100+ datasets found
  1. a

    Maricopa County Streets Layer (lyr) File for FGDB

    • hub.arcgis.com
    • data-maricopa.opendata.arcgis.com
    Updated Dec 13, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Maricopa County Enterprise GIS (2022). Maricopa County Streets Layer (lyr) File for FGDB [Dataset]. https://hub.arcgis.com/content/39bc4f87fcdc4ca8ab2e8ee47e1d0724
    Explore at:
    Dataset updated
    Dec 13, 2022
    Dataset authored and provided by
    Maricopa County Enterprise GIS
    Area covered
    Maricopa County
    Description

    This is a layer file (lyr) that can be used with the Maricopa County Streets layer for default symbology. Additionally, this layer file's definition queries and labeling options are configured for a file geodatabase file structure.

  2. V24 Shields Layer File

    • hub.arcgis.com
    • gis-michigan.opendata.arcgis.com
    Updated Apr 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Michigan Department of Transportation (2024). V24 Shields Layer File [Dataset]. https://hub.arcgis.com/content/4c5e813cc7784422a6ff0c5e843d48a6
    Explore at:
    Dataset updated
    Apr 4, 2024
    Dataset authored and provided by
    Michigan Department of Transportationhttp://www.michigan.gov/mdot
    Description

    Follow the Esri instructions to Import Symbology From Another Layer: https://pro.arcgis.com/en/pro-app/2.7/help/mapping/layer-properties/import-symbology-from-another-layer.htm1) Download this file.2) Add the Shieldsv24 layer to a map in ArcPro.3) Use the Import Symbology tool in the Esri instructions above.4) Import the V24 Shields Layer File symbology.

  3. L

    ArcGIS Layer file - Land Element

    • lris.scinfo.org.nz
    Updated Jun 17, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Landcare Research (2013). ArcGIS Layer file - Land Element [Dataset]. https://lris.scinfo.org.nz/document/9364-arcgis-layer-file-land-element/
    Explore at:
    Dataset updated
    Jun 17, 2013
    Dataset authored and provided by
    Landcare Research
    Description

    ArcGIS layer file for symbolizing Land Element gridded layer. User may need to reconnect symbolization to "value" attribute of grid.

  4. n

    #2023 GeoOps Folder Structure (Folders, GDBs, and layer files) - Dataset -...

    • nationaldataplatform.org
    Updated Feb 28, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2024). #2023 GeoOps Folder Structure (Folders, GDBs, and layer files) - Dataset - CKAN [Dataset]. https://nationaldataplatform.org/catalog/dataset/2023-geoops-folder-structure-folders-gdbs-and-layer-files
    Explore at:
    Dataset updated
    Feb 28, 2024
    Description

    2023 Updates to the National Incident Feature Service and Event Geodatabase For 2023, there are no schema updates and no major changes to GeoOps or the GISS Workflow! This is a conscious choice and is intended to provide a needed break for both users and administrators. Over the last 5 years, nearly every aspect of the GISS position has seen a major overhaul and while the advancements have been overwhelmingly positive, many of us are experiencing change fatigue. This is not to say there is no room for improvement. Many great suggestions were received throughout the season and in the GISS Survey, and they will be considered for inclusion in 2024. That there are no critical updates necessary also indicates that we have reached a level of maturity with the current state, and that is good news for everyone. Please continue to submit your ideas; they are appreciated and valuable insight, even if the change is not implemented. For information on 2023 AGOL updates please see the Create and Share Web Maps | NWCG page. There are three smaller changes worth noting this year: Standard Symbology is now the default on the NIFS For most workflows, the update will be seamless. All the Event Standard symbols are now supported in Field Maps and Map Viewer. Most users will now see the same symbols in all print and digital products. However, in AGOL some web apps do not support the complex line symbols. The simplified lines will still be present in the official Editing Apps (Operations, SITL, and GISS), and any custom apps built with the Web App Builder (WAB) interface. Experience Builder can be used for any new app creation. If you must use WAB or another app that cannot display the complex line symbology in the NIFS, please contact wildfireresponse@firenet.gov for guidance. Event Line now has Preconfigured Labels Labels on Event Line have historically been uncommon, but to speed their implementation when necessary, color-coded labels classes have been added to the NIFS and the lyrx files provided in the GIS Folder Structure. They can be disabled or modified as needed, should they interfere with any of your workflows. “Restricted” Folder added to GeoOps Folder Structure At the base level within the 2023_Template, a ‘restricted’ folder is now included. This folder should be used for all data and products that contain sensitive, restricted, or controlled-unclassified information. This will aid the DOCL and any future FOIA liaisons in protecting this information. When using OneDrive, this folder can optionally be password protected. Reminder: Sensitive Data is not allowed to be hosted within the NIFC Org.

