28 datasets found
  1. d

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • catalog.data.gov
    • data.ct.gov
    • +1more
    Updated Aug 12, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.ct.gov (2023). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-7-days-by
    Explore at:
    Dataset updated
    Aug 12, 2023
    Dataset provided by
    data.ct.gov
    Description

    DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

  2. m

    COVID-19 reporting

    • mass.gov
    Updated Dec 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Executive Office of Health and Human Services (2023). COVID-19 reporting [Dataset]. https://www.mass.gov/info-details/covid-19-reporting
    Explore at:
    Dataset updated
    Dec 4, 2023
    Dataset provided by
    Department of Public Health
    Executive Office of Health and Human Services
    Area covered
    Massachusetts
    Description

    The COVID-19 dashboard includes data on city/town COVID-19 activity, confirmed and probable cases of COVID-19, confirmed and probable deaths related to COVID-19, and the demographic characteristics of cases and deaths.

  3. U

    United States SB: MA: COVID Test/Vaccine: Negative COVID Test: Yes

    • ceicdata.com
    Updated Apr 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States SB: MA: COVID Test/Vaccine: Negative COVID Test: Yes [Dataset]. https://www.ceicdata.com/en/united-states/small-business-pulse-survey-by-state-northeast-region/sb-ma-covid-testvaccine-negative-covid-test-yes
    Explore at:
    Dataset updated
    Apr 23, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 27, 2021 - Apr 11, 2022
    Area covered
    United States
    Description

    United States SB: MA: COVID Test/Vaccine: Negative COVID Test: Yes data was reported at 5.900 % in 11 Apr 2022. This records a decrease from the previous number of 6.600 % for 04 Apr 2022. United States SB: MA: COVID Test/Vaccine: Negative COVID Test: Yes data is updated weekly, averaging 8.750 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 18.400 % in 03 Jan 2022 and a record low of 3.500 % in 14 Mar 2022. United States SB: MA: COVID Test/Vaccine: Negative COVID Test: Yes data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S049: Small Business Pulse Survey: by State: Northeast Region: Weekly, Beg Monday (Discontinued).

  4. f

    Data_Sheet_1_Addressing COVID-19 Testing Inequities Among Underserved...

    • frontiersin.figshare.com
    pdf
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rebekka M. Lee; Veronica L. Handunge; Samantha L. Augenbraun; Huy Nguyen; Cristina Huebner Torres; Alyssa Ruiz; Karen M. Emmons; for the RADx-MA Research Partnership (2023). Data_Sheet_1_Addressing COVID-19 Testing Inequities Among Underserved Populations in Massachusetts: A Rapid Qualitative Exploration of Health Center Staff, Partner, and Resident Perceptions.PDF [Dataset]. http://doi.org/10.3389/fpubh.2022.838544.s001
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Frontiers
    Authors
    Rebekka M. Lee; Veronica L. Handunge; Samantha L. Augenbraun; Huy Nguyen; Cristina Huebner Torres; Alyssa Ruiz; Karen M. Emmons; for the RADx-MA Research Partnership
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Massachusetts
    Description

    IntroductionAccess to COVID-19 testing has been inequitable and misaligned with community need. However, community health centers have played a critical role in addressing the COVID-19 testing needs of historically disadvantaged communities. The aim of this paper is to explore the perceptions of COVID-19 testing barriers in six Massachusetts communities that are predominantly low income and describe how these findings were used to build tailored clinical-community strategies to addressing testing inequities.MethodsBetween November 2020 and February 2021, we conducted 84 semi-structured qualitative interviews with 107 community health center staff, community partners, and residents. Resident interviews were conducted in English, Spanish, Vietnamese, and Arabic. We used a 2-phase framework analysis to analyze the data, including deductive coding to facilitate rapid analysis for action and an in-depth thematic analysis applying the Social Ecological Model.ResultsThrough the rapid needs assessment, we developed cross-site suggestions to improve testing implementation and communications, as well as community-specific recommendations (e.g., locations for mobile testing sites and local communication channels). Upstream barriers identified in the thematic analysis included accessibility of state-run testing sites, weak social safety nets, and lack of testing supplies and staffing that contributed to long wait times. These factors hindered residents' abilities to get tested, which was further exacerbated by individual fears surrounding the testing process and limited knowledge on testing availability.DiscussionOur rapid, qualitative approach created the foundation for implementing strategies that reached underserved populations at the peak of the COVID-19 pandemic in winter 2021. We explored perceptions of testing barriers and created actionable summaries within 1–2 months of data collection. Partnering community health centers in Massachusetts were able to use these data to respond to the local needs of each community. This study underscores the substantial impact of upstream, structural disparities on the individual experience of COVID-19 and demonstrates the utility of shifting from a typical years' long research translation process to a rapid approach of using data for action.

  5. O

    COVID-19 case rate per 100,000 population and percent test positivity in the...

