100+ datasets found
  1. U.S. lung and bronchus cancer death rates 2018-2022, by state and gender

    • statista.com
    Updated Mar 5, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). U.S. lung and bronchus cancer death rates 2018-2022, by state and gender [Dataset]. https://www.statista.com/statistics/1286355/lung-and-bronchus-cancer-death-rates-us-state-gender/
    Explore at:
    Dataset updated
    Mar 5, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    United States
    Description

    From 2018 to 2022, the overall death rate for lung and bronchus cancer in the Kentucky was 61 per 100,000 for males and 43.2 per 100,000 for females. This statistic presents the death rates for lung and bronchus cancer in the United States from 2018 to 2022, by state and gender.

  2. l

    Lung Cancer Mortality

    • data.lacounty.gov
    • egis-lacounty.hub.arcgis.com
    • +1more
    Updated Dec 20, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    County of Los Angeles (2023). Lung Cancer Mortality [Dataset]. https://data.lacounty.gov/maps/lacounty::lung-cancer-mortality
    Explore at:
    Dataset updated
    Dec 20, 2023
    Dataset authored and provided by
    County of Los Angeles
    Area covered
    Description

    Death rate has been age-adjusted by the 2000 U.S. standard population. Single-year data are only available for Los Angeles County overall, Service Planning Areas, Supervisorial Districts, City of Los Angeles overall, and City of Los Angeles Council Districts.Lung cancer is a leading cause of cancer-related death in the US. People who smoke have the greatest risk of lung cancer, though lung cancer can also occur in people who have never smoked. Most cases are due to long-term tobacco smoking or exposure to secondhand tobacco smoke. Cities and communities can take an active role in curbing tobacco use and reducing lung cancer by adopting policies to regulate tobacco retail; reducing exposure to secondhand smoke in outdoor public spaces, such as parks, restaurants, or in multi-unit housing; and improving access to tobacco cessation programs and other preventive services.For more information about the Community Health Profiles Data Initiative, please see the initiative homepage.

  3. d

    Mortality from lung cancer: crude death rate, by age group, 3-year average,...

    • digital.nhs.uk
    Updated Jul 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Mortality from lung cancer: crude death rate, by age group, 3-year average, MFP [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/mortality-from-lung-cancer
    Explore at:
    Dataset updated
    Jul 21, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Legacy unique identifier: P00508

  4. d

    Compendium – Mortality from lung cancer

    • digital.nhs.uk
    csv, xls
    Updated Jul 21, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2022). Compendium – Mortality from lung cancer [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/mortality-from-lung-cancer
    Explore at:
    csv(3.3 MB), xls(614.3 kB)Available download formats
    Dataset updated
    Jul 21, 2022
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Time period covered
    Jan 1, 1995 - Dec 31, 2020
    Area covered
    Wales, England
    Description

    Mortality from lung cancer (ICD-10 C33-C34 equivalent to ICD-9 162). To reduce deaths from lung cancer. Legacy unique identifier: P00516

  5. Lung cancer mortality rate in Europe in 2022, by country and gender

    • statista.com
    Updated Sep 16, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lung cancer mortality rate in Europe in 2022, by country and gender [Dataset]. https://www.statista.com/statistics/1418932/mortality-of-lung-cancer-in-europe/
    Explore at:
    Dataset updated
    Sep 16, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2022
    Area covered
    Europe, EU
    Description

    In 2022, the mortality rate of lung cancer in the European was **** per 100,000 men and **** per 100,000 women. Among men the mortality rate was highest in Hungary and lowest in Sweden being *** and **** per 100,000 respectively. Hungary was also the country with the highest lung cancer mortality rate in women with **** per 100,000 women. The lowest was in Lithuania with **** per 100,000 women. In most EU countries, there was a marked difference between the mortality of lung cancer in men and women.

  6. d

    Mortality from lung cancer: indirectly standardised ratio (SMR), <75 years,...