  5. d

    Washington State Surface Geology Map 24K

    • datadiscoverystudio.org
    zip
    Updated Dec 31, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Washington Division of Geology and Earth Resources (2013). Washington State Surface Geology Map 24K [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/8d523ecd9b754755adc1cc3df53c73f3/html
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 31, 2013
    Authors
    Washington Division of Geology and Earth Resources
    Area covered
    Description

    The Washington State Surface Geology Map scale at a scale of 1:24,000 geodatabase was made accessible through the Washington State Department of Natural Resources, Division of Geology and Earth Resources. The data are provided in ESRI ArcGIS 10.0 file geodatabase format (see Read Me file). The projection is in Lambert Conformal Conic, NAD83 HARN datum. Data available for download include:- One ESRI ArcGIS 10.0 geodatabase, consisting of a set of 11 feature classes, 7 relationship classes, and one geodatabase table.- Metadata for each feature class, in both XML and HTML formats (for ease of reading outside of GIS software)- One shapefile depicting the outline of Washington State.- One ArcGIS map document (ending in the .mxd extension), containing specifications for data presentation in ArcMap- One ArcGIS layer file for each feature class (ending in the .lyr extension), containing specifications for data presentation in an ArcGIS viewing application- One Geologic Map Codes document (PDF) defining the symbology used in the map.- The README file These digital data and metadata are provided as is, as available, and with all faults basis. Neither Department of Natural Resources nor any of its officials and employees makes any warranty of any kind for this information, express or implied, including but not limited to any warranties of merchantability or fitness for a particular purpose, nor shall the distribution of this information constitute any warranty. This resource was provided by the Washington State Department of Natural Resources, Division of Geology and Earth Resources and made available for distribution through the National Geothermal Data System.

  6. a

    School Districts Layer File

    • opendata.atlantaregional.com
    Updated Jun 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Marietta, GA (2015). School Districts Layer File [Dataset]. https://opendata.atlantaregional.com/content/00fdecb2fb7f468590ef2f60d34c19f2
    Explore at:
    Dataset updated
    Jun 9, 2015
    Dataset authored and provided by
    City of Marietta, GA
    Area covered
    Description

    Point this layer file to any downloaded Parcels to view Marietta's elementary school boundaries.

  7. f

    Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of...

    • uvaauas.figshare.com
    txt
    Updated May 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen (2023). Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of visualizing geomorphological codes using predefined color palettes [Dataset]. http://doi.org/10.21942/uva.13704643
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    University of Amsterdam / Amsterdam University of Applied Sciences
    Authors
    Matheus G.G. De Jong; Henk Pieter Sterk; Stacy Shinneman; A.C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.

  8. L

    FSL Plant Readily Available Water - ArcGIS layer file

    • lris.scinfo.org.nz
    Updated May 28, 2010
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Landcare Research (2010). FSL Plant Readily Available Water - ArcGIS layer file [Dataset]. https://lris.scinfo.org.nz/document/9234-fsl-plant-readily-available-water-arcgis-layer-file/
    Explore at:
    Dataset updated
    May 28, 2010
    Dataset authored and provided by
    Landcare Research
    Description

    Geospatial data about FSL Plant Readily Available Water - ArcGIS layer file. Export to CAD, GIS, PDF, CSV and access via API.