    • data.ct.gov
    • catalog.data.gov
    application/rdfxml +5
    Updated Jun 23, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of Public Health (2022). COVID-19 case rate per 100,000 population and percent test positivity in the last 14 days by town - ARCHIVE [Dataset]. https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2
    Explore at:
    application/rssxml, xml, csv, json, tsv, application/rdfxmlAvailable download formats
    Dataset updated
    Jun 23, 2022
    Dataset authored and provided by
    Department of Public Health
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Description

    Note: DPH is updating and streamlining the COVID-19 cases, deaths, and testing data. As of 6/27/2022, the data will be published in four tables instead of twelve.

    The COVID-19 Cases, Deaths, and Tests by Day dataset contains cases and test data by date of sample submission. The death data are by date of death. This dataset is updated daily and contains information back to the beginning of the pandemic. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Cases-Deaths-and-Tests-by-Day/g9vi-2ahj.

    The COVID-19 State Metrics dataset contains over 93 columns of data. This dataset is updated daily and currently contains information starting June 21, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-State-Level-Data/qmgw-5kp6 .

    The COVID-19 County Metrics dataset contains 25 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-County-Level-Data/ujiq-dy22 .

    The COVID-19 Town Metrics dataset contains 16 columns of data. This dataset is updated daily and currently contains information starting June 16, 2022 to the present. The data can be found at https://data.ct.gov/Health-and-Human-Services/COVID-19-Town-Level-Data/icxw-cada . To protect confidentiality, if a town has fewer than 5 cases or positive NAAT tests over the past 7 days, those data will be suppressed.

    This dataset includes a count and rate per 100,000 population for COVID-19 cases, a count of COVID-19 molecular diagnostic tests, and a percent positivity rate for tests among people living in community settings for the previous two-week period. Dates are based on date of specimen collection (cases and positivity).

    A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case.

    Percent positivity is calculated as the number of positive tests among community residents conducted during the 14 days divided by the total number of positive and negative tests among community residents during the same period. If someone was tested more than once during that 14 day period, then those multiple test results (regardless of whether they were positive or negative) are included in the calculation.

    These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities.

    These data are updated weekly and reflect the previous two full Sunday-Saturday (MMWR) weeks (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf).

    DPH note about change from 7-day to 14-day metrics: Prior to 10/15/2020, these metrics were calculated using a 7-day average rather than a 14-day average. The 7-day metrics are no longer being updated as of 10/15/2020 but the archived dataset can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/s22x-83rd

    As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well.

    With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county).

    Additional notes: As of 11/5/2020, CT DPH has added antigen testing for SARS-CoV-2 to reported test counts in this dataset. The tests included in this dataset include both molecular and antigen datasets. Molecular tests reported include polymerase chain reaction (PCR) and nucleic acid amplicfication (NAAT) tests.

    The population data used to calculate rates is based on the CT DPH population statistics for 2019, which is available online here: https://portal.ct.gov/DPH/Health-Information-Systems--Reporting/Population/Population-Statistics. Prior to 5/10/2021, the population estimates from 2018 were used.

    Data suppression is applied when the rate is <5 cases per 100,000 or if there are <5 cases within the town. Information on why data suppression rules are applied can be found online here: https://www.cdc.gov/cancer/uscs/technical_notes/stat_methods/suppression.htm

  6. O

    Municipal Wastewater COVID19 Sampling Data 10/1/2020-6/30/2022

    • data.cambridgema.gov
    application/rdfxml +5
    Updated Jul 7, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cambridge Public Health Department (2022). Municipal Wastewater COVID19 Sampling Data 10/1/2020-6/30/2022 [Dataset]. https://data.cambridgema.gov/widgets/ayt4-g2ye?mobile_redirect=true
    Explore at:
    csv, xml, application/rssxml, tsv, application/rdfxml, jsonAvailable download formats
    Dataset updated
    Jul 7, 2022
    Dataset authored and provided by
    Cambridge Public Health Department
    License

    ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
    License information was derived automatically

    Description

    This dataset is no longer being updated as of 6/30/2022. It is being retained on the Open Data Portal for its potential historical interest.

    In November 2020, the City of Cambridge began collecting and analyzing COVID-19 data from municipal wastewater, which can serve as an early indicator of increased COVID-19 infections in the city. The Cambridge Public Health Department and Cambridge Department of Public Works are using technology developed by Biobot, a Cambridge based company, and partnering with the Massachusetts Water Resources Authority (MWRA). This Cambridge wastewater surveillance initiative is funded through a $175,000 appropriation from the Cambridge City Council.

    This dataset indicates the presence of the COVID-19 virus (measured as viral RNA particles from the novel coronavirus per ml) in municipal wastewater. The Cambridge site data here were collected as a 24-hour composite sample, which is taken weekly. The MWRA site data ere were collected as a 24-hour composite sample, which is taken daily. MWRA and Cambridge data are listed here in a single table.

