21 datasets found
  1. P

    LSUN Dataset

    • paperswithcode.com
    • tensorflow.org
    • +1more
    Updated Feb 7, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Fisher Yu; Ari Seff; yinda zhang; Shuran Song; Thomas Funkhouser; Jianxiong Xiao (2021). LSUN Dataset [Dataset]. https://paperswithcode.com/dataset/lsun
    Explore at:
    Dataset updated
    Feb 7, 2021
    Authors
    Fisher Yu; Ari Seff; yinda zhang; Shuran Song; Thomas Funkhouser; Jianxiong Xiao
    Description

    The Large-scale Scene Understanding (LSUN) challenge aims to provide a different benchmark for large-scale scene classification and understanding. The LSUN classification dataset contains 10 scene categories, such as dining room, bedroom, chicken, outdoor church, and so on. For training data, each category contains a huge number of images, ranging from around 120,000 to 3,000,000. The validation data includes 300 images, and the test data has 1000 images for each category.

  2. LSUN Bedroom Dataset

    • kaggle.com
    zip
    Updated Sep 14, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Shamim Ahamed (2022). LSUN Bedroom Dataset [Dataset]. https://www.kaggle.com/datasets/sahamed/lsun-bedroom
    Explore at:
    zip(0 bytes)Available download formats
    Dataset updated
    Sep 14, 2022
    Authors
    Shamim Ahamed
    Description

    Dataset

    This dataset was created by Shamim Ahamed

    Released under Data files © Original Authors

    Contents

  3. h

    lsun_r-ood

    • huggingface.co
    Updated Dec 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    detectors (2023). lsun_r-ood [Dataset]. https://huggingface.co/datasets/detectors/lsun_r-ood
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Dec 26, 2023
    Dataset authored and provided by
    detectors
    License

    https://choosealicense.com/licenses/unknown/https://choosealicense.com/licenses/unknown/

    Description

    Dataset Card for LSUN (r) for OOD Detection

      Dataset Details
    
    
    
    
    
      Dataset Description
    

    Original Dataset Authors: Limin Wang, Sheng Guo, Weilin Huang, Yuanjun Xiong, Yu Qiao OOD Split Authors: Shiyu Liang, Yixuan Li, R. Srikant Shared by: Eduardo Dadalto License: unknown

      Dataset Sources
    

    Original Dataset Paper: http://arxiv.org/abs/1610.01119v2 First OOD Application Paper: http://arxiv.org/abs/1706.02690v5

      Direct Use
    

    This dataset is… See the full description on the dataset page: https://huggingface.co/datasets/detectors/lsun_r-ood.

  4. t

    LSUN

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LSUN [Dataset]. https://service.tib.eu/ldmservice/dataset/lsun
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The dataset used for training and validation of the proposed approach to combine semantic segmentation and dense outlier detection.

  5. a

    LSUN: Construction of a Large-scale Image Dataset using Deep Learning with...

    • academictorrents.com
    bittorrent
    Updated Mar 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu, Fisher and Zhang, Yinda and Song, Shuran and Seff, Ari and Xiao, Jianxiong (2019). LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop (V2017) [Dataset]. https://academictorrents.com/details/c53c374bd6de76da7fe76ed5c9e3c7c6c691c489
    Explore at:
    bittorrent(168089472771)Available download formats
    Dataset updated
    Mar 6, 2019
    Dataset authored and provided by
    Yu, Fisher and Zhang, Yinda and Song, Shuran and Seff, Ari and Xiao, Jianxiong
    License

    https://academictorrents.com/nolicensespecifiedhttps://academictorrents.com/nolicensespecified

    Description

    LSUN: Construction of a Large-scale Image Dataset using Deep Learning with Humans in the Loop

  6. t

    LSUN Tower

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LSUN Tower [Dataset]. https://service.tib.eu/ldmservice/dataset/lsun-tower
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    LSUN Tower dataset is a subset of the LSUN dataset, with 708,264 images.

  7. t

    LSUN Dining Room - Dataset - LDM

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LSUN Dining Room - Dataset - LDM [Dataset]. https://service.tib.eu/ldmservice/dataset/lsun-dining-room
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    LSUN Dining Room dataset is a subset of the LSUN dataset, with 657,571 images.

  8. t

    LSUN: Construction of a large-scale image dataset using deep learning with...