  9. Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Santa Rosa Island, California (NPS, GRD, GRI, CHIS, SRIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Sonneman, as modified and extend by Weaver, Doerner, Avila and others (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-santa-rosa-island-california-nps-grd-gri-chis-sris-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    California, Santa Rosa Island
    Description

    The Digital Geologic-GIS Map of Santa Rosa Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sris_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sris_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sris_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sris_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sris_geology_metadata.txt or sris_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  10. Z

    Symbology layer files: Hierarchical geomorphological mapping in mountainous...

    • data.niaid.nih.gov
    • explore.openaire.eu
    Updated Apr 24, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Arie C. Seijmonsbergen (2021). Symbology layer files: Hierarchical geomorphological mapping in mountainous areas [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_4714701
    Explore at:
    Dataset updated
    Apr 24, 2021
    Dataset provided by
    Stacy Shinneman
    Matheus G.G. De Jong
    Henk Pieter Sterk
    Arie C. Seijmonsbergen
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Symbology layer files developed in ArcMap and ArcGIS Pro for the purpose of visualizing geomorphological codes using predefined color palettes.

    Supplemental material for: Hierarchical geomorphological mapping in mountainous areas, Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps in 2020, revisions made in 2021.These layer files will produce the complete geomorphological legend, even when all geomorphological units are not present in the dataset. When visualizing results, we recommend the following optimal scale ranges: 1:2,500 - 1:10,000 for Tier 3, 1:10,001 to 1:30,000 for Tier 2 and ≥ 1:30,001 for Tier 1.The complete set of layer files ("Geomorphological Map Vorarlberg - Tier 1", "Geomorphological Map Vorarlberg - Tier 2" and "Geomorphological Map Vorarlberg - Tier 3") are intended to visualize output of a model that creates tiers (columns) of geomorphological features (Tier 1, Tier 2 and Tier 3) in the landscape of Vorarlberg, Austria, each with an increasing level of detail.

  11. a

    Future Land Use Layer File

    • opendata.atlantaregional.com
    • data-cityofmarietta.opendata.arcgis.com
    Updated Jun 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Marietta, GA (2015). Future Land Use Layer File [Dataset]. https://opendata.atlantaregional.com/content/bd3e61984f734f2b8d31e166fa9469f8
    Explore at:
    Dataset updated
    Jun 9, 2015
    Dataset authored and provided by
    City of Marietta, GA
    Area covered
    Description

    Point this layer file to any downloaded Parcels to view Marietta's future land use codes & descriptions

  12. f

    Modifiable set of ESRI ArcMap-10 shape-lyr-style files implementing the...

    • figshare.com
    zip
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Virgil Vlad; Sorina Dumitru; Mihai Toti; Catalin Simota; Mihail Dumitru (2023). Modifiable set of ESRI ArcMap-10 shape-lyr-style files implementing the Romanian color standard for soil type map legends [Dataset]. http://doi.org/10.6084/m9.figshare.12782138.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    figshare
    Authors
    Virgil Vlad; Sorina Dumitru; Mihai Toti; Catalin Simota; Mihail Dumitru
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    In order to use the Romanian color standard for soil type map legends, a dataset of ESRI ArcMap-10 files, consisting of a shapefile set (.dbf, .shp, .shx, .sbn, and .sbx files), four different .lyr files, and three different .style files (https://desktop.arcgis.com/en/arcmap/10.3/map/ : saving-layers-and-layer-packages, about-creating-new-symbols, what-are-symbols-and-styles-), have been prepared. The shapefile set is not a “real” georeferenced layer/coverage; it is designed only to handle all the instants of soil types from the standard legend.

    This legend contains 67 standard items: 63 proper colors (different color hues, each of them having, generally, 2 - 4 degrees of lightness and/or chroma, four shades of grey, and white color), and four hatching patterns on white background. The “color difference DE*ab” between any two legend colors, calculated with the color perceptually-uniform model CIELAB, is greater than 10 units, thus ensuring acceptably-distinguishable colors in the legend. The 67 standard items are assigned to 60 main soils existing in Romania, four main nonsoils, and three special cases of unsurveyed land. The soils are specified in terms of the current Romanian system of soil taxonomy, SRTS-2012+, and of the international system WRB-2014.