    An interactive graph of this data is available here: https://cityofcambridge.shinyapps.io/COVID19/?tab=wastewater

    All areas within the City of Cambridge are captured across four separate catchment areas (or sewersheds) as indicated on the map viewable here: https://cityofcambridge.shinyapps.io/COVID19/_w_484790f7/BioBot_Sites.png. The North and West Cambridge sample also includes nearly all of Belmont and very small areas of Arlington and Somerville (light yellow). The remaining collection sites are entirely -- or almost entirely -- drawn from Cambridge households and workplaces.

    Data are corrected for wastewater flow rate, which adjusts for population in general. Data listed are expected to reflect the burden of COVID-19 infections within each of the four sewersheds. A lag of approximately 4-7 days will occur before new transmissions captured in wastewater data would result in a positive PCR test for COVID-19, the most common testing method used. While this wastewater surveillance tool can provide an early indication of major changes in transmission within the community, it remains an emerging technology. In assessing community transmission, wastewater surveillance data should only be considered in conjunction with other clinical measures, such as current infection rates and test positivity.

    Each location is selected because it reflects input from a distinct catchment area (or sewershed) as identified on the color-coded map. Viral data collected from small catchment areas like these four Cambridge sites are more variable than data collected from central collection points (e.g., the MWRA facility on Deer Island) where wastewater from dozens of communities are joined and mixed. Data from each catchment area will be impacted by daily activity among individuals living in that area (e.g., working from home vs. traveling to work) and by daytime activities that are not from residences (businesses, schools, etc.) As such, the Regional MWRA data provides a more stable measure of regional viral counts. COVID wastewater data for Boston North and Boston South regions is available at https://www.mwra.com/biobot/biobotdata.htm

  7. f

    Performance of our best performing predictions as classified into tiers.

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grace Guan; Yotam Dery; Matan Yechezkel; Irad Ben-Gal; Dan Yamin; Margaret L. Brandeau (2023). Performance of our best performing predictions as classified into tiers. [Dataset]. http://doi.org/10.1371/journal.pone.0253865.t004
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Grace Guan; Yotam Dery; Matan Yechezkel; Irad Ben-Gal; Dan Yamin; Margaret L. Brandeau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The performance of our categorization scheme on new cases and the test positivity rate is reported as magnitude accuracy (MA).

  8. O

    COVID-19 Case Type Breakdown 5/11/2023 (Historical)

    • data.cambridgema.gov
    application/rdfxml +5
    Updated May 11, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Cambridge Department of Public Health (2023). COVID-19 Case Type Breakdown 5/11/2023 (Historical) [Dataset]. https://data.cambridgema.gov/Public-Health/COVID-19-Case-Type-Breakdown-5-11-2023-Historical-/ikju-95st
    Explore at:
    csv, application/rssxml, application/rdfxml, json, xml, tsvAvailable download formats
    Dataset updated
    May 11, 2023
    Dataset authored and provided by
    Cambridge Department of Public Health
    Description

    This dataset is no longer being updated as of 5/11/2023. It is being retained on the Open Data Portal for its potential historical interest.

    This table reports case classification and status data.

    The "test mode" rows show confirmed and probable case counts for all Cambridge residents who have tested positive for COVID-19 or have been clinically diagnosed with the disease to date. The numbers represented in these rows reflect individual people (cases), not tests performed. If someone is clinically diagnosed and later gets an antibody test, for example, they will be removed from the “clinical diagnosis” category and added to the “antibody positive” category. Case classification is based on guidance from the Massachusetts Department of Public Health and is as follows:

    Confirmed Case: A person with a positive viral (PCR) test for COVID-19. This test is also known as a molecular test.

    Probable Case: A person with a positive antigen test. This test is also known as a rapid test. A person who is a known contact of a confirmed case and has received a clinical diagnosis based on their symptoms. People in this category have not received a viral or antibody test. Whenever possible, lab results from a viral (PCR) test are used to confirm a clinical diagnosis, and if that is not feasible, antibody testing can be used.

    Suspect Case: A person with a positive antibody test. This test is also known as a serology test.

    The "case status" rows show current outcomes for all Cambridge residents who are classified as confirmed, probable, or suspect COVID-19 cases. Outcomes include:

    Recovered Case: The Cambridge Public Health Department determines if a Cambridge COVID-19 case has recovered based on the Center for Disease Control and Prevention’s criteria for ending home isolation: https://www.cdc.gov/coronavirus/2019-ncov/hcp/disposition-in-home-patients.html. Staff from the Cambridge Public Health Department (CPHD) or the state’s Community Tracing Collaborative (CTC) follow up with all reported COVID-19 cases multiple times throughout their illness. It is through these conversations that CPHD or CTC staff determine when a Cambridge resident infected with COVID-19 has met the CDC criteria for ending isolation, which connotes recovery. While many people with mild COVID-19 illness will meet the CDC criteria for ending isolation (i.e., recovery) in under two weeks, people who survive severe illness might not meet the criteria for six weeks or more.

