From 2018 to 2022, the overall death rate for lung and bronchus cancer in the Kentucky was 61 per 100,000 for males and 43.2 per 100,000 for females. This statistic presents the death rates for lung and bronchus cancer in the United States from 2018 to 2022, by state and gender.
Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00508
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Mortality from lung cancer (ICD-10 C33-C34 equivalent to ICD-9 162). To reduce deaths from lung cancer. Legacy unique identifier: P00516
In 2022, the mortality rate of lung cancer in the European was **** per 100,000 men and **** per 100,000 women. Among men the mortality rate was highest in Hungary and lowest in Sweden being *** and **** per 100,000 respectively. Hungary was also the country with the highest lung cancer mortality rate in women with **** per 100,000 women. The lowest was in Lithuania with **** per 100,000 women. In most EU countries, there was a marked difference between the mortality of lung cancer in men and women.
https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions
Legacy unique identifier: P00515
In 2020, approximately ** men and ** women per 100,000 population died from lung cancer in England and Wales. During the provided time interval, there has been a noticeable decrease in the mortality of lung cancer among men, while the rate among women has remained at similar levels since the year 2000.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Deaths from lung cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data
Rate: Number of deaths due to cancer of the trachea, bronchus, and lung per 100,000 Population.
Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) cancer of the trachea, bronchus, and lung as the underlying cause (ICD-10 codes: C33-C34).
Data Sources:
(1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html
(2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health
(3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundUnderstanding the effects of demographic drivers on lung cancer mortality trends is critical for lung cancer control. We have examined the drivers of lung cancer mortality at the global, regional, and national levels.MethodsData on lung cancer death and mortality were extracted from the Global Burden of Disease (GBD) 2019. Estimated annual percentage change (EAPC) in the age-standardized mortality rate (ASMR) for lung cancer and all-cause mortality were calculated to measure temporal trends in lung cancer from 1990 to 2019. Decomposition analysis was used to analyze the contributions of epidemiological and demographic drivers to lung cancer mortality.ResultsDespite a non-significant decrease in ASMR [EAPC = −0.31, 95% confidence interval (CI): −1.1 to 0.49], the number of deaths from lung cancer increased by 91.8% [95% uncertainty interval (UI): 74.5–109.0%] between 1990 and 2019. This increase was due to the changes in the number of deaths attributable to population aging (59.6%), population growth (56.7%), and non-GBD risks (3.49%) compared with 1990 data. Conversely, the number of lung cancer deaths due to GBD risks decreased by 19.8%, mainly due to tobacco (−12.66%), occupational risks (−3.52%), and air pollution (−3.47%). More lung cancer deaths (1.83%) were observed in most regions, which were due to high fasting plasma glucose levels. The temporal trend of lung cancer ASMR and the patterns of demographic drivers varied by region and gender. Significant associations were observed between the contributions of population growth, GBD risks and non-GBD risks (negative), population aging (positive), and ASMR in 1990, the sociodemographic index (SDI), and the human development index (HDI) in 2019.ConclusionPopulation aging and population growth increased global lung cancer deaths from 1990 to 2019, despite a decrease in age-specific lung cancer death rates due to GBD risks in most regions. A tailored strategy is needed to reduce the increasing burden of lung cancer due to outpacing demographic drivers of epidemiological change globally and in most regions, taking into account region- or gender-specific risk patterns.