    • service.tib.eu
    Updated Dec 3, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LSUN: Construction of a large-scale image dataset using deep learning with humans in the loop [Dataset]. https://service.tib.eu/ldmservice/dataset/lsun--construction-of-a-large-scale-image-dataset-using-deep-learning-with-humans-in-the-loop
    Explore at:
    Dataset updated
    Dec 3, 2024
    Description

    LSUN Church dataset is a large-scale image dataset containing 30,000 images of churches.

  9. t

    LSUN Horse

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LSUN Horse [Dataset]. https://service.tib.eu/ldmservice/dataset/lsun-horse
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    A dataset for training the ArtScore model

  10. FastLloyd Clustering Datasets

    • zenodo.org
    xz
    Updated May 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdulrahman Diaa; Abdulrahman Diaa; Thomas Humphries; Thomas Humphries; Florian Kerschbaum; Florian Kerschbaum (2025). FastLloyd Clustering Datasets [Dataset]. http://doi.org/10.5281/zenodo.15530593
    Explore at:
    xzAvailable download formats
    Dataset updated
    May 28, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Abdulrahman Diaa; Abdulrahman Diaa; Thomas Humphries; Thomas Humphries; Florian Kerschbaum; Florian Kerschbaum
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This artifact bundles the five dataset archives used in our private federated clustering evaluation, corresponding to the real-world benchmarks, scaling experiments, ablation studies, and timing performance tests described in the paper. The real_datasets.tar.xz includes ten established clustering benchmarks drawn from UCI and the Clustering basic benchmark (DOI: https://doi.org/10.1007/s10489-018-1238-7); scale_datasets.tar.xz contains the SynthNew family generated to assess scalability via the R clusterGeneration package ; ablate_datasets.tar.xz holds the AblateSynth sets varying cluster separation for ablation analysis also powered by clusterGeneration ; g2_datasets.tar.xz packages the G2 sets—Gaussian clusters of size 2048 across dimensions 2–1024 with two clusters each, collected from the Clustering basic benchmark (DOI: https://doi.org/10.1007/s10489-018-1238-7) ; and timing_datasets.tar.xz includes the real s1 and lsun datasets alongside TimeSynth files (balanced synthetic clusters for timing), as per Mohassel et al.’s experimental framework .

    Contents

    1. real_datasets.tar.xz

    Contains ten real-world benchmark datasets and formatted as one sample per line with space-separated features:

    • iris.txt: 150 samples, 4 features, 3 classes; classic UCI Iris dataset for petal/sepal measurements.

    • lsun.txt: 400 samples, 2 features, 3 clusters; two-dimensional variant of the LSUN dataset for clustering experiments .

    • s1.txt: 5,000 samples, 2 features, 15 clusters; synthetic benchmark from Fränti’s S1 series.

    • house.txt: 1,837 samples, 3 features, 3 clusters; housing data transformed for clustering tasks.

    • adult.txt: 48,842 samples, 6 features, 3 clusters; UCI Census Income (“Adult”) dataset for income bracket prediction.

    • wine.txt: 178 samples, 13 features, 3 cultivars; UCI Wine dataset with chemical analysis features.

    • breast.txt: 569 samples, 9 features, 2 classes; Wisconsin Diagnostic Breast Cancer dataset.

    • yeast.txt: 1,484 samples, 8 features, 10 localization sites; yeast protein localization data.

    • mnist.txt: 10,000 samples, 784 features (28×28 pixels), 10 digit classes; MNIST handwritten digits.

    • birch2.txt: (a random) 25,000/100,000 subset of samples, 2 features, 100 clusters; synthetic BIRCH2 dataset for high-cluster‐count evaluation .

    2. scale_datasets.tar.xz

    Holds the SynthNew_{k}_{d}_{s}.txt files for scaling experiments, where:

    • $k \in \{2,4,8,16,32\}$ is the number of clusters,

    • $d \in \{2,4,8,16,32,64,128,256,512\}$ is the dimensionality,

    • $s \in \{1,2,3\}$ are different random seeds.

    These are generated with the R clusterGeneration package with cluster sizes following a $1:2:...:k$ ratio. We incorporate a random number (in $[0, 100]$) of randomly sampled outliers and set the cluster separation degrees randomly in $[0.16, 0.26]$, spanning partially overlapping to separated clusters.

    3. ablate_datasets.tar.xz

    Contains the AblateSynth_{k}_{d}_{sep}.txt files for ablation studies, with:

    • $k \in \{2,4,8,16\}$ clusters,

    • $d \in \{2,4,8,16\}$ dimensions,

    • $sep \in \{0.25, 0.5, 0.75\}$ controlling cluster separation degrees.