    • digital.nhs.uk
    Updated Jul 21, 2021
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2021). Mortality from lung cancer: indirectly standardised ratio (SMR), <75 years, 3-year average, MFP [Dataset]. https://digital.nhs.uk/data-and-information/publications/statistical/compendium-mortality/current/mortality-from-lung-cancer
    Explore at:
    Dataset updated
    Jul 21, 2021
    License

    https://digital.nhs.uk/about-nhs-digital/terms-and-conditionshttps://digital.nhs.uk/about-nhs-digital/terms-and-conditions

    Description

    Legacy unique identifier: P00515

  7. Lung cancer mortality rate in England and Wales 2000-2020, by gender

    • statista.com
    Updated Jul 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lung cancer mortality rate in England and Wales 2000-2020, by gender [Dataset]. https://www.statista.com/statistics/1047218/mortality-rate-from-lung-cancer-england-and-wales/
    Explore at:
    Dataset updated
    Jul 10, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Area covered
    Wales, England
    Description

    In 2020, approximately ** men and ** women per 100,000 population died from lung cancer in England and Wales. During the provided time interval, there has been a noticeable decrease in the mortality of lung cancer among men, while the rate among women has remained at similar levels since the year 2000.

  8. w

    Lung cancer: mortality rate

    • data.wu.ac.at
    • data.europa.eu
    html
    Updated Sep 20, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NHS Digital (2017). Lung cancer: mortality rate [Dataset]. https://data.wu.ac.at/schema/data_gov_uk/ZDNmMDEwMGQtYjgzOS00YjVkLTlmNDQtZGJkZmIyMmExODFm
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Sep 20, 2017
    Dataset provided by
    NHS Digital
    License

    Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
    License information was derived automatically

    Description

    Deaths from lung cancer - Directly age-Standardised Rates (DSR) per 100,000 population Source: Office for National Statistics (ONS) Publisher: Information Centre (IC) - Clinical and Health Outcomes Knowledge Base Geographies: Local Authority District (LAD), Government Office Region (GOR), National, Primary Care Trust (PCT), Strategic Health Authority (SHA) Geographic coverage: England Time coverage: 2005-07, 2007 Type of data: Administrative data

  9. w

    Lung Cancer Death Rate (per 100,000), New Jersey, by year: Beginning 2010

    • data.wu.ac.at
    • healthdata.nj.gov
    application/excel +5
    Updated May 23, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Loretta Kelly (2018). Lung Cancer Death Rate (per 100,000), New Jersey, by year: Beginning 2010 [Dataset]. https://data.wu.ac.at/odso/healthdata_nj_gov/aWE3Ny1jdHFy
    Explore at:
    xlsx, csv, xml, application/xml+rdf, application/excel, jsonAvailable download formats
    Dataset updated
    May 23, 2018
    Dataset provided by
    Loretta Kelly
    Area covered
    New Jersey
    Description

    Rate: Number of deaths due to cancer of the trachea, bronchus, and lung per 100,000 Population.

    Definition: Number of deaths per 100,000 with malignant neoplasm (cancer) cancer of the trachea, bronchus, and lung as the underlying cause (ICD-10 codes: C33-C34).

    Data Sources:

    (1) Centers for Disease Control and Prevention, National Center for Health Statistics. Compressed Mortality File. CDC WONDER On-line Database accessed at http://wonder.cdc.gov/cmf-icd10.html

    (2) Death Certificate Database, Office of Vital Statistics and Registry, New Jersey Department of Health

    (3) Population Estimates, State Data Center, New Jersey Department of Labor and Workforce Development

  10. f

    Data_Sheet_1_Epidemiological and demographic drivers of lung cancer...

