The Chesapeake Bay Land Use and Land Cover Database (LULC) facilitates characterization of the landscape and land change for and between discrete time periods. The database was developed by the University of Vermont’s Spatial Analysis Laboratory in cooperation with Chesapeake Conservancy (CC) and U.S. Geological Survey (USGS) as part of a 6-year Cooperative Agreement between Chesapeake Conservancy and the U.S. Environmental Protection Agency (EPA) and a separate Interagency Agreement between the USGS and EPA to provide geospatial support to the Chesapeake Bay Program Office. The database contains one-meter 13-class Land Cover (LC) and 54-class Land Use/Land Cover (LULC) for all counties within or adjacent to the Chesapeake Bay watershed for 2013/14 and 2017/18, depending on availability of National Agricultural Imagery Program (NAIP) imagery for each state. Additionally, 54 LULC classes are generalized into 18 LULC classes for ease of visualization and communication of LULC trends. LC change between discrete time periods, detected by spectral changes in NAIP imagery and LiDAR, represents changes between the 12 land cover classes. LULC change uses LC change to identify where changes are happening and then LC is translated to LULC to represent transitions between the 54 LULC classes. The LULCC data is represented as a LULC class change transition matrix which provides users acres of change between multiple classes. It is organized by 18x18 and 54x54 LULC classes. The Chesapeake Bay Water (CBW) indicates raster tabulations were performed for only areas that fall inside the CBW boundary e.g., if user is interested in CBW portion of a county then they will use LULC Matrix CBW. Conversely, if they are interested change transitions across the entire county, they will use LULC Matrix. The database includes the following data: 1. 2013/2014 Land Cover (LC) 2. 2017/2018 Land Cover (LC) 3. 2013/2014 to 2017/2018 Land Cover Change (LCC) 4. 2013/2014 Land Use and Land Cover (LULC) 5. 2017/2018 Land Use and Land Cover (LULC) 6. 2013/2014 to 2017/2018 Land Use and Land Cover Change (LULCC) and LULCC matrices To start using the data please refer to the data_dictionary_2022-Edition.pdf (see under Attached Files). How to cite: When using the Chesapeake Bay Land Use/Land Cover Database or producing derivatives, the data must be properly cited based on the following criteria. Citing Entire Data Release Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: U.S. Geological Survey data release, https://doi.org/10.5066/P981GV1L. Citing Land Cover (LC) and/or Land Cover Change (LCC) Products Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: Land Cover: U.S. Geological Survey data release. Developed by the University of Vermont Spatial Analysis Lab, Chesapeake Conservancy, and U.S. Geological Survey, https://doi.org/10.5066/P981GV1L. Citing Land Use/Land Cover (LULC) Products Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: Land Use/Land Cover: U.S. Geological Survey data release. Developed by the Chesapeake Conservancy, U.S. Geological Survey and University of Vermont Spatial Analysis Lab, https://doi.org/10.5066/P981GV1L. Citing Land Use/Land Cover Change (LULCC) Products Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: Land Use/Land Cover Change: U.S. Geological Survey data release. Developed by the U.S. Geological Survey, Chesapeake Conservancy, and University of Vermont Spatial Analysis Lab, https://doi.org/10.5066/P981GV1L. Citing Data Dictionary Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition – Data Dictionary for the Chesapeake Bay Land Use/Land Cover Database, 2022 Edition: U.S. Geological Survey data release, https://doi.org/10.5066/P981GV1L.