    Active Case: This category reflects Cambridge COVID-19 cases who are currently infected. Note: There may be a delay in the time between a person being released from isolation (recovered) and when their recovery is reported.

    Death: This category reflects total deaths among Cambridge COVID 19 cases.

    Unknown Outcome: This category reflects Cambridge COVID-19 cases who public health staff have been unable to reach by phone or letter, or who have stopped responding to follow up from public health staff.

  9. U

    United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: No

    • ceicdata.com
    Updated Mar 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2023). United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: No [Dataset]. https://www.ceicdata.com/en/united-states/small-business-pulse-survey-by-state-northeast-region/sb-ma-covid-testvaccine-proof-of-covid-vaccination-no
    Explore at:
    Dataset updated
    Mar 15, 2023
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 27, 2021 - Apr 11, 2022
    Area covered
    United States
    Description

    United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: No data was reported at 77.600 % in 11 Apr 2022. This records an increase from the previous number of 73.900 % for 04 Apr 2022. United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: No data is updated weekly, averaging 72.700 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 77.600 % in 11 Apr 2022 and a record low of 65.500 % in 03 Jan 2022. United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: No data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S049: Small Business Pulse Survey: by State: Northeast Region: Weekly, Beg Monday (Discontinued).

  10. Performance of one-step-ahead linear regression in predicting new cases and...

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grace Guan; Yotam Dery; Matan Yechezkel; Irad Ben-Gal; Dan Yamin; Margaret L. Brandeau (2023). Performance of one-step-ahead linear regression in predicting new cases and test positivity rate, averaged over the next 7 days, reported as root mean squared error (RMSE). [Dataset]. http://doi.org/10.1371/journal.pone.0253865.t003
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOShttp://plos.org/
    Authors
    Grace Guan; Yotam Dery; Matan Yechezkel; Irad Ben-Gal; Dan Yamin; Margaret L. Brandeau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Performance of one-step-ahead linear regression in predicting new cases and test positivity rate, averaged over the next 7 days, reported as root mean squared error (RMSE).

  11. United States COVID-19 Community Levels by County

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Nov 2, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CDC COVID-19 Response (2023). United States COVID-19 Community Levels by County [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/United-States-COVID-19-Community-Levels-by-County/3nnm-4jni
    Explore at:
    application/rdfxml, application/rssxml, csv, tsv, xml, jsonAvailable download formats
    Dataset updated
    Nov 2, 2023
    Dataset provided by
    Centers for Disease Control and Preventionhttp://www.cdc.gov/
    Authors
    CDC COVID-19 Response
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Area covered
    United States
    Description

    Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.

    This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.

    The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.

    Using these data, the COVID-19 community level was classified as low, medium, or high.

    COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.

    For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.

    Archived Data Notes:

    This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.

    March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.

    March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.

    March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.

    March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.

    March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).

    March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.

    April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.

    April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.

    May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.

    May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.

    June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.

    June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.

    July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.

    July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.

    July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.

    July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.

    July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.

    August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.

    August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.

    August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.

    August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.

    August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.

    August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.

    September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.

    September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,

  12. U

    United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: N/A

    • ceicdata.com
    Updated Apr 23, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CEICdata.com (2022). United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: N/A [Dataset]. https://www.ceicdata.com/en/united-states/small-business-pulse-survey-by-state-northeast-region/sb-ma-covid-testvaccine-proof-of-covid-vaccination-na
    Explore at:
    Dataset updated
    Apr 23, 2022
    Dataset provided by
    CEICdata.com
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 27, 2021 - Apr 11, 2022
    Area covered
    United States
    Description

    United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: N/A data was reported at 13.200 % in 11 Apr 2022. This records a decrease from the previous number of 14.100 % for 04 Apr 2022. United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: N/A data is updated weekly, averaging 14.050 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 19.100 % in 14 Mar 2022 and a record low of 9.000 % in 22 Nov 2021. United States SB: MA: COVID Test/Vaccine: Proof of COVID Vaccination: N/A data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S049: Small Business Pulse Survey: by State: Northeast Region: Weekly, Beg Monday (Discontinued).

  13. Preliminary 2024-2025 U.S. COVID-19 Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jul 18, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. COVID-19 Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-COVID-19-Burden-Estimate/ahrf-yqdt
    Explore at:
    csv, application/rdfxml, json, application/rssxml, xml, tsvAvailable download formats
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. COVID-19 disease burden for the 2024-2025 period, including illnesses, outpatient visits, hospitalizations, and deaths. The weekly COVID-19-associated burden estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data come from the Coronavirus Disease 2019 (COVID-19)-Associated Hospitalization Surveillance Network (COVID-NET), a surveillance platform that captures data from hospitals that serve about 10% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated burden that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  14. Preliminary Estimates of Cumulative COVID-19-associated Hospitalizations by...