    The four different .lyr files presented here are: legend_soilcode_srts_wrb.lyr, legend_soilcode_wrb.lyr, legend_colorcode_srts_wrb.lyr, and legend_colorcode_wrb.lyr. The first two of them are built using as value field the “Soil_codes” field, and as labels (explanation texts) the “Soil_name” field (storing the soil types according to SRTS/WRB classification), respectively, the “WRB” field (the soil type according to WRB classification), while the last two .lyr files are built using as value field the “color_code” field (storing the color codes) and as labels the soil name in SRTS and WRB, respectively, in WRB classification.

    In order to exemplify how the legend is displayed, two .jpg files are also presented: legend_soil_srts_wrb.jpg and legend_color_wrb.jpg. The first displays the legend (symbols and labels) according to the SRTS classification order, the second according to the WRB classification.

    The three different .style files presented here are: soil_symbols.style, wrb_codes.style, and color_codes.style. They use as name the soil acronym in SRTS classification, soil acronym in WRB classification, and, respectively, the color code.

    The presented file set may be used to directly implement the Romanian color standard in digital soil type map legends, or may be adjusted/modified to other specific requirements.

  13. Digital Geomorphic-GIS Map of Perdido Key and Santa Rosa Island (1-foot...

    • catalog.data.gov
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Perdido Key and Santa Rosa Island (1-foot resolution 2006-2007 mapping), Florida (NPS, GRD, GRI, GUIS, PKSR_geomorphology digital map) adapted from a U.S. Geological Survey Open File Report map by Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-perdido-key-and-santa-rosa-island-1-foot-resolution-2006-200
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Perdido Key, Florida, Santa Rosa Island
    Description

    The Digital Geomorphic-GIS Map of Perdido Key and Santa Rosa Island (1-foot resolution 2006-2007 mapping), Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (pksr_geomorphology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (pksr_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (pksr_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (pksr_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (pksr_geomorphology_metadata.txt or pksr_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:20,000 and United States National Map Accuracy Standards features are within (horizontally) 10.2 meters or 33.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  14. M

    LUM 2016 Symbology.lyr

    • data.mfe.govt.nz
    Updated Apr 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ministry for the Environment (2019). LUM 2016 Symbology.lyr [Dataset]. https://data.mfe.govt.nz/document/21906-lum-2016-symbologylyr/
    Explore at:
    Dataset updated
    Apr 15, 2019
    Dataset authored and provided by
    Ministry for the Environment
    Description

    Symbology layer file for LUCAS Land Use Map 2016

  15. d

    Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI,...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky (NPS, GRD, GRI, MACA, RHOD digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Klemic (1963) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-rhoda-quadrangle-kentucky-nps-grd-gri-maca-rhod-digital-ma
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Service
    Area covered
    Kentucky
    Description

    The Digital Geologic-GIS Map of the Rhoda Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (rhod_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (rhod_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (rhod_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (rhod_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (rhod_geology_metadata.txt or rhod_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  16. Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI,...

    • catalog.data.gov
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of San Miguel Island, California (NPS, GRD, GRI, CHIS, SMIS digital map) adapted from a American Association of Petroleum Geologists Field Trip Guidebook map by Weaver and Doerner (1969) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-san-miguel-island-california-nps-grd-gri-chis-smis-digital-map
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    San Miguel Island, California
    Description

    The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  17. H

    Anthromes v1 (ArcInfo binary GRID)

    • dataverse.harvard.edu
    zip
    Updated Dec 4, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Harvard Dataverse (2019). Anthromes v1 (ArcInfo binary GRID) [Dataset]. http://doi.org/10.7910/DVN/LOJYWU
    Explore at:
    zip(1263051)Available download formats
    Dataset updated
    Dec 4, 2019
    Dataset provided by
    Harvard Dataverse
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Time period covered
    2000
    Description