U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 km2 in the Northern Basin and Range Ecoregion to a high of 78,782 km2 in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it is collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format. U.S. Geological Survey scientists, funded by the Climate and Land Use Change Research and Development Program, developed a dataset of 2006 and 2011 land use and land cover (LULC) information for selected 100-km2 sample blocks within 29 EPA Level 3 ecoregions across the conterminous United States. The data was collected for validation of new and existing national scale LULC datasets developed from remotely sensed data sources. The data can also be used with the previously published Land Cover Trends Dataset: 1973-2000 (http:// http://pubs.usgs.gov/ds/844/), to assess land-use/land-cover change in selected ecoregions over a 37-year study period. LULC data for 2006 and 2011 was manually delineated using the same sample block classification procedures as the previous Land Cover Trends project. The methodology is based on a statistical sampling approach, manual classification of land use and land cover, and post-classification comparisons of land cover across different dates. Landsat Thematic Mapper, and Enhanced Thematic Mapper Plus imagery was interpreted using a modified Anderson Level I classification scheme. Landsat data was acquired from the National Land Cover Database (NLCD) collection of images. For the 2006 and 2011 update, ecoregion specific alterations in the sampling density were made to expedite the completion of manual block interpretations. The data collection process started with the 2000 date from the previous assessment and any needed corrections were made before interpreting the next two dates of 2006 and 2011 imagery. The 2000 land cover was copied and any changes seen in the 2006 Landsat images were digitized into a new 2006 land cover image. Similarly, the 2011 land cover image was created after completing the 2006 delineation. Results from analysis of these data include ecoregion based statistical estimates of the amount of LULC change per time period, ranking of the most common types of conversions, rates of change, and percent composition. Overall estimated amount of change per ecoregion from 2001 to 2011 ranged from a low of 370 square km in the Northern Basin and Range Ecoregion to a high of 78,782 square km in the Southeastern Plains Ecoregion. The Southeastern Plains Ecoregion continues to encompass the most intense forest harvesting and regrowth in the country. Forest harvesting and regrowth rates in the southeastern U.S. and Pacific Northwest continued at late 20th century levels. The land use and land cover data collected by this study is ideally suited for training, validation, and regional assessments of land use and land cover change in the U.S. because it’s collected using manual interpretation techniques of Landsat data aided by high resolution photography. The 2001-2011 Land Cover Trends Dataset is provided in an Albers Conical Equal Area projection using the NAD 1983 datum. The sample blocks have a 30-meter resolution and file names follow a specific naming convention that includes the number of the ecoregion containing the block, the block number, and the Landsat image date. The data files are organized by ecoregion, and are available in the ERDAS Imagine (.img) format.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This layer displays a global map of land use/land cover (LULC) derived from ESA Sentinel-2 imagery at 10m resolution. Each year is generated with Impact Observatory’s deep learning AI land classification model, trained using billions of human-labeled image pixels from the National Geographic Society. The global maps are produced by applying this model to the Sentinel-2 Level-2A image collection on Microsoft’s Planetary Computer, processing over 400,000 Earth observations per year.The algorithm generates LULC predictions for nine classes, described in detail below. The year 2017 has a land cover class assigned for every pixel, but its class is based upon fewer images than the other years. The years 2018-2023 are based upon a more complete set of imagery. For this reason, the year 2017 may have less accurate land cover class assignments than the years 2018-2023.Variable mapped: Land use/land cover in 2017, 2018, 2019, 2020, 2021, 2022, 2023Source Data Coordinate System: Universal Transverse Mercator (UTM) WGS84Service Coordinate System: Web Mercator Auxiliary Sphere WGS84 (EPSG:3857)Extent: GlobalSource imagery: Sentinel-2 L2ACell Size: 10-metersType: ThematicAttribution: Esri, Impact ObservatoryWhat can you do with this layer?Global land use/land cover maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land use/land cover anywhere on Earth. This layer can also be used in analyses that require land use/land cover input. For example, the Zonal toolset allows a user to understand the composition of a specified area by reporting the total estimates for each of the classes. NOTE: Land use focus does not provide the spatial detail of a land cover map. As