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated Jul 18, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD) (2025). Preliminary Estimates of Cumulative COVID-19-associated Hospitalizations by Week for 2024-2025 [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-Estimates-of-Cumulative-COVID-19-assoc/xnjn-rdmd
    Explore at:
    tsv, json, application/rdfxml, application/rssxml, csv, xmlAvailable download formats
    Dataset updated
    Jul 18, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD)
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary weekly estimates of cumulative U.S. COVID-19-associated hospitalizations for the 2024-2025 period. The weekly cumulatve COVID-19 –associated hospitalization estimates are preliminary, and use reported weekly hospitalizations among laboratory-confirmed severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. The data are updated week-by-week as new COVID-19 hospitalizations are reported to CDC from the COVID-NET system and include both new admissions that occurred during the reporting week, as well as those admitted in previous weeks that may not have been included in earlier reporting. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of COVID-19 -associated hospitalizations that have occurred since October 1, 2024. For details, please refer to the publication [7].

    Note: Data are preliminary and subject to change as more data become available. Rates for recent COVID-19-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

  15. f

    Descriptive characteristics of the districts in our dataset.

    • plos.figshare.com
    xls
    Updated Jun 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Grace Guan; Yotam Dery; Matan Yechezkel; Irad Ben-Gal; Dan Yamin; Margaret L. Brandeau (2023). Descriptive characteristics of the districts in our dataset. [Dataset]. http://doi.org/10.1371/journal.pone.0253865.t002
    Explore at:
    xlsAvailable download formats
    Dataset updated
    Jun 10, 2023
    Dataset provided by
    PLOS ONE
    Authors
    Grace Guan; Yotam Dery; Matan Yechezkel; Irad Ben-Gal; Dan Yamin; Margaret L. Brandeau
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Descriptive characteristics of the districts in our dataset.

  16. w

    Worcester County COVID Serology Data - West Boylston

    • opendata.worcesterma.gov
    Updated Feb 27, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Worcester, MA (2023). Worcester County COVID Serology Data - West Boylston [Dataset]. https://opendata.worcesterma.gov/maps/worcester-county-covid-serology-data-west-boylston
    Explore at:
    Dataset updated
    Feb 27, 2023
    Dataset authored and provided by
    City of Worcester, MA
    Area covered
    Worcester County, West Boylston
    Description

    The participating towns in this effort included Grafton, Holden, Leicester, Millbury, Shrewsbury, West Boylston, and the City of Worcester. This file is no longer updated and is categorized as a legacy dataset.Serology vs Antibody testing: Serology testing looks for the presence of COVID-19 antibodies in the bloodstream which means the person has been exposed to the virus about 2 weeks or more before the test.Date fields: Date fields are displayed in the table with data type string. The string data type is typically used to represent text. All date information is accurate but will sort as text in the online table. Use the download feature if you would like to sort by date.

  17. Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States

    • zenodo.org
    • data.niaid.nih.gov
    Updated Sep 17, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Peter K. Rogan; Peter K. Rogan (2020). Geostatistical Analysis of SARS-CoV-2 Positive Cases in the United States [Dataset]. http://doi.org/10.5281/zenodo.4032708
    Explore at:
    Dataset updated
    Sep 17, 2020
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Peter K. Rogan; Peter K. Rogan
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    Geostatistics analyzes and predicts the values associated with spatial or spatial-temporal phenomena. It incorporates the spatial (and in some cases temporal) coordinates of the data within the analyses. It is a practical means of describing spatial patterns and interpolating values for locations where samples were not taken (and measures the uncertainty of those values, which is critical to informed decision making). This archive contains results of geostatistical analysis of COVID-19 case counts for all available US counties. Test results were obtained with ArcGIS Pro (ESRI). Sources are state health departments, which are scraped and aggregated by the Johns Hopkins Coronavirus Resource Center and then pre-processed by MappingSupport.com.

    This update of the Zenodo dataset (version 6) consists of three compressed archives containing geostatistical analyses of SARS-CoV-2 testing data. This dataset utilizes many of the geostatistical techniques used in previous versions of this Zenodo archive, but has been significantly expanded to include analyses of up-to-date U.S. COVID-19 case data (from March 24th to September 8th, 2020):

    Archive #1: “1.Geostat. Space-Time analysis of SARS-CoV-2 in the US (Mar24-Sept6).zip” – results of a geostatistical analysis of COVID-19 cases incorporating spatially-weighted hotspots that are conserved over one-week timespans. Results are reported starting from when U.S. COVID-19 case data first became available (March 24th, 2020) for 25 consecutive 1-week intervals (March 24th through to September 6th, 2020). Hotspots, where found, are reported in each individual state, rather than the entire continental United States.

    Archive #2: "2.Geostat. Spatial analysis of SARS-CoV-2 in the US (Mar24-Sept8).zip" – the results from geostatistical spatial analyses only of corrected COVID-19 case data for the continental United States, spanning the period from March 24th through September 8th, 2020. The geostatistical techniques utilized in this archive includes ‘Hot Spot’ analysis and ‘Cluster and Outlier’ analysis.

