https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees: Government: State Government in Massachusetts (SMS25000009092000001) from Jan 1990 to Dec 2024 about state govt, MA, government, employment, and USA.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2020 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some States and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. Congressional districts are the 435 areas from which people are elected to the U.S. House of Representatives. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 118th Congress is seated from January 2023 through December 2024. In Connecticut, Illinois, and New Hampshire, the Redistricting Data Program (RDP) participant did not define the CDs to cover all of the state or state equivalent area. In these areas with no CDs defined, the code "ZZ" has been assigned, which is treated as a single CD for purposes of data presentation. The TIGER/Line shapefiles for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts reflect information provided to the Census Bureau by the states by August 31, 2022.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees: Information in Massachusetts (MAINFO) from Jan 1990 to Jan 2025 about information, MA, employment, and USA.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for Exports of Goods for Massachusetts (EXPTOTMA) from Aug 1995 to Jan 2025 about MA, exports, goods, commodities, and USA.
The Record of American Democracy (ROAD) data provide election returns, socioeconomic summaries, and demographic details about the American public at unusually low levels of geographic aggregation. The NSF-supported ROAD project spans every state in the country from 1984 through 1990 (including some off-year elections). These data enable research on topics such as electoral behavior, the political characteristics of local community context, electoral geography, the role of minority groups in elections and legislative redistricting, split ticket voting and divided government, and elections under federalism. Another set of files has added to these roughly 30-40 political variables an additional 3,725 variables merged from the 1990 United States Census for 47,327 aggregate units called MCD Groups. The MCD Group is a construct for purposes of this data collection. It is based on a merging of the electoral precincts and Census Minor Civil Divisions (MCDs). An MCD is about the size of a city or town. An MCD Group is smaller than or equal to a county and (except in California) is greater than or equal to the size of an MCD. The MCD Group units completely tile the United States landmass. This particular study contains the files for the State Level MCD Group Data for the state of Massachusetts. Documentation and frequently asked questions are available online at the ROAD Website. A downloadable PDF codebook is also available in the files section of this study.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for State Government Tax Collections, Total Sales and Gross Receipts Taxes in Massachusetts (MASLGRTAX) from 1942 to 2023 about receipts, MA, tax, gross, sales, government, and USA.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States SBP: MA: Back to Usual Operations: 1 Mos or Less data was reported at 9.500 % in 20 Sep 2020. This records an increase from the previous number of 8.900 % for 13 Sep 2020. United States SBP: MA: Back to Usual Operations: 1 Mos or Less data is updated weekly, averaging 4.100 % from Apr 2020 (Median) to 20 Sep 2020, with 14 observations. The data reached an all-time high of 12.800 % in 23 Aug 2020 and a record low of 2.300 % in 26 Apr 2020. United States SBP: MA: Back to Usual Operations: 1 Mos or Less data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S039: Small Business Pulse Survey: by State: Northeast Region: Weekly, Beg Sunday (Discontinued).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This dataset provides information on work zones in the state of Massachusetts in a tabular format and is updated daily based on the live MassDOT Work Zone Data Exchange (WZDx) Feed.
A continuously updating archive of the MassDOT WZDx feed data can be found at ITS WorkZone Raw Data Sandbox and the ITS WorkZone Semi-Processed Data Sandbox. This live feed is currently compliant with the WZDx Specification v3.1.
This data collection contains Bicycle 2017 block group shapefiles and accessibility data dictionary.
Accessibility Observatory data reflects the number of jobs that are reachable by various modes within different travel times from different Census-defined geographies in Massachusetts (block, block group, tract). The data comes from the Accessibility Observatory at the University of Minnesota, and the underlying jobs data is sourced from the U.S. Census Bureau’s Local Employer Household Dynamics (LEHD) dataset. More information about data methodology is available here: http://access.umn.edu/publications/· The data posted on GeoDOT is initially organized by mode: Auto, Transit, Pedestrian, and Bike. With respect to Auto, Transit, and Pedestrian data, data is then organized by geography (group and block group), and then travel time threshold: 30, 45, and 60 minutes. Please note that MassDOT has access to data that reflects travel time thresholds in five minute increments, email Derek Krevat at derek.krevat@dot.state.ma.us for more information. With respect to Bike data, data is organized by geography (group and block group) and then by Level of Traffic Stress; there are four different levels that correspond to the ratings given different roadway segments with respect to the level of 'traffic stress' imposed on cyclists LTS 1: Strong separation from all except low speed, low volume traffic. Simple crossings. Suitable for children. LTS 2: Except in low speed / low volume traffic situations, cyclists have their own place to ride that keeps them from having to interact with traffic except at formal crossings. Physical separation from higher speed and multilane traffic. Crossings that are easy for an adult to negotiate. Corresponds to design criteria for Dutch bicycle route facilities. A level of traffic stress that most adults can tolerate, particularly those sometimes classified as “interested but concerned.”LTS 3: Involves interaction with moderate speed or multilane traffic, or close proximity to higher speed traffic. A level of traffic stress acceptable to those classified as “enthused and confident.”LTS 4: Involves interaction with higher speed traffic or close proximity to high speed traffic. A level of stress acceptable only to those classified as “strong and fearless.” See http://www.northeastern.edu/peter.furth/research/level-of-traffic-stress/ for more information.· Data reflecting access to jobs via Auto is available for each hour of the day at the different travel time thresholds (30, 45 and 60 minute thresholds are posted; five minute thresholds are available by contacting Derek Krevat at derek.krevat@dot.state.ma.us).o For convenience, MassDOT has also created stand-alone summary files that reflect the total number of jobs available throughout the day within 30, 45, and 60 minutes of travel time. See the Data Dictionary, Auto All Jobs for more information.· Pedestrian and Transit data is only available for the morning peak travel period, 7:00 to 9:00 am.· Bicycle data is only available for the noontime hour.· Each of the data files contains data reflecting access to all jobs as well as discrete job opportunities as categorized by the U.S. Census bureau, such as jobs in specific industries, with specific types of workers, with specific wages, or in businesses of certain sizes or ages. See the Data Dictionary for more information.
THIS DATASET WAS LAST UPDATED AT 8:10 PM EASTERN ON MARCH 24
2019 had the most mass killings since at least the 1970s, according to the Associated Press/USA TODAY