such, for the built area classification, yards, parks, and groves will appear as built area rather than trees or rangeland classes.Class definitionsValueNameDescription1WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2TreesAny significant clustering of tall (~15 feet or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields.10CloudsNo land cover information due to persistent cloud cover.11RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.Classification ProcessThese maps include Version 003 of the global Sentinel-2 land use/land cover data product. It is produced by a deep learning model trained using over five billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world.The underlying deep learning model uses 6-bands of Sentinel-2 L2A surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map for each year.The input Sentinel-2 L2A data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The "Sen-2 LULC Dataset" is a collection of 2,13,750+ pre-processed 10 m resolution images representing 7 distinct classes of Land Use Land Cover. The 7 classes are water, Dense forest, Sparse forest, Barren land, Built up, Agriculture land and Fallow land. Multiple classes are present in the single image of the dataset. The Sentinel-2 images of Central India are taken from Copernicus Open Access Hub (https://scihub.copernicus.eu/) with cloud clover percentage ranging from 0 to 0.5%. The images are combination of bands B4, B3 and B2 constituting the red, green and blue bands with spectral resolution of 10m. The images are taken within the months of February and March 2021. The images used in the dataset belongs to Sentinel-2 Level-2A product (https://sentinels.copernicus.eu/web/sentinel/user-guides/sentinel-2-msi/product-types/level-2a#:~:text=The%20Level%2D2A%20product%20provides,(UTM%2FWGS84%20projection).). The dataset contains equal number of mask images. The dataset contains 6 folders with train, test and validate images and train, test and validate masks. This dataset can be used for Land Use Land Cover Classification (LULC) of Indian region to build the deep learning models. This dataset is beneficial for LULC classification research. [The related article is available at: Sen-2 LULC: Land use land cover dataset for deep learning approaches. Cite the article as : Sawant, S., Garg, R. D., Meshram, V., & Mistry, S. (2023). Sen-2 LULC: Land use land cover dataset for deep learning approaches. Data in Brief, 51, 109724, https://doi.org/10.1016/j.dib.2023.109724. ]
The project aims to extend the CAP LTER long-term, land-use/land-cover (LULC) datasets to facilitate environmental change monitoring and social-ecological studies regarding urban sprawl and dynamics, urban heat islands, and outdoor water consumption, among others. Six LULC maps at 30 m resolution were previously created from 1985 to 2010 at five year intervals (Zhang and Li, 2017). This project updates that suite with a seventh map for 2015. As with the prior set, systematic object-based classification was utilized to ensure map consistency and direct comparison capability over time. The map comprises 11 land-use/land-cover classes with an overall accuracy of 89.1%.
[Metadata] Description: Land Use Land Cover of main Hawaiian Islands as of 1976
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is on a global scale with a resolution of 1 km grid and encompasses a timespan from 2020 to 2100. These data are projected in the world-Mercator projection coordinate system and are provided in single-band GeoTIFF format, which can be easily utilized by various mainstream GIS and RS platforms such as ArcGIS, QGIS, ENVI, as well as programming languages such as Python and MATLAB. The simulated data files follow a standardized naming convention “sspx_pp_yyyy.tif”, where x represents the simulated SSP scenario (1 to 5), pp represents the simulated RCP scenario; and yyyy represents the simulated year. For example, the data file named “ssp1_26_2030.tif” corresponds to the LULC simulation data for the year 2030 under the SSP1-2.6 scenario. Each GeoTIFF data file includes integer raster attribute values ranging from 1 to 6, which represent the following land use types: cropland, forest, grassland, urban, barren, and water.
This dataset is the third (2013) in a series of three 2-kilometer land use land cover (LULC) time-periods datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
To evaluate land use and land cover (LULC) maps an independent and representative test dataset is required. Here, a test dataset was generated via stratified random sampling approach across all areas in Fiji not used to generate training data (i.e. all Tikinas which did not contain a training data point were valid for sampling to generate the test dataset). Following equation 13 in Olofsson et al. (2014), the sample size of the test dataset was 834. This was based on a desired standard error of the overall accuracy score of 0.01 and a user's accuracy of 0.75 for all classes. The strata for sampling test samples were the eight LULC classes: water, mangrove, bare soil, urban, agriculture, grassland, shrubland, and trees.