    • frontiersin.figshare.com
    docx
    Updated Jun 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaguang Fan; Yong Jiang; Lei Gong; Ying Wang; Zheng Su; Xuebing Li; Heng Wu; Hongli Pan; Jing Wang; Zhaowei Meng; Qinghua Zhou; Youlin Qiao (2023). Data_Sheet_1_Epidemiological and demographic drivers of lung cancer mortality from 1990 to 2019: results from the global burden of disease study 2019.docx [Dataset]. http://doi.org/10.3389/fpubh.2023.1054200.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 2, 2023
    Dataset provided by
    Frontiers
    Authors
    Yaguang Fan; Yong Jiang; Lei Gong; Ying Wang; Zheng Su; Xuebing Li; Heng Wu; Hongli Pan; Jing Wang; Zhaowei Meng; Qinghua Zhou; Youlin Qiao
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundUnderstanding the effects of demographic drivers on lung cancer mortality trends is critical for lung cancer control. We have examined the drivers of lung cancer mortality at the global, regional, and national levels.MethodsData on lung cancer death and mortality were extracted from the Global Burden of Disease (GBD) 2019. Estimated annual percentage change (EAPC) in the age-standardized mortality rate (ASMR) for lung cancer and all-cause mortality were calculated to measure temporal trends in lung cancer from 1990 to 2019. Decomposition analysis was used to analyze the contributions of epidemiological and demographic drivers to lung cancer mortality.ResultsDespite a non-significant decrease in ASMR [EAPC = −0.31, 95% confidence interval (CI): −1.1 to 0.49], the number of deaths from lung cancer increased by 91.8% [95% uncertainty interval (UI): 74.5–109.0%] between 1990 and 2019. This increase was due to the changes in the number of deaths attributable to population aging (59.6%), population growth (56.7%), and non-GBD risks (3.49%) compared with 1990 data. Conversely, the number of lung cancer deaths due to GBD risks decreased by 19.8%, mainly due to tobacco (−12.66%), occupational risks (−3.52%), and air pollution (−3.47%). More lung cancer deaths (1.83%) were observed in most regions, which were due to high fasting plasma glucose levels. The temporal trend of lung cancer ASMR and the patterns of demographic drivers varied by region and gender. Significant associations were observed between the contributions of population growth, GBD risks and non-GBD risks (negative), population aging (positive), and ASMR in 1990, the sociodemographic index (SDI), and the human development index (HDI) in 2019.ConclusionPopulation aging and population growth increased global lung cancer deaths from 1990 to 2019, despite a decrease in age-specific lung cancer death rates due to GBD risks in most regions. A tailored strategy is needed to reduce the increasing burden of lung cancer due to outpacing demographic drivers of epidemiological change globally and in most regions, taking into account region- or gender-specific risk patterns.

  11. Rate of lung and bronchus cancer deaths among U.S. women 1999-2023

    • statista.com
    Updated Sep 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Rate of lung and bronchus cancer deaths among U.S. women 1999-2023 [Dataset]. https://www.statista.com/statistics/1623462/lung-and-bronchus-cancer-death-rate-women-in-us/
    Explore at:
    Dataset updated
    Sep 15, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2023
    Area covered
    United States
    Description

    In 2023, there were around **** deaths from lung and bronchus cancer per 100,000 women in the United States. The death rate from lung and bronchus cancer among women has decreased over the past couple of decades. This statistic shows the death rate of lung and bronchus cancer among women in the United States from 1999 to 2023.