    GIS data for the global map of Anthropogenic Biomes (version 1) originally published in Ellis and Ramankutty (2008). The ZIP file contains an ArcInfo binary GRID and an ArcGIS symbology layer (.lyr) for visualization using GIS software. This dataset is a 5 arc minute thematic grid, prepared as described in WebPanel 1 of Ellis and Ramankutty (2008). The GRID file is composed of files in two directories: \anthromes_v1 \info and an auxiliary file: anthromes_v3.aux The layer (.lyr) file with map symbology is: anthropogenic_biomes.lyr To view these data in ArcGIS, simply unzip to an accessible directory and open the layer file. Please Cite: Ellis, E. C., and N. Ramankutty. 2008. Putting people in the map: anthropogenic biomes of the world. Frontiers in Ecology and the Environment 6:439-447. Download publication here: http://www.ecotope.org/people/ellis/papers/ellis_2008.pdf More information here: http://ecotope.org/anthromes/v1/

  18. L

    NZ Soil Classification ArcGIS layer file

    • lris.scinfo.org.nz
    Updated May 26, 2010
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Landcare Research (2010). NZ Soil Classification ArcGIS layer file [Dataset]. https://lris.scinfo.org.nz/document/9240-nz-soil-classification-arcgis-layer-file/
    Explore at:
    Dataset updated
    May 26, 2010
    Dataset authored and provided by
    Landcare Research
    Description

    Geospatial data about NZ Soil Classification ArcGIS layer file. Export to CAD, GIS, PDF, CSV and access via API.

  19. Global map of tree density

    • figshare.com
    zip
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A. (2023). Global map of tree density [Dataset]. http://doi.org/10.6084/m9.figshare.3179986.v2
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M. N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G. J.; Tikhonova, E.; Borchardt, P.; Li, C. F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Crowther_Nature_Files.zip This description pertains to the original download. Details on revised (newer) versions of the datasets are listed below. When more than one version of a file exists in Figshare, the original DOI will take users to the latest version, though each version technically has its own DOI. -- Two global maps (raster files) of tree density. These maps highlight how the number of trees varies across the world. One map was generated using biome-level models of tree density, and applied at the biome scale. The other map was generated using ecoregion-level models of tree density, and applied at the ecoregion scale. For this reason, transitions between biomes or between ecoregions may be unrealistically harsh, but large-scale estimates are robust (see Crowther et al 2015 and Glick et al 2016). At the outset, this study was intended to generate reliable estimates at broad spatial scales, which inherently comes at the cost of fine-scale precision. For this reason, country-scale (or larger) estimates are generally more robust than individual pixel-level estimates. Additionally, due to data limitations, estimates for Mangroves and Tropical coniferous forest (as identified by WWF and TNC) were generated using models constructed from Topical moist broadleaf forest data and Temperate coniferous forest data, respectively. Because we used ecological analogy, the estimates for these two biomes should be considered less reliable than those of other biomes . These two maps initially appeared in Crowther et al (2015), with the biome map being featured more prominently. Explicit publication of the data is associated with Glick et al (2016). As they are produced, updated versions of these datasets, as well as alternative formats, will be made available under Additional Versions (see below).

    Methods: We collected over 420,000 ground-sources estimates of tree density from around the world. We then constructed linear regression models using vegetative, climatic, topographic, and anthropogenic variables to produce forest tree density estimates for all locations globally. All modeling was done in R. Mapping was done using R and ArcGIS 10.1.

    Viewing Instructions: Load the files into an appropriate geographic information system (GIS). For the original download (ArcGIS geodatabase files), load the files into ArcGIS to view or export the data to other formats. Because these datasets are large and have a unique coordinate system that is not read by many GIS, we suggest loading them into an ArcGIS dataframe whose coordinate system matches that of the data (see File Format). For GeoTiff files (see Additional Versions), load them into any compatible GIS or image management program.