There are different strategies for allocating samples to strata for evaluating LULC maps, as discussed by Olofsson et al. (2014). Equal allocation of samples to strata ensures coverage of rarely occurring classes and minimise the standard error of estimators of user's accuracy. However, equal allocation does not optimise the standard error of the estimator of overall accuracy. Proportional allocation of samples to strata, based on the proportion of the strata in the overall dataset, can result in rarely occurring classes being underrepresented in the test dataset. Optimal allocation of samples to strata is challenging to implement when there are multiple evaluation objectives. Olofsson et al. (2014) recommend a "simple" allocation procedure where 50 to 100 samples are allocated to rare classes and proportional allocation is used to allocate samples to the remaining majority classes. The number of samples to allocate to rare classes can be determined by iterating over different allocations and computing estimated standard errors for performance metrics. Here, the 2021 all-Fiji LULC map, minus the Tikinas used for generating training samples, was used to estimate the proportional areal coverage of each LULC class. The LULC map from 2021 was used to permit comparison with other LULC products with a 2021 layer, notably the ESA WorldCover 10m v200 2021 product.
The 2021 LULC map was dominated by the tree class (74\% of the area classified) and the remaining classes had less than 10\% coverage each. Therefore, a "simple" allocation of 100 samples to the seven minority classes and an allocation of 133 samples to the tree class was used. This ensured all the minority classes had sufficient coverage in the test set while balancing the requirement to minimise standard errors for the estimate of overall accuracy. The allocated number of test dataset points were randomly sampled within each strata and were manually labelled using 2021 annual median RGB composites from Sentinel-2 and Planet NICFI and high-resolution Google Satellite Basemaps.
The Fiji LULC test data is available in GeoJSON format in the file fiji-lulc-test-data.geojson
. Each point feature has two attributes: ref_class
(the LULC class manually labelled and quality checked) and strata
(the strata the sampled point belongs to derived from the 2021 all-Fiji LULC map). The following integers correspond to the ref_class
and strata
labels:
When evaluating LULC maps using test data derived from a stratified sample, the nature of the stratified sampling needs to be accounted for when estimating performance metrics such as overall accuracy, user's accuracy, and producer's accuracy. This is particulary so if the strata do not match the map classes (i.e. when comparing different LULC products). Stehman (2014) provide formulas for estimating performance metrics and their standard errors when using test data with a stratified sampling structure.
To support LULC accuracy assessment a Python package has been developed which provides implementations of Stehman's (2014) formulas. The package can be installed via:
pip install lulc-validation
with documentation and examples here.
In order to compute performance metrics accounting for the stratified nature of the sample the total number of points / pixels available to be sampled in each strata must be known. For this dataset that is:
This dataset was generated with support from a Climate Change AI Innovation Grant.
This dataset is the second (circa 2000) in a series of three 2-kilometer land use land cover (LULC) time-periods datasets (1975, 2000, and 2013) aids in monitoring change in West Africa’s land resources (exception is Tchad at 4 kilometers). To monitor and map these changes, a 26 general LULC class system was used. The classification system that was developed was primarily inspired by the “Yangambi Classification” (Trochain, 1957). This fairly broad class system for LULC was used because the classes can be readily identified on Landsat satellite imagery. A visual photo-interpretation approach was used to identify and map the LULC classes represented on Landsat images. The Rapid Land Cover Mapper (RLCM) was used to facilitate the photo-interpretation using Esri’s ArcGIS Desktop ArcMap software. Citation: Trochain, J.-L., 1957, Accord interafricain sur la définition des types de végétation de l’Afrique tropicale: Institut d’études centrafricaines.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The landscape of the conterminous United States has changed dramatically over the last 200 years, with agricultural land use, urban expansion, forestry, and other anthropogenic activities altering land cover across vast swaths of the country. While land use and land cover (LULC) models have been developed to model potential future LULC change, few efforts have focused on recreating historical landscapes. Researchers at the US Geological Survey have used a wide range of historical data sources and a spatially explicit modeling framework to model spatially explicit historical LULC change in the conterminous United States from 1992 back to 1938. Annual LULC maps were produced at 250-m resolution, with 14 LULC classes. Assessment of model results showed good agreement with trends and spatial patterns in historical data sources such as the Census of Agriculture and historical housing density data, although comparison with historical data is complicated by definitional and methodologica ...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