    Also generated via clusterGeneration.

    4. g2_datasets.tar.xz

    Packages the G2 synthetic sets (g2-{dim}-{var}.txt) from the clustering-data benchmarks:

    • $N=2048$ samples, $k=2$ Gaussian clusters,

    • Dimensions $d \in \{1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024\}$

    • Cluster overlap $var \in \{10, 20, 30, 40, 50, 60, 70, 80, 90, 100\}$

    5. timing_datasets.tar.xz

    Includes:

    • s1.txt, lsun.txt: two real datasets for baseline timing.

    • timesynth_{k}_{d}_{n}.txt: synthetic timing datasets with balanced cluster sizes C_{avg}=N/K, varying:

      • $k \in \{2,5\}$

      • $d \in \{2,5\}$

      • $N \in \{10000; 100000\}$

    Generated similarly to the scaling sets, following Mohassel et al.’s timing experiment protocol .

    Usage:

    Unpack any archive with tar -xJf

  11. h

    SDIP_bicycle

    • huggingface.co
    Updated May 21, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ron Mokady (2024). SDIP_bicycle [Dataset]. https://huggingface.co/datasets/rmokady/SDIP_bicycle
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 21, 2024
    Authors
    Ron Mokady
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This repository contains Unofficial access for SDIP-bicycles dataset

    Official Repository, Project Page, Paper Self-Distilled Internet Photos (SDIP) is a multi-domain image dataset. The dataset consists of Self-Distilled Flickr (SD-Flickr) and *Self-Distilled LSUN (SD-LSUN) that were crawled from Flickr and LSUN dataset, respectively, and then curated using the method described in our Self-Distilled StyleGAN paper:

    Self-Distilled StyleGAN: Towards Generation from Internet Photos Ron… See the full description on the dataset page: https://huggingface.co/datasets/rmokady/SDIP_bicycle.

  12. t

    LSUN bedroom and church-outdoor datasets

    • service.tib.eu
    Updated Dec 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). LSUN bedroom and church-outdoor datasets [Dataset]. https://service.tib.eu/ldmservice/dataset/lsun-bedroom-and-church-outdoor-datasets
    Explore at:
    Dataset updated
    Dec 16, 2024
    Description

    The dataset used in the paper is LSUN bedroom and church-outdoor datasets (64×64).

  13. h

    unet-lsun-256

    • huggingface.co
    Updated Jan 29, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alex Havrilla (2023). unet-lsun-256 [Dataset]. https://huggingface.co/datasets/Dahoas/unet-lsun-256
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 29, 2023
    Authors
    Alex Havrilla
    Description

    Dataset Card for "unet-lsun-256"

    More Information needed

  14. MB "Lsun" - turnover, revenue, profit | Okredo

    • okredo.com
    Updated Jul 5, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Okredo (2025). MB "Lsun" - turnover, revenue, profit | Okredo [Dataset]. https://okredo.com/en-lt/company/mb-lsun-306455762/finance
    Explore at:
    Dataset updated
    Jul 5, 2025
    Dataset authored and provided by
    Okredo
    License

    https://okredo.com/en-lt/general-ruleshttps://okredo.com/en-lt/general-rules

    Time period covered
    2022 - 2023
    Area covered
    Lithuania
    Variables measured
    Equity (€), Turnover (€), Net Profit (€), CurrentAssets (€), Non-current Assets (€), Amounts Payable And Liabilities (€)
    Description

    MB "Lsun" financial data: profit, annual turnover, paid taxes, sales revenue, equity, assets (long-term and short-term), profitability indicators.

  15. lsun_horse

    • kaggle.com
    Updated Mar 22, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Marinela Adam (2023). lsun_horse [Dataset]. https://www.kaggle.com/datasets/mariadam11/lsun-horse
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Mar 22, 2023
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Marinela Adam
    Description

    Dataset

    This dataset was created by Marinela Adam

    Contents

  16. h

    SDIP_elephant

    • huggingface.co
    Updated Sep 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ron Mokady (2024). SDIP_elephant [Dataset]. https://huggingface.co/datasets/rmokady/SDIP_elephant
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Sep 2, 2024
    Authors
    Ron Mokady
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This repository contains Unofficial access for SDIP-elephants dataset

    Official Repository, Project Page, Paper Self-Distilled Internet Photos (SDIP) is a multi-domain image dataset. The dataset consists of Self-Distilled Flickr (SD-Flickr) and *Self-Distilled LSUN (SD-LSUN) that were crawled from Flickr and LSUN dataset, respectively, and then curated using the method described in our Self-Distilled StyleGAN paper:

    Self-Distilled StyleGAN: Towards Generation from Internet Photos… See the full description on the dataset page: https://huggingface.co/datasets/rmokady/SDIP_elephant.