    Comments: The original download provides a zipped folder that contains (1) an ArcGIS File Geodatabase (.gdb) containing one raster file for each of the two global models of tree density – one based on biomes and one based on ecoregions; (2) a layer file (.lyr) for each of the global models with the symbology used for each respective model in Crowther et al (2015); and an ArcGIS Map Document (.mxd) that contains the layers and symbology for each map in the paper. The data is delivered in the Goode homolosine interrupted projected coordinate system that was used to compute biome, ecoregion, and global estimates of the number and density of trees presented in Crowther et al (2015). To obtain maps like those presented in the official publication, raster files will need to be reprojected to the Eckert III projected coordinate system. Details on subsequent revisions and alternative file formats are list below under Additional Versions.----------

    Additional Versions: Crowther_Nature_Files_Revision_01.zip contains tree density predictions for small islands that are not included in the data available in the original dataset. These predictions were not taken into consideration in production of maps and figures presented in Crowther et al (2015), with the exception of the values presented in Supplemental Table 2. The file structure follows that of the original data and includes both biome- and ecoregion-level models.

    Crowther_Nature_Files_Revision_01_WGS84_GeoTiff.zip contains Revision_01 of the biome-level model, but stored in WGS84 and GeoTiff format. This file was produced by reprojecting the original Goode homolosine files to WGS84 using nearest neighbor resampling in ArcMap. All areal computations presented in the manuscript were computed using the Goode homolosine projection. This means that comparable computations made with projected versions of this WGS84 data are likely to differ (substantially at greater latitudes) as a product of the resampling. Included in this .zip file are the primary .tif and its visualization support files.

    References:

    Crowther, T. W., Glick, H. B., Covey, K. R., Bettigole, C., Maynard, D. S., Thomas, S. M., Smith, J. R., Hintler, G., Duguid, M. C., Amatulli, G., Tuanmu, M. N., Jetz, W., Salas, C., Stam, C., Piotto, D., Tavani, R., Green, S., Bruce, G., Williams, S. J., Wiser, S. K., Huber, M. O., Hengeveld, G. M., Nabuurs, G. J., Tikhonova, E., Borchardt, P., Li, C. F., Powrie, L. W., Fischer, M., Hemp, A., Homeier, J., Cho, P., Vibrans, A. C., Umunay, P. M., Piao, S. L., Rowe, C. W., Ashton, M. S., Crane, P. R., and Bradford, M. A. 2015. Mapping tree density at a global scale. Nature, 525(7568): 201-205. DOI: http://doi.org/10.1038/nature14967Glick, H. B., Bettigole, C. B., Maynard, D. S., Covey, K. R., Smith, J. R., and Crowther, T. W. 2016. Spatially explicit models of global tree density. Scientific Data, 3(160069), doi:10.1038/sdata.2016.69.

  20. w

    Granite Springs Valley, Nevada - Well data and Temperature Survey ArcGIS...

    • data.wu.ac.at
    Updated Jul 13, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    HarvestMaster (2018). Granite Springs Valley, Nevada - Well data and Temperature Survey ArcGIS Layer.zip [Dataset]. https://data.wu.ac.at/schema/geothermaldata_org/ODViYmJiNmUtZGM3Mi00ZDkxLWE4YmMtYmNlMzlmNTM2ZDFk
    Explore at:
    Dataset updated
    Jul 13, 2018
    Dataset provided by
    HarvestMaster
    Area covered
    Granite Springs Valley, 46ca604126a6273e0d791b81c90122071ca2a7d3
    Description

    This data is associated with the Nevada Play Fairway project and includes excel files containing raw 2-meter temperature data and corrections. GIS shapefiles and layer files contain ing location and attribute information for the data are included. Well data includes both deep and shallow TG holes, GIS shapefiles and layer files. ArcGIS layer file with location and attribute information

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Maricopa County Enterprise GIS (2022). Maricopa County Streets Layer (lyr) File for FGDB [Dataset]. https://hub.arcgis.com/content/39bc4f87fcdc4ca8ab2e8ee47e1d0724

Maricopa County Streets Layer (lyr) File for FGDB

Explore at:
Dataset updated
Dec 13, 2022
Dataset authored and provided by
Maricopa County Enterprise GIS
Area covered
Maricopa County
Description

This is a layer file (lyr) that can be used with the Maricopa County Streets layer for default symbology. Additionally, this layer file's definition queries and labeling options are configured for a file geodatabase file structure.

Search
Clear search
Close search
Google apps
Main menu