About the dataLand use land cover (LULC) maps are an increasingly important tool for decision-makers in many industry sectors and developing nations around the world. The information provided by these maps helps inform policy and land management decisions by better understanding and quantifying the impacts of earth processes and human activity.ArcGIS Living Atlas of the World provides a detailed, accurate, and timely LULC map of the world. The data is the result of a three-way collaboration among Esri, Impact Observatory, and Microsoft. For more information about the data, see Sentinel-2 10m Land Use/Land Cover Time Series.About the appOne of the foremost capabilities of this app is the dynamic change analysis. The app provides dynamic visual and statistical change by comparing annual slices of the Sentinel-2 10m Land Use/Land Cover data as you explore the map.Overview of capabilities:Visual change analysis with either 'Step Mode' or 'Swipe Mode'Dynamic statistical change analysis by year, map extent, and classFilter by selected land cover classRegional class statistics summarized by administrative boundariesImagery mode for visual investigation and validation of land coverSelect imagery renderings (e.g. SWIR to visualize forest burn scars)Data download for offline use
Geospatial data about Pasco County, Florida Land Use Land Cover (LULC). Export to CAD, GIS, PDF, CSV and access via API.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Mapping land use and land cover (LULC) using remote sensing is fundamental to environmental monitoring, spatial planning and characterising drivers of change in landscapes. We develop a new, general and versatile approach for mapping LULC in landscapes with relatively gradual transition between LULC categories such as African savannas. The approach integrates a well-tested hierarchical classification system with the computationally efficient random forest (RF) classifier and produces detailed, accurate and consistent classification of structural vegetation heterogeneity and density and anthropogenic land use. We use Landsat 8 OLI imagery to illustrate this approach for the Extended Greater Masai Mara Ecosystem (EGMME) in southwestern Kenya. We stratified the landscape into eight relatively homogeneous zones, systematically inspected the imagery and randomly allocated 1,697 training sites, 556 of which were ground-truthed, proportionately to the area of each zone. We directly assessed the accuracy of the visually classified image. Accuracy was high and averaged 88.1% (80.5%–91.7%) across all the zones and 89.1% (50%–100%) across all the classes. We applied the RF classifier to randomly selected samples from the original training dataset, separately for each zone and the EGMME. We evaluated the overall and class-specific accuracy and computational efficiency using the Out-of-Bag (OOB) error. Overall accuracy (79.3%–97.4%) varied across zones but was higher whereas the class-specific accuracy (25.4%–98.1%) was lower than that for the EGMME (80.2%). The hierarchical classifier identified 35 LULC classes which we aggregated into 18 intermediate mosaics and further into five more general categories. The open grassed shrubland (21.8%), sparse shrubbed grassland (10.4%) and small-scale cultivation (13.3%) dominated at the detailed level, grassed shrubland (31.9%) and shrubbed grassland (28.9%) at the intermediate level, and grassland (35.7%), shrubland (35.3%) and woodland (12.5%) at the general level. Our granular LULC map for the EGMME is sufficiently accurate for important practical purposes such as land use spatial planning, habitat suitability assessment and temporal change detection. The extensive ground-truthing data, sample site photos and classified maps can contribute to wider validation efforts at regional to global scales.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a
transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent
symbol may need to be set for these places after a filter is
chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation
combining the cells from a source year and 2021 to make a change index
value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security,
and hydrologic modeling, among other things. This dataset can be used to
visualize land cover anywhere on Earth. This
layer can also be used in analyses that require land cover input. For
example, the Zonal Statistics tools allow a user to understand the
composition of a specified area by reporting the total estimates for
each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas
where water was predominantly present throughout the year; may not
cover areas with sporadic or ephemeral water; contains little to no