  12. f

    BARD1 serum autoantibodies for the detection of lung cancer

    • plos.figshare.com
    pdf
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maxim Pilyugin; Pascaline Descloux; Pierre-Alain André; Viktoria Laszlo; Balazs Dome; Balazs Hegedus; Sylvain Sardy; Samuel Janes; Andrea Bianco; Geoffrey J. Laurent; Irmgard Irminger-Finger (2023). BARD1 serum autoantibodies for the detection of lung cancer [Dataset]. http://doi.org/10.1371/journal.pone.0182356
    Explore at:
    pdfAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Maxim Pilyugin; Pascaline Descloux; Pierre-Alain André; Viktoria Laszlo; Balazs Dome; Balazs Hegedus; Sylvain Sardy; Samuel Janes; Andrea Bianco; Geoffrey J. Laurent; Irmgard Irminger-Finger
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    PurposeCurrently the screening for lung cancer for risk groups is based on Computed Tomography (CT) or low dose CT (LDCT); however, the lung cancer death rate has not decreased significantly with people undergoing LDCT. We aimed to develop a simple reliable blood test for early detection of all types of lung cancer based on the immunogenicity of aberrant forms of BARD1 that are specifically upregulated in lung cancer.MethodsELISA assays were performed with a panel of BARD1 epitopes to detect serum levels of antibodies against BARD1 epitopes. We tested 194 blood samples from healthy donors and lung cancer patients with a panel of 40 BARD1 antigens. Using fitted Lasso logistic regression we determined the optimal combination of BARD1 antigens to be used in ELISA for discriminating lung cancer from healthy controls. Random selection of samples for training sets or validations sets was applied to validate the accuracy of our test.ResultsFitted Lasso logistic regression models predict high accuracy of the BARD1 autoimmune antibody test with an AUC = 0.96. Validation in independent samples provided and AUC = 0.86 and identical AUCs were obtained for combined stages 1–3 and late stage 4 lung cancers. The BARD1 antibody test is highly specific for lung cancer and not breast or ovarian cancer.ConclusionThe BARD1 lung cancer test shows higher sensitivity and specificity than previously published blood tests for lung cancer detection and/or diagnosis or CT scans, and it could detect all types and all stages of lung cancer. This BARD1 lung cancer test could therefore be further developed as i) screening test for early detection of lung cancers in high-risk groups, and ii) diagnostic aid in complementing CT scan.

  13. f

    DataSheet_1_Temporal trends in lung cancer mortality and years of life lost...

    • frontiersin.figshare.com
    bin
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yaqiong Yan; Yudiyang Ma; Yimeng Li; Xiaoxia Zhang; Yuanyuan Zhao; Niannian Yang; Chuanhua Yu (2023). DataSheet_1_Temporal trends in lung cancer mortality and years of life lost in Wuhan, China, 2010-2019.docx [Dataset]. http://doi.org/10.3389/fonc.2022.1030684.s001
    Explore at:
    binAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Frontiers
    Authors
    Yaqiong Yan; Yudiyang Ma; Yimeng Li; Xiaoxia Zhang; Yuanyuan Zhao; Niannian Yang; Chuanhua Yu
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Wuhan, China
    Description

    ObjectiveLung cancer is responsible for millions of deaths yearly, and its burden is severe worldwide. This study aimed to investigate the burden of lung cancer in the population of Wuhan based on the surveillance data from 2010 to 2019.MethodsData of this study was obtained from the Mortality Register System established by the Wuhan Center for Disease Control and Prevention. The study systematically analyzed the burden of lung cancer deaths in the population of Wuhan and its 13 administrative regions from 2010 to 2019 via the Joinpoint regression models, Age-Period-Cohort (APC) models, and decomposition analysis.ResultsThis study found the upward and downward trends in the age-standardized mortality rates (ASMRs) and age-standardized years of life lost rates (ASYLLRs) of lung cancer from 2010 to 2019. In Joinpoint regression models, the corresponding estimated annual percentage change (EAPC) were 1.00% and -1.90%, 0.60%, and -3.00%, respectively. In APC models, lung cancer mortality tended to increase with age for both sexes in Wuhan, peaking at the 85-89 age group; The period effects for different populations have started to gradually decline in recent years. In addition, the cohort effects indicated that the risk of lung cancer death was highest among those born in the 1950s-1955s, at 1.08 (males) and 1.01 (females). Among all administrative districts in Wuhan, the ASMR of lung cancer in the Xinzhou District has remained the highest over the study period. In decomposition analysis, both population aging (P

  14. m

    Data for: ARE U.S. LUNG CANCER MORTALITY RATES CONVERGING?