    Archive #3: "3.Kriging and Densification of SARS-CoV-2 in LA and MA.zip" – this dataset provides preliminary kriging and densification analysis of COVID-19 case data for certain dates within the U.S. states of Louisiana and Massachusetts.

    These archives consist of map files (as both static images and as animations) and data files (including text files which contain the underlying data of said map files [where applicable]) which were generated when performing the following Geostatistical analyses: Hot Spot analysis (Getis-Ord Gi*) [‘Archive #1’: consecutive weeklong Space-Time Hot Spot analysis; ‘Archive #2’: daily Hot Spot Analysis], Cluster and Outlier analysis (Anselin Local Moran's I) [‘Archive #2’], Spatial Autocorrelation (Global Moran's I) [‘Archive #2’], and point-to-point comparisons with Kriging and Densification analysis [‘Archive #3’].

    The Word document provided ("Description-of-Archive.Updated-Geostatistical-Analysis-of-SARS-CoV-2 (version 6).docx") details the contents of each file and folder within these three archives and gives general interpretations of these results.

  18. Data for: Evaluation of antibody kinetics and durability in health...

    • zenodo.org
    • data.niaid.nih.gov
    • +1more
    bin
    Updated Apr 8, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hangjie Zhang; Hangjie Zhang; Qianhui Hua; Nani Nani Xu; Xinpei Zhang; Bo Chen; Xijun Ma; Jie Hu; Zhongbing Chen; Pengfei Yu; Huijun Lei; Shenyu Wang; Linling Ding; Jian Fu; Yuting Liao; Juan Yang; Jianmin Jiang; Huakun Lv; Huakun Lv; Qianhui Hua; Nani Nani Xu; Xinpei Zhang; Bo Chen; Xijun Ma; Jie Hu; Zhongbing Chen; Pengfei Yu; Huijun Lei; Shenyu Wang; Linling Ding; Jian Fu; Yuting Liao; Juan Yang; Jianmin Jiang (2023). Data for: Evaluation of antibody kinetics and durability in health individuals vaccinated with inactivated COVID-19 vaccine (CoronaVac): a cross-sectional and cohort study in Zhejiang, China [Dataset]. http://doi.org/10.5061/dryad.ghx3ffbsw
    Explore at:
    binAvailable download formats
    Dataset updated
    Apr 8, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Hangjie Zhang; Hangjie Zhang; Qianhui Hua; Nani Nani Xu; Xinpei Zhang; Bo Chen; Xijun Ma; Jie Hu; Zhongbing Chen; Pengfei Yu; Huijun Lei; Shenyu Wang; Linling Ding; Jian Fu; Yuting Liao; Juan Yang; Jianmin Jiang; Huakun Lv; Huakun Lv; Qianhui Hua; Nani Nani Xu; Xinpei Zhang; Bo Chen; Xijun Ma; Jie Hu; Zhongbing Chen; Pengfei Yu; Huijun Lei; Shenyu Wang; Linling Ding; Jian Fu; Yuting Liao; Juan Yang; Jianmin Jiang
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Area covered
    Zhejiang
    Description

    Background: Although inactivated COVID-19 vaccines are proven to be safe and effective in the general population, the dynamic response and duration of antibodies after vaccination in the real world should be further assessed.

    Methods: We enrolled 1067 volunteers who had been vaccinated with one or two doses of CoronaVac in Zhejiang Province, China. Another 90 healthy adults without previous vaccinations were recruited and vaccinated with three doses of CoronaVac, 28 days and 6 months apart. Serum samples were collected from multiple timepoints and analyzed for specific IgM/IgG and neutralizing antibodies (NAbs) for immunogenicity evaluation. Antibody responses to the Delta and Omicron variants were measured by pseudovirus-based neutralization tests.

    Results: Our results revealed that binding antibody IgM peaked 14–28 days after one dose of CoronaVac, while IgG and NAbs peaked approximately 1 month after the second dose and then declined slightly over time. Antibody responses had waned by month 6 after vaccination and became undetectable in the majority of individuals at 12 months. Levels of NAbs to live SARS-CoV-2 were correlated with anti-SARS-CoV-2 IgG and NAbs to pseudovirus, but not IgM. Homologous booster around 6 months after primary vaccination activated anamnestic immunity and raised NAbs 25.5-fold. The neutralized fraction subsequently rose to 36.0% for Delta (p=0.03) and 4.3% for Omicron (p=0.004), and the response rate for Omicron rose from 7.9% (7/89) to 17.8% (16/90).

    Conclusions: Two doses of CoronaVac vaccine resulted in limited protection over a short duration. The inactivated vaccine booster can reverse the decrease of antibody levels to prime strain, but it does not elicit potent neutralization against Omicron; therefore, the optimization of booster procedures is vital.

