30 arc-second (~1 km ) resolution. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Institute for Environment and Development (IIED).
This dataset contains land surface temperatures (LSTs) and their uncertainty estimates from multiple Infra-Red (IR) instruments on Low Earth Orbiting (LEO) sun-synchronous (a.k.a. polar orbiting) satellites. Satellite land surface temperatures are skin temperatures, which means, for example, the temperature of the ground surface in bare soil areas, the temperature of the canopy over forests, and a mix of the soil and leaf temperature over sparse vegetation. The skin temperature is an important variable when considering surface fluxes of, for instance, heat and water. Daytime and night-time temperatures are provided in separate files corresponding to 10:30 and 22:30 local solar time. Per pixel uncertainty estimates are given in two forms, first, an estimate of the total uncertainty for the pixel and second, a breakdown of the uncertainty into components by correlation length. Also provided in the files, on a per pixel basis, are the observation time, the satellite viewing and solar geometry angles, a quality flag, and land cover class. The dataset is comprised of LSTs from a series of instruments with a common heritage: the Along-Track Scanning Radiometer 2 (ATSR-2), the Advanced Along-Track Scanning Radiometer (AATSR) and the Sea and Land Surface Temperature Radiometer on Sentinel 3A (SLSTRA); and data from the Moderate Imaging Spectroradiometer on Earth Observation System - Terra (MODIS Terra) to fill the gap between AATSR and SLSTR. So, the instruments contributing to the time series are: ATSR-2 from August 1995 to July 2002; AATSR from August 2002 to March 2012; MODIS Terra from April 2012 to July 2016; and SLSTRA from August 2016 to December 2020. Inter-instrument biases are accounted for by cross-calibration with the Infrared Atmospheric Sounding Interferometer (IASI) instruments on Meteorological Operational (METOP) satellites. For consistency, a common algorithm is used for LST retrieval for all instruments. Furthermore, an adjustment is made to the LSTs to account for the half-hour difference between satellite equator crossing times. For consistency through the time series, coverage is restricted to the narrowest instrument swath width. The dataset coverage is near global over the land surface. During the period covered by ATSR-2, small regions were not covered due to downlinking constraints (most noticeably a track extending southwards across central Asia through India – further details can be found on the ATSR project webpages at http://www.atsr.rl.ac.uk/dataproducts/availability/coverage/atsr-2/index.shtml). LSTs are provided on a global equal angle grid at a resolution of 0.01° longitude and 0.01° latitude. Full Earth coverage is achieved in 3 days so the daily files have gaps where the surface is not covered by the satellite swath on that day. Furthermore, LSTs are not produced where clouds are present since under these circumstances the IR radiometer observes the cloud top which is usually much colder than the surface. Dataset coverage starts on 1st August 1995 and ends on 31st December 2020. There are two gaps of several months in the dataset: no data were acquired from ATSR-2 between 23 December 1995 and 30 June 1996 due to a scan mirror anomaly; and the ERS-2 gyro failed in January 2001, data quality was less good between 17th Jan 2001 and 5th July 2001 and are not used in this dataset. Also, there is a twelve day gap in the dataset due to Envisat mission extension orbital manoeuvres from 21st October 2010 to 1st November 2010. There are minor interruptions (1-10 days) during satellite/instrument maintenance periods or instrument anomalies. The dataset was produced by the University of Leicester (UoL) and LSTs were retrieved using the (UoL) LST retrieval algorithm and data were processed in the UoL processing chain. The dataset was produced as part of the ESA Land Surface Temperature Climate Change Initiative which strives to improve satellite datasets to Global Climate Observing System (GCOS) standards.
This metadata record describes bottom-mounted ADCP data collected at Terrace Point, California, USA, by PISCO. Measurements were collected using an RDI 600 kHz Workhorse Sentinel ADCP beginning 2001-08-29. The instrument depth was 018 meters, in an overall water depth of 018 meters (both relative to Mean Sea Level, MSL). The instrument was programmed with a sampling interval of 2.0 minutes and a vertical resolution of 1 meter.
This statistic shows a ranking of the ten lowest dry land points on earth. The lowest land point is the Dead Sea Depression with an elevation amounting to approximately 413 meters below sea level, however, this elevation is an estimate and tends to fluctuate. The shoreline of the Dead Sea is the lowest dry land in the world.