    • data.mendeley.com
    Updated Jun 27, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sediq Sameem (2019). Data for: ARE U.S. LUNG CANCER MORTALITY RATES CONVERGING? [Dataset]. http://doi.org/10.17632/jxnrkcfcjh.1
    Explore at:
    Dataset updated
    Jun 27, 2019
    Authors
    Sediq Sameem
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    Lung Cancer Mortality Data

  15. US Mortality Rates for Specific Cancer Types

    • johnsnowlabs.com
    csv
    Updated Jan 20, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    John Snow Labs (2021). US Mortality Rates for Specific Cancer Types [Dataset]. https://www.johnsnowlabs.com/marketplace/us-mortality-rates-for-specific-cancer-types/
    Explore at:
    csvAvailable download formats
    Dataset updated
    Jan 20, 2021
    Dataset authored and provided by
    John Snow Labs
    Time period covered
    Jan 1, 1980 - Dec 31, 2014
    Area covered
    United States
    Description

    This dataset contains estimates for 29 cancer-specific age-standardized mortality rates for specific cancer types at the county level for each state, the District of Columbia, and the United States as a whole for 1980-2014 (quinquennial), as well as the changes in rates during this period.

  16. f

    Data_Sheet_1_Prior treated tuberculosis and mortality risk in lung...

    • frontiersin.figshare.com
    • datasetcatalog.nlm.nih.gov
    docx
    Updated Jun 16, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kuang-Ming Liao; Chung-Shu Lee; Yu-Cih Wu; Chin-Chung Shu; Chung-Han Ho (2023). Data_Sheet_1_Prior treated tuberculosis and mortality risk in lung cancer.DOCX [Dataset]. http://doi.org/10.3389/fmed.2023.1121257.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 16, 2023
    Dataset provided by
    Frontiers
    Authors
    Kuang-Ming Liao; Chung-Shu Lee; Yu-Cih Wu; Chin-Chung Shu; Chung-Han Ho
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    BackgroundLung cancer is one of the leading causes of cancer death worldwide, and tuberculosis (TB) is a common pre-existing disease. However, there is scarce literature studying the mortality risk in patients with prior TB and subsequent lung cancer.MethodsWe recruited lung cancer patients from the Taiwan Cancer Registry from 2011 to 2015 and classified them into two groups according to presence or absence of prior TB. We then matched them in a ratio of 1:4 using the exact matching approach. The mortality risk within 3 years after diagnosis of lung cancer was analyzed and compared between these two groups.ResultsDuring the study period, 43,472 patients with lung cancer were recruited, and of these, 1,211 (2.79%) patients had prior TB. After matching, this cohort included 5,935 patients with lung cancer in two groups: patients with prior TB before lung cancer (n = 1,187) and those without (n = 4,748). After controlling for demographic factors and comorbidities, the patients with prior TB had increased adjusted hazard ratios of 1.13 (95% CI: 1.04–1.23) and 1.11 (1.02–1.21) for all-cause and cancer-specific 3-year mortality, respectively, compared to the lung cancer patients without prior TB. Duration between TB and lung cancer (3 years) had no differences for mortality risk.ConclusionIn the present study, 2.79% patients with lung cancer had prior TB, which was associated with higher 3-year mortality after they developed lung cancer. The mortality risk with prior TB did not decrease even if >3 years passed before diagnosis of lung cancer.

  17. Lung cancer mortality rate in England 2019, by region and gender

    • statista.com
    Updated Jul 9, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Lung cancer mortality rate in England 2019, by region and gender [Dataset]. https://www.statista.com/statistics/1047279/mortality-rate-from-lung-cancer-england-by-region/
    Explore at:
    Dataset updated
    Jul 9, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    2019
    Area covered
    England
    Description

    In 2019, approximately ** men and ** women per 100,000 population died from lung cancer in England. The North East of England had the highest mortality from lung cancer for both genders with a rate of approximately ** men and ** women per 100,000 population.

  18. Rate of lung and bronchus cancer deaths in U.S. 1999-2021

    • statista.com
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Statista (2025). Rate of lung and bronchus cancer deaths in U.S. 1999-2021 [Dataset]. https://www.statista.com/statistics/534456/lung-and-bronchus-cancer-death-rate-in-us/
    Explore at:
    Dataset updated
    Jul 8, 2025
    Dataset authored and provided by
    Statistahttp://statista.com/
    Time period covered
    1999 - 2021
    Area covered
    United States
    Description

    This statistic shows the death rate of lung and bronchus cancer in the United States from 1999 to 2021. The maximum rate in the given period was **** per every 100,000 age-adjusted population in 2000. The minimum rate stood at **** in 2021.