sparse vegetation, no rock outcrop nor built up features like docks;
examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny
significant clustering of tall (~15-m or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation,
clusters of dense tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water or canopy too
thick to detect water underneath).4. Flooded vegetationAreas
of any type of vegetation with obvious intermixing of water throughout a
majority of the year; seasonally flooded area that is a mix of
grass/shrub/trees/bare ground; examples: flooded mangroves, emergent
vegetation, rice paddies and other heavily irrigated and inundated
agriculture.5. CropsHuman
planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman
made structures; major road and rail networks; large homogenous
impervious surfaces including parking structures, office buildings and
residential housing; examples: houses, dense villages / towns / cities,
paved roads, asphalt.8. Bare groundAreas
of rock or soil with very sparse to no vegetation for the entire year;
large areas of sand and deserts with no to little vegetation; examples:
exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried
lake beds, mines.9. Snow/IceLarge
homogenous areas of permanent snow or ice, typically only in mountain
areas or highest latitudes; examples: glaciers, permanent snowpack, snow
fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open
areas covered in homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting
(i.e., not a plotted field); examples: natural meadows and fields with
sparse to no tree cover, open savanna with few to no trees, parks/golf
courses/lawns, pastures. Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock;
scrub-filled clearings within dense forests that are clearly not taller
than trees; examples: moderate to sparse cover of bushes, shrubs and
tufts of grass, savannas with very sparse grasses, trees or other
plants.CitationKarra,
Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep
learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2021.AcknowledgementsTraining
data for this project makes use of the National Geographic Society
Dynamic World training dataset, produced for the Dynamic World Project
by National Geographic Society in partnership with Google and the World
Resources Institute.For questions please email environment@esri.com
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Land cover/land use (LULC) maps for the catchments of Kelani Ganga and Attanagalu Oya, and LULC Change comparing 1991, 2001 with the recent LCLU (2012). Classification includes two thematic levels (national 7-class scheme and 15 land cover/land use classes according to user definitions). This dataset is one of the products produced under the 2014-2016 World Bank (WBG) European Space Agency (ESA) partnership, and is published in the partnership report: Earth Observation for Sustainable Development, June 2016.
This map features Africa Land Cover at 30m resolution from MDAUS BaseVue 2013, referencing the World Land Cover 30m BaseVue 2013 layer.Land cover data represent a descriptive thematic surface for characteristics of the land's surface such as densities or types of developed areas, agricultural lands, and natural vegetation regimes. Land cover data are the result of a model, so a good way to think of the values in each cell are as the predominating value rather than the only characteristic in that cell.Land use and land cover data are critical and fundamental for environmental monitoring, planning, and assessment.Dataset SummaryBaseVue 2013 is a commercial global, land use / land cover (LULC) product developed by MDA. BaseVue covers the Earth’s entire land area, excluding Antarctica. BaseVue is independently derived from roughly 9,200 Landsat 8 images and is the highest spatial resolution (30m), most current LULC product available. The capture dates for the Landsat 8 imagery range from April 11, 2013 to June 29, 2014. The following 16 classes of land use / land cover are listed by their cell value in this layer: Deciduous Forest: Trees > 3 meters in height, canopy closure >35% (<25% inter-mixture with evergreen species) that seasonally lose their leaves, except Larch.Evergreen Forest: Trees >3 meters in height, canopy closure >35% (<25% inter-mixture with deciduous species), of species that do not lose leaves. (will include coniferous Larch regardless of deciduous nature).Shrub/Scrub: Woody vegetation <3 meters in height, > 10% ground cover. Only collect >30% ground cover.Grassland: Herbaceous grasses, > 10% cover, including pasture lands. Only collect >30% cover.Barren or Minimal Vegetation: Land with minimal vegetation (<10%) including rock, sand, clay, beaches, quarries, strip mines, and gravel pits. Salt flats, playas, and non-tidal mud flats are also included when not inundated with water.Not Used (in other MDA products 6 represents urban areas or built up areas, which have been split here in into values 20 and 21).Agriculture, General: Cultivated crop landsAgriculture, Paddy: Crop lands characterized by