  17. h

    SDIP_horse

    • huggingface.co
    Updated May 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ron Mokady (2024). SDIP_horse [Dataset]. https://huggingface.co/datasets/rmokady/SDIP_horse
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    May 16, 2024
    Authors
    Ron Mokady
    License

    Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
    License information was derived automatically

    Description

    This repository contains Unofficial access for SDIP-horses dataset

    Official Repository, Project Page, Paper Self-Distilled Internet Photos (SDIP) is a multi-domain image dataset. The dataset consists of Self-Distilled Flickr (SD-Flickr) and *Self-Distilled LSUN (SD-LSUN) that were crawled from Flickr and LSUN dataset, respectively, and then curated using the method described in our Self-Distilled StyleGAN paper:

    Self-Distilled StyleGAN: Towards Generation from Internet Photos Ron… See the full description on the dataset page: https://huggingface.co/datasets/rmokady/SDIP_horse.

  18. t

    FFHQ, AFHQ-Cat, and LSUN-Church

    • service.tib.eu
    Updated Dec 2, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). FFHQ, AFHQ-Cat, and LSUN-Church [Dataset]. https://service.tib.eu/ldmservice/dataset/ffhq--afhq-cat--and-lsun-church
    Explore at:
    Dataset updated
    Dec 2, 2024
    Description

    The dataset used in the paper is a large dataset of images, including FFHQ, AFHQ-Cat, and LSUN-Church.

  19. h

    LSUN_bedroom_VQA

    • huggingface.co
    Updated Oct 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Feliu Formosa (2023). LSUN_bedroom_VQA [Dataset]. https://huggingface.co/datasets/fformosa/LSUN_bedroom_VQA
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Oct 20, 2023
    Authors
    Feliu Formosa
    Description

    Dataset Card for "LSUN_bedroom_VQA_feliu"

    Images are a subset of the LSUN-Bedroom dataset. More Information needed The attributes are binary answers to the following questions:

    Is the floor visible in the image? Does the room have a window? Is there more than one bed? Does the room have natural light? Is there a carpet in the floor? Is it a classy room? Is it a hotel room? Is there at least one person in the room? Are there more than one people in the room? Is it an expensive room?… See the full description on the dataset page: https://huggingface.co/datasets/fformosa/LSUN_bedroom_VQA.

  20. h

    latent_lsun_church_256px

    • huggingface.co
    Updated Feb 22, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Generative Landscape (2023). latent_lsun_church_256px [Dataset]. https://huggingface.co/datasets/tglcourse/latent_lsun_church_256px
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Feb 22, 2023
    Dataset authored and provided by
    The Generative Landscape
    Description

    Dataset Card for "latent_lsun_church_256px"

    This is derived from https://huggingface.co/datasets/tglcourse/lsun_church_train Each image is cropped to 256px square and encoded to a 4x32x32 latent representation using the same VAE as that employed by Stable Diffusion Decoding from diffusers import AutoencoderKL from datasets import load_dataset from PIL import Image import numpy as np import torch

    load the dataset

    dataset = load_dataset('tglcourse/latent_lsun_church_256px')

    Load… See the full description on the dataset page: https://huggingface.co/datasets/tglcourse/latent_lsun_church_256px.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Fisher Yu; Ari Seff; yinda zhang; Shuran Song; Thomas Funkhouser; Jianxiong Xiao (2021). LSUN Dataset [Dataset]. https://paperswithcode.com/dataset/lsun

LSUN Dataset

Large-scale Scene UNderstanding Challenge

Explore at:
10 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Feb 7, 2021
Authors
Fisher Yu; Ari Seff; yinda zhang; Shuran Song; Thomas Funkhouser; Jianxiong Xiao
Description

The Large-scale Scene Understanding (LSUN) challenge aims to provide a different benchmark for large-scale scene classification and understanding. The LSUN classification dataset contains 10 scene categories, such as dining room, bedroom, chicken, outdoor church, and so on. For training data, each category contains a huge number of images, ranging from around 120,000 to 3,000,000. The validation data includes 300 images, and the test data has 1000 images for each category.

Search
Clear search
Close search
Google apps
Main menu