  19. I

    Data from: Trends in Severe Acute Respiratory Syndrome Coronavirus 2...

    • data.niaid.nih.gov
    url
    Updated Mar 27, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Trends in Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Seroprevalence in Massachusetts Estimated from Newborn Screening Specimens [Dataset]. http://doi.org/10.21430/M3FM3P67HT
    Explore at:
    urlAvailable download formats
    Dataset updated
    Mar 27, 2025
    License

    https://www.immport.org/agreementhttps://www.immport.org/agreement

    Description

    Background: Estimating the cumulative incidence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for setting public health policies. We leveraged deidentified Massachusetts newborn screening specimens as an accessible, retrospective source of maternal antibodies for estimating statewide seroprevalence in a nontest-seeking population. Methods: We analyzed 72 117 newborn specimens collected from November 2019 through December 2020, representing 337 towns and cities across Massachusetts. Seroprevalence was estimated for the Massachusetts population after correcting for imperfect test specificity and nonrepresentative sampling using Bayesian multilevel regression and poststratification. Results: Statewide seroprevalence was estimated to be 0.03% (90% credible interval [CI], 0.00-0.11) in November 2019 and rose to 1.47% (90% CI: 1.00-2.13) by May 2020, following sustained SARS-CoV-2 transmission in the spring. Seroprevalence plateaued from May onward, reaching 2.15% (90% CI: 1.56-2.98) in December 2020. Seroprevalence varied substantially by community and was particularly associated with community percent non-Hispanic Black (β = .024; 90% CI: 0.004-0.044); i.e., a 10% increase in community percent non-Hispanic Black was associated with 27% higher odds of seropositivity. Seroprevalence estimates had good concordance with reported case counts and wastewater surveillance for most of 2020, prior to the resurgence of transmission in winter. Conclusions: Cumulative incidence of SARS-CoV-2 protective antibody in Massachusetts was low as of December 2020, indicating that a substantial fraction of the population was still susceptible. Maternal seroprevalence data from newborn screening can inform longitudinal trends and identify cities and towns at highest risk, particularly in settings where widespread diagnostic testing is unavailable.

  20. Preliminary 2024-2025 U.S. RSV Burden Estimates

    • data.cdc.gov
    • data.virginia.gov
    • +1more
    application/rdfxml +5
    Updated May 30, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD). (2025). Preliminary 2024-2025 U.S. RSV Burden Estimates [Dataset]. https://data.cdc.gov/Public-Health-Surveillance/Preliminary-2024-2025-U-S-RSV-Burden-Estimates/sumd-iwm8
    Explore at:
    csv, tsv, application/rdfxml, json, application/rssxml, xmlAvailable download formats
    Dataset updated
    May 30, 2025
    Dataset provided by
    National Center for Immunization and Respiratory Diseases
    Authors
    Coronavirus and Other Respiratory Viruses Division (CORVD), National Center for Immunization and Respiratory Diseases (NCIRD).
    License

    https://www.usa.gov/government-workshttps://www.usa.gov/government-works

    Description

    This dataset represents preliminary estimates of cumulative U.S. RSV –associated disease burden estimates for the 2024-2025 season, including outpatient visits, hospitalizations, and deaths. Real-time estimates are preliminary and based on continuously collected surveillance data from patients hospitalized with laboratory-confirmed respiratory syncytial virus (RSV) infections. The data come from the Respiratory Syncytial Virus Hospitalization Surveillance Network (RSV-NET), a surveillance platform that captures data from hospitals that serve about 8% of the U.S. population. Each week CDC estimates a range (i.e., lower estimate and an upper estimate) of RSV-associated disease burden estimates that have occurred since October 1, 2024.

    Note: Data are preliminary and subject to change as more data become available. Rates for recent RSV-associated hospital admissions are subject to reporting delays; as new data are received each week, previous rates are updated accordingly.

    Note: Preliminary burden estimates are not inclusive of data from all RSV-NET sites. Due to model limitations, sites with small sample sizes can impact estimates in unpredictable ways and are excluded for the benefit of model stability. CDC is working to address model limitations and include data from all sites in final burden estimates.