inundation for a substantial portion of the growing seasonWetland: Areas where the water table is at or near the surface for a substantial portion of the growing season, including herbaceous and woody species (except mangrove species)Mangrove: Coastal (tropical wetlands) dominated by Mangrove speciesWater: All water bodies greater than 0.08 hectares (1 LS pixel) including oceans, lakes, ponds, rivers, and streamsIce / Snow: Land areas covered permanently or nearly permanent with ice or snowClouds: Areas where no land cover interpretation is possible due to obstruction from clouds, cloud shadows, smoke, haze, or satellite malfunctionWoody Wetlands: Areas where forest or shrubland vegetation accounts for greater than 20% of vegetative cover and the soil or substrate periodically is saturated with, or covered by water. Only used within the continental U.S.Mixed Forest: Areas dominated by trees generally greater than 5 meters tall, and greater than 20% of total vegetation cover. Neither deciduous nor evergreen species are greater than 75% of total tree cover. Only used within the continental U.S.Not UsedNot UsedNot UsedNot UsedHigh Density Urban: Areas with over 70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation where constructed materials account for >60%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.Medium-Low Density Urban: Areas with 30%-70% of constructed materials that are a minimum of 60 meters wide (asphalt, concrete, buildings, etc.). Includes residential areas with a mixture of constructed materials and vegetation, where constructed materials account for greater than 40%. Commercial, industrial, and transportation i.e., Train stations, airports, etc.MDA updated the underlying data in late 2016 and this service was updated in February 2017. An improved selection of cloud-free images was used to produce the update, resulting in improvement of classification quality to 80% of the tiles for this service.What can you do with this layer?This layer can be used to create maps and to visualize the underlying data across the ArcGIS platform. It can also be used as an analytic input in ArcMap and ArcGIS Pro.This layer has query, identify, and export image services available. The layer is restricted to an 16,000 x 16,000 pixel limit, which represents an area of nearly 300 miles on a side. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This dataset provides annual raster maps of historical and projected future land use and land cover (LULC) for California, USA. Changes in LULC over time were simulated using the Land Use and Carbon Scenario Simulator (LUCAS) model. The model was run at 1-km resolution on an annual timestep for historical (1985-2020) and projected future time periods (2021-2100). Simulations for the projected future time period were run under all combinations of four climate scenarios, two urbanization scenarios, and two vegetation management scenarios with 40 Monte Carlo realizations for each simulation.
This dataset provides projections of land use and land cover (LULC) change within the Arctic Boreal Vulnerability Experiment (ABoVE) domain, spanning from 2015 to 2100 with a spatial resolution of 0.25 degrees. It includes LULC change under two Shared Socioeconomic Pathways (SSP126 and SSP585) derived from Global Change Analysis Model (GCAM) at an annual scale. The specific land types include: needleleaf evergreen tree-temperate, needleleaf evergreen tree-boreal, needleleaf deciduous tree-boreal, broadleaf evergreen tree-tropical, broadleaf evergreen tree-temperate, broadleaf deciduous tree-tropical, broadleaf deciduous tree-temperate, broadleaf deciduous tree-boreal, broadleaf evergreen shrub-temperate, broadleaf deciduous shrub-temperate, broadleaf deciduous shrub-boreal, C3 arctic grass, C3 grass, C4 grass, and C3 unmanaged rainfed crop. The data were generated by integrating regional LULC projections from GCAM with high-resolution MODIS land cover data and applying two alternative spatial downscaling models: FLUS and Demeter. Data are provided in NetCDF format.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS’s FORE-SCE model was used to produce land-use and land-cover (LULC) projections for the conterminous United States. The projections were originally created as part of the "LandCarbon" project, an effort to understand biological carbon sequestration potential in the United States. However, the projections are being used for a wide variety of purposes, including analyses of the effects of landscape change on biodiversity, water quality, and regional weather and climate. The year 1992 served as the baseline for the landscape modeling. The 1992 to 2005 period was considered the historical baseline, with datasets such as the National Land Cover Database (NLCD), USGS Land Cover Trends, and US Department of Agriculture's Census of Agriculture used to guide the recreation of historical land cover for this period. 2006 to 2100 was considered the future projection time frame. Four scenarios were modeled for 2006 to 2100, corresponding to four major scenario storylines from the In ...