  19. c

    Global Lung Cancer Therapeutics Market Report 2025 Edition, Market Size,...

    • cognitivemarketresearch.com
    pdf,excel,csv,ppt
    Updated Jul 16, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cognitive Market Research (2024). Global Lung Cancer Therapeutics Market Report 2025 Edition, Market Size, Share, CAGR, Forecast, Revenue [Dataset]. https://www.cognitivemarketresearch.com/lung-cancer-therapeutics-market-report
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset updated
    Jul 16, 2024
    Dataset authored and provided by
    Cognitive Market Research
    License

    https://www.cognitivemarketresearch.com/privacy-policyhttps://www.cognitivemarketresearch.com/privacy-policy

    Time period covered
    2021 - 2033
    Area covered
    Global
    Description

    According to cognitive market research, the global lung cancer therapeutics market size was valued at USD xx billion in 2024 and is expected to reach USD xx billion at a CAGR of xx% during the forecast period.

    The lungs are two spongy organs in the chest that control breathing. Lung cancer is the leading cause of cancer deaths worldwide. People who smoke have the greatest risk of lung cancer. The risk of lung cancer increases with the length of time and number of cigarettes smoked.
    The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals
    The chemotherapy segment dominated the lung cancer therapeutics market revenue in 2024 and is projected to be the fastest-growing segment during the forecast period. Chemotherapy goes throughout the entire body for tumor cells, whereas radiation and surgery target a single region of the body.
    Moreover, this market dominance is a result of consumers' growing propensity to buy pharmaceuticals from hospital pharmacies due to the availability of a large variety of medicines.
    There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the instruments adds up to the total cost.
    

    Market Dynamics of the Lung Cancer Therapeutics

    Key Drivers of the Lung Cancer Therapeutics

    The strong prevalence of lung cancer is notably driving market growth.
    

    One of the most prevalent forms of cancer is lung cancer. Several reasons, including the aging population and lifestyle changes, have contributed to a notable increase in the number of new instances of cancer, particularly lung cancer, in recent years. In the United States, 6.2% of the population is at risk of developing lung cancer. Lung cancer still has a very high death rate, even with recent declines in the rate, which presents a market potential for suppliers. The market is anticipated to expand over the forecast period as a result of the high disease incidence rate and the rising number of drug approvals. • For instance, according to the 2022 report by the American Lung Association, while the disease remains the leading cause of cancer deaths among women and men, the survival rate over the past five years has increased from 21% nationally to 25% yet remains significantly lower among communities of color at 20%. Hence, the increasing prevalence of cancer and the need for effective treatment is likely to contribute to market growth. (Source:https://www.lung.org/research/state-of-lung-cancer/key-findings)

    Rising pollution due to rapid industrialization increases the incidences of lung cancer
    

    Air pollution (outdoor and indoor particulate matter and ozone) is closely linked to the rising prevalence of heart disease and strokes, lung cancer, lower respiratory infections, diabetes, and chronic obstructive pulmonary disease (COPD). The Global Burden of Disease Study Report (2019) ranks air pollution as the third leading cause of death worldwide. Globally, air pollution is responsible for 6.82 million deaths annually, of which 33% are caused by interior pollution and 66% by outdoor pollution. • For instance, According to the conference organized by the Associated Chambers of Commerce and Industry of India (ASSOCHAM), ‘Lung Cancer- Awareness, Prevention, Challenges & Treatment’, air pollution is the leading cause of the rise of lung cancer in the country. Around 63 out of the 100 most polluted places on earth belong to India. (Source:https://www.assocham.org/press-release-page.php?release-name=air-pollution-is-the-major-cause-of-lung-cancer-in-india-say-health-experts)

    Restraints of the Lung Cancer Therapeutics

    Regional disparities in treatment will hamper the market for lung cancer therapeutics
    

    Lung cancer is the most prevalent cause of cancer-related deaths globally, and its impact is particularly felt in lower- and middle-income countries (LMICs), where access to early and effective diagnosis and treatment is often restricted. WHO data show that whereas 90% of cancer patients in high-income countries have access to therapy, only roughly 30% of cancer patients in low-income countries do. There are numerous products involved in the procedure of lung cancer therapeutics, which makes it costlier. Furthermore, the high maintenance cost of the i...