In 2023, there were around **** deaths from lung and bronchus cancer per 100,000 women in the United States. The death rate from lung and bronchus cancer among women has decreased over the past couple of decades. This statistic shows the death rate of lung and bronchus cancer among women in the United States from 1999 to 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
PurposeCurrently the screening for lung cancer for risk groups is based on Computed Tomography (CT) or low dose CT (LDCT); however, the lung cancer death rate has not decreased significantly with people undergoing LDCT. We aimed to develop a simple reliable blood test for early detection of all types of lung cancer based on the immunogenicity of aberrant forms of BARD1 that are specifically upregulated in lung cancer.MethodsELISA assays were performed with a panel of BARD1 epitopes to detect serum levels of antibodies against BARD1 epitopes. We tested 194 blood samples from healthy donors and lung cancer patients with a panel of 40 BARD1 antigens. Using fitted Lasso logistic regression we determined the optimal combination of BARD1 antigens to be used in ELISA for discriminating lung cancer from healthy controls. Random selection of samples for training sets or validations sets was applied to validate the accuracy of our test.ResultsFitted Lasso logistic regression models predict high accuracy of the BARD1 autoimmune antibody test with an AUC = 0.96. Validation in independent samples provided and AUC = 0.86 and identical AUCs were obtained for combined stages 1–3 and late stage 4 lung cancers. The BARD1 antibody test is highly specific for lung cancer and not breast or ovarian cancer.ConclusionThe BARD1 lung cancer test shows higher sensitivity and specificity than previously published blood tests for lung cancer detection and/or diagnosis or CT scans, and it could detect all types and all stages of lung cancer. This BARD1 lung cancer test could therefore be further developed as i) screening test for early detection of lung cancers in high-risk groups, and ii) diagnostic aid in complementing CT scan.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
ObjectiveLung cancer is responsible for millions of deaths yearly, and its burden is severe worldwide. This study aimed to investigate the burden of lung cancer in the population of Wuhan based on the surveillance data from 2010 to 2019.MethodsData of this study was obtained from the Mortality Register System established by the Wuhan Center for Disease Control and Prevention. The study systematically analyzed the burden of lung cancer deaths in the population of Wuhan and its 13 administrative regions from 2010 to 2019 via the Joinpoint regression models, Age-Period-Cohort (APC) models, and decomposition analysis.ResultsThis study found the upward and downward trends in the age-standardized mortality rates (ASMRs) and age-standardized years of life lost rates (ASYLLRs) of lung cancer from 2010 to 2019. In Joinpoint regression models, the corresponding estimated annual percentage change (EAPC) were 1.00% and -1.90%, 0.60%, and -3.00%, respectively. In APC models, lung cancer mortality tended to increase with age for both sexes in Wuhan, peaking at the 85-89 age group; The period effects for different populations have started to gradually decline in recent years. In addition, the cohort effects indicated that the risk of lung cancer death was highest among those born in the 1950s-1955s, at 1.08 (males) and 1.01 (females). Among all administrative districts in Wuhan, the ASMR of lung cancer in the Xinzhou District has remained the highest over the study period. In decomposition analysis, both population aging (P
Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
License information was derived automatically
Lung Cancer Mortality Data
This dataset contains estimates for 29 cancer-specific age-standardized mortality rates for specific cancer types at the county level for each state, the District of Columbia, and the United States as a whole for 1980-2014 (quinquennial), as well as the changes in rates during this period.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundLung cancer is one of the leading causes of cancer death worldwide, and tuberculosis (TB) is a common pre-existing disease. However, there is scarce literature studying the mortality risk in patients with prior TB and subsequent lung cancer.MethodsWe recruited lung cancer patients from the Taiwan Cancer Registry from 2011 to 2015 and classified them into two groups according to presence or absence of prior TB. We then matched them in a ratio of 1:4 using the exact matching approach. The mortality risk within 3 years after diagnosis of lung cancer was analyzed and compared between these two groups.ResultsDuring the study period, 43,472 patients with lung cancer were recruited, and of these, 1,211 (2.79%) patients had prior TB. After matching, this cohort included 5,935 patients with lung cancer in two groups: patients with prior TB before lung cancer (n = 1,187) and those without (n = 4,748). After controlling for demographic factors and comorbidities, the patients with prior TB had increased adjusted hazard ratios of 1.13 (95% CI: 1.04–1.23) and 1.11 (1.02–1.21) for all-cause and cancer-specific 3-year mortality, respectively, compared to the lung cancer patients without prior TB. Duration between TB and lung cancer (3 years) had no differences for mortality risk.ConclusionIn the present study, 2.79% patients with lung cancer had prior TB, which was associated with higher 3-year mortality after they developed lung cancer. The mortality risk with prior TB did not decrease even if >3 years passed before diagnosis of lung cancer.
In 2019, approximately ** men and ** women per 100,000 population died from lung cancer in England. The North East of England had the highest mortality from lung cancer for both genders with a rate of approximately ** men and ** women per 100,000 population.