The Chesapeake Bay Land Use and Land Cover Database (LULC) facilitates characterization of the landscape and land change for and between discrete time periods. The database was developed by the University of Vermont’s Spatial Analysis Laboratory in cooperation with Chesapeake Conservancy (CC) and U.S. Geological Survey (USGS) as part of a 6-year Cooperative Agreement between Chesapeake Conservancy and the U.S. Environmental Protection Agency (EPA) and a separate Interagency Agreement between the USGS and EPA to provide geospatial support to the Chesapeake Bay Program Office. The database contains one-meter 13-class Land Cover (LC) and 54-class Land Use/Land Cover (LULC) for all counties within or adjacent to the Chesapeake Bay watershed for 2013/14 and 2017/18, depending on availability of National Agricultural Imagery Program (NAIP) imagery for each state. Additionally, 54 LULC classes are generalized into 18 LULC classes for ease of visualization and communication of LULC trends. LC change between discrete time periods, detected by spectral changes in NAIP imagery and LiDAR, represents changes between the 12 land cover classes. LULC change uses LC change to identify where changes are happening and then LC is translated to LULC to represent transitions between the 54 LULC classes. The LULCC data is represented as a LULC class change transition matrix which provides users acres of change between multiple classes. It is organized by 18x18 and 54x54 LULC classes. The Chesapeake Bay Water (CBW) indicates raster tabulations were performed for only areas that fall inside the CBW boundary e.g., if user is interested in CBW portion of a county then they will use LULC Matrix CBW. Conversely, if they are interested change transitions across the entire county, they will use LULC Matrix. The database includes the following data: 1. 2013/2014 Land Cover (LC) 2. 2017/2018 Land Cover (LC) 3. 2013/2014 to 2017/2018 Land Cover Change (LCC) 4. 2013/2014 Land Use and Land Cover (LULC) 5. 2017/2018 Land Use and Land Cover (LULC) 6. 2013/2014 to 2017/2018 Land Use and Land Cover Change (LULCC) and LULCC matrices To start using the data please refer to the data_dictionary_2022-Edition.pdf (see under Attached Files). How to cite: When using the Chesapeake Bay Land Use/Land Cover Database or producing derivatives, the data must be properly cited based on the following criteria. Citing Entire Data Release Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: U.S. Geological Survey data release, https://doi.org/10.5066/P981GV1L. Citing Land Cover (LC) and/or Land Cover Change (LCC) Products Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: Land Cover: U.S. Geological Survey data release. Developed by the University of Vermont Spatial Analysis Lab, Chesapeake Conservancy, and U.S. Geological Survey, https://doi.org/10.5066/P981GV1L. Citing Land Use/Land Cover (LULC) Products Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: Land Use/Land Cover: U.S. Geological Survey data release. Developed by the Chesapeake Conservancy, U.S. Geological Survey and University of Vermont Spatial Analysis Lab, https://doi.org/10.5066/P981GV1L. Citing Land Use/Land Cover Change (LULCC) Products Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition: Land Use/Land Cover Change: U.S. Geological Survey data release. Developed by the U.S. Geological Survey, Chesapeake Conservancy, and University of Vermont Spatial Analysis Lab, https://doi.org/10.5066/P981GV1L. Citing Data Dictionary Chesapeake Bay Program, 2023, Chesapeake Bay Land Use and Land Cover Database 2022 Edition – Data Dictionary for the Chesapeake Bay Land Use/Land Cover Database, 2022 Edition: U.S. Geological Survey data release, https://doi.org/10.5066/P981GV1L.