    References

    1. Reed C, Chaves SS, Daily Kirley P, et al. Estimating influenza disease burden from population-based surveillance data in the United States. PLoS One. 2015;10(3):e0118369. https://doi.org/10.1371/journal.pone.0118369 
    2. Rolfes, MA, Foppa, IM, Garg, S, et al. Annual estimates of the burden of seasonal influenza in the United States: A tool for strengthening influenza surveillance and preparedness. Influenza Other Respi Viruses. 2018; 12: 132– 137. https://doi.org/10.1111/irv.12486
    3. Tokars JI, Rolfes MA, Foppa IM, Reed C. An evaluation and update of methods for estimating the number of influenza cases averted by vaccination in the United States. Vaccine. 2018;36(48):7331-7337. doi:10.1016/j.vaccine.2018.10.026 
    4. Collier SA, Deng L, Adam EA, Benedict KM, Beshearse EM, Blackstock AJ, Bruce BB, Derado G, Edens C, Fullerton KE, Gargano JW, Geissler AL, Hall AJ, Havelaar AH, Hill VR, Hoekstra RM, Reddy SC, Scallan E, Stokes EK, Yoder JS, Beach MJ. Estimate of Burden and Direct Healthcare Cost of Infectious Waterborne Disease in the United States. Emerg Infect Dis. 2021 Jan;27(1):140-149. doi: 10.3201/eid2701.190676. PMID: 33350905; PMCID: PMC7774540.
    5. Reed C, Kim IK, Singleton JA,  et al. Estimated influenza illnesses and hospitalizations averted by vaccination–United States, 2013-14 influenza season. MMWR Morb Mortal Wkly Rep. 2014 Dec 12;63(49):1151-4. https://www.cdc.gov/mmwr/preview/mmwrhtml/mm6349a2.htm 
    6. Reed C, Angulo FJ, Swerdlow DL, et al. Estimates of the Prevalence of Pandemic (H1N1) 2009, United States, April–July 2009. Emerg Infect Dis. 2009;15(12):2004-2007. https://dx.doi.org/10.3201/eid1512.091413
    7. Devine O, Pham H, Gunnels B, et al. Extrapolating Sentinel Surveillance Information to Estimate National COVID-19 Hospital Admission Rates: A Bayesian Modeling Approach. Influenza and Other Respiratory Viruses. https://onlinelibrary.wiley.com/doi/10.1111/irv.70026. Volume18, Issue10. October 2024.
    8. https://www.cdc.gov/covid/php/covid-net/index.html">COVID-NET | COVID-19 | CDC 
    9. https://www.cdc.gov/covid/hcp/clinical-care/systematic-review-process.html 
    10. https://academic.oup.com/pnasnexus/article/1/3/pgac079/6604394?login=false">Excess natural-cause deaths in California by cause and setting: March 2020 through February 2021 | PNAS Nexus | Oxford Academic (oup.com)
    11. Kruschke, J. K. 2011. Doing Bayesian data analysis: a tutorial with R and BUGS. Elsevier, Amsterdam, Section 3.3.5.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.ct.gov (2023). COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE [Dataset]. https://catalog.data.gov/dataset/covid-19-case-rate-per-100000-population-and-percent-test-positivity-in-the-last-7-days-by

COVID-19 case rate per 100,000 population and percent test positivity in the last 7 days by town - ARCHIVE

Explore at:
Dataset updated
Aug 12, 2023
Dataset provided by
data.ct.gov
Description

DPH note about change from 7-day to 14-day metrics: As of 10/15/2020, this dataset is no longer being updated. Starting on 10/15/2020, these metrics will be calculated using a 14-day average rather than a 7-day average. The new dataset using 14-day averages can be accessed here: https://data.ct.gov/Health-and-Human-Services/COVID-19-case-rate-per-100-000-population-and-perc/hree-nys2 As you know, we are learning more about COVID-19 all the time, including the best ways to measure COVID-19 activity in our communities. CT DPH has decided to shift to 14-day rates because these are more stable, particularly at the town level, as compared to 7-day rates. In addition, since the school indicators were initially published by DPH last summer, CDC has recommended 14-day rates and other states (e.g., Massachusetts) have started to implement 14-day metrics for monitoring COVID transmission as well. With respect to geography, we also have learned that many people are looking at the town-level data to inform decision making, despite emphasis on the county-level metrics in the published addenda. This is understandable as there has been variation within counties in COVID-19 activity (for example, rates that are higher in one town than in most other towns in the county). This dataset includes a weekly count and weekly rate per 100,000 population for COVID-19 cases, a weekly count of COVID-19 PCR diagnostic tests, and a weekly percent positivity rate for tests among people living in community settings. Dates are based on date of specimen collection (cases and positivity). A person is considered a new case only upon their first COVID-19 testing result because a case is defined as an instance or bout of illness. If they are tested again subsequently and are still positive, it still counts toward the test positivity metric but they are not considered another case. These case and test counts do not include cases or tests among people residing in congregate settings, such as nursing homes, assisted living facilities, or correctional facilities. These data are updated weekly; the previous week period for each dataset is the previous Sunday-Saturday, known as an MMWR week (https://wwwn.cdc.gov/nndss/document/MMWR_week_overview.pdf). The date listed is the date the dataset was last updated and corresponds to a reporting period of the previous MMWR week. For instance, the data for 8/20/2020 corresponds to a reporting period of 8/9/2020-8/15/2020. Notes: 9/25/2020: Data for Mansfield and Middletown for the week of Sept 13-19 were unavailable at the time of reporting due to delays in lab reporting.

Search
Clear search
Close search
Google apps
Main menu