  20. c

    National Lung Screening Trial

    • stage.cancerimagingarchive.net
    • cancerimagingarchive.net
    dicom, docx, n/a +2
    Updated Sep 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    The Cancer Imaging Archive (2021). National Lung Screening Trial [Dataset]. http://doi.org/10.7937/TCIA.HMQ8-J677
    Explore at:
    svs, dicom, docx, sas, zip, and doc, n/aAvailable download formats
    Dataset updated
    Sep 24, 2021
    Dataset authored and provided by
    The Cancer Imaging Archive
    License

    https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/https://www.cancerimagingarchive.net/data-usage-policies-and-restrictions/

    Time period covered
    Sep 24, 2021
    Dataset funded by
    National Cancer Institutehttp://www.cancer.gov/
    Description

    Background: The aggressive and heterogeneous nature of lung cancer has thwarted efforts to reduce mortality from this cancer through the use of screening. The advent of low-dose helical computed tomography (CT) altered the landscape of lung-cancer screening, with studies indicating that low-dose CT detects many tumors at early stages. The National Lung Screening Trial (NLST) was conducted to determine whether screening with low-dose CT could reduce mortality from lung cancer.

    Methods: From August 2002 through April 2004, we enrolled 53,454 persons at high risk for lung cancer at 33 U.S. medical centers. Participants were randomly assigned to undergo three annual screenings with either low-dose CT (26,722 participants) or single-view posteroanterior chest radiography (26,732). Data were collected on cases of lung cancer and deaths from lung cancer that occurred through December 31, 2009. This dataset includes the low-dose CT scans from 26,254 of these subjects, as well as digitized histopathology images from 451 subjects.

    Results: The rate of adherence to screening was more than 90%. The rate of positive screening tests was 24.2% with low-dose CT and 6.9% with radiography over all three rounds. A total of 96.4% of the positive screening results in the low-dose CT group and 94.5% in the radiography group were false positive results. The incidence of lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). There were 247 deaths from lung cancer per 100,000 person-years in the low-dose CT group and 309 deaths per 100,000 person-years in the radiography group, representing a relative reduction in mortality from lung cancer with low-dose CT screening of 20.0% (95% CI, 6.8 to 26.7; P=0.004). The rate of death from any cause was reduced in the low-dose CT group, as compared with the radiography group, by 6.7% (95% CI, 1.2 to 13.6; P=0.02).

    Conclusions: Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov number, NCT00047385).

    Data Availability: A summary of the National Lung Screening Trial and its available datasets are provided on the Cancer Data Access System (CDAS). CDAS is maintained by Information Management System (IMS), contracted by the National Cancer Institute (NCI) as keepers and statistical analyzers of the NLST trial data. The full clinical data set from NLST is available through CDAS. Users of TCIA can download without restriction a publicly distributable subset of that clinical data, along with the CT and Histopathology images collected during the trial. (These previously were restricted.)

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Statista (2025). U.S. lung and bronchus cancer death rates 2018-2022, by state and gender [Dataset]. https://www.statista.com/statistics/1286355/lung-and-bronchus-cancer-death-rates-us-state-gender/
Organization logo

U.S. lung and bronchus cancer death rates 2018-2022, by state and gender

Explore at:
Dataset updated
Mar 5, 2025
Dataset authored and provided by
Statistahttp://statista.com/
Area covered
United States
Description

From 2018 to 2022, the overall death rate for lung and bronchus cancer in the Kentucky was 61 per 100,000 for males and 43.2 per 100,000 for females. This statistic presents the death rates for lung and bronchus cancer in the United States from 2018 to 2022, by state and gender.

Search
Clear search
Close search
Google apps
Main menu