This statistic shows the death rate of lung and bronchus cancer in the United States from 1999 to 2021. The maximum rate in the given period was **** per every 100,000 age-adjusted population in 2000. The minimum rate stood at **** in 2021.
https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy
According to cognitive market research, the global lung cancer therapeutics market size was valued at USD xx billion in 2024 and is expected to reach USD xx billion at a CAGR of xx% during the forecast period.
The lungs are two spongy organs in the chest that control breathing. Lung cancer is the leading cause of cancer deaths worldwide. People who smoke have the greatest risk of lung cancer. The risk of lung cancer increases with the length of time and number of cigarettes smoked.
The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals
The chemotherapy segment dominated the lung cancer therapeutics market revenue in 2024 and is projected to be the fastest-growing segment during the forecast period. Chemotherapy goes throughout the entire body for tumor cells, whereas radiation and surgery target a single region of the body.
Moreover, this market dominance is a result of consumers' growing propensity to buy pharmaceuticals from hospital pharmacies due to the availability of a large variety of medicines.
There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the instruments adds up to the total cost.
Market Dynamics of the Lung Cancer Therapeutics
Key Drivers of the Lung Cancer Therapeutics
The strong prevalence of lung cancer is notably driving market growth.
One of the most prevalent forms of cancer is lung cancer. Several reasons, including the aging population and lifestyle changes, have contributed to a notable increase in the number of new instances of cancer, particularly lung cancer, in recent years. In the United States, 6.2% of the population is at risk of developing lung cancer. Lung cancer still has a very high death rate, even with recent declines in the rate, which presents a market potential for suppliers. The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals. • For instance, according to the 2022 report by the American Lung Association, while the disease remains the leading cause of cancer deaths among women and men, the survival rate over the past five years has increased from 21% nationally to 25% yet remains significantly lower among communities of color at 20%. Hence, the increasing prevalence of cancer and the need for effective treatment is likely to contribute to market growth. (Source:https://www.lung.org/research/state-of-lung-cancer/key-findings)
Rising pollution due to rapid industrialization increases the incidences of lung cancer
Air pollution (outdoor and indoor particulate matter and ozone) is closely linked to the rising prevalence of heart disease and strokes, lung cancer, lower respiratory infections, diabetes, and chronic obstructive pulmonary disease (COPD). The Global Burden of Disease Study Report (2019) ranks air pollution as the third leading cause of death worldwide. Globally, air pollution is responsible for 6.82 million deaths annually, of which 33% are caused by interior pollution and 66% by outdoor pollution. • For instance, According to the conference organized by the Associated Chambers of Commerce and Industry of India (ASSOCHAM), ‘Lung Cancer- Awareness, Prevention, Challenges & Treatment’, air pollution is the leading cause of the rise of lung cancer in the country. Around 63 out of the 100 most polluted places on earth belong to India. (Source:https://www.assocham.org/press-release-page.php?release-name=air-pollution-is-the-major-cause-of-lung-cancer-in-india-say-health-experts)
Restraints of the Lung Cancer Therapeutics
Regional disparities in treatment will hamper the market for lung cancer therapeutics
Lung cancer is the most prevalent cause of cancer-related deaths globally, and its impact is particularly felt in lower- and middle-income countries (LMICs), where access to early and effective diagnosis and treatment is often restricted. WHO data show that whereas 90% of cancer patients in high-income countries have access to therapy, only roughly 30% of cancer patients in low-income countries do. There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the i...
https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/
Background: The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer.
Methods: From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. This dataset includes the low-dose CT scans from 26,254 of these subjects, as well as digitized histopathology images from 451 subjects.
Results: The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02).
Conclusions: Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385).
Data Availability: A summary of the National Lung Screening Trial and its available datasets are provided on the Cancer Data Access System (CDAS). CDAS is maintained by Information Management System (IMS), contracted by the National Cancer Institute (NCI) as keepers and statistical analyzers of the NLST trial data. The full clinical data set from NLST is available through CDAS. Users of TCIA can download without restriction a publicly distributable subset of that clinical data, along with the CT and Histopathology images collected during the trial. (These previously were restricted.)
From 2018 to 2022, the overall death rate for lung and bronchus cancer in the Kentucky was 61 per 100,000 for males and 43.2 per 100,000 for females. This statistic presents the death rates for lung and bronchus cancer in the United States from 2018 to 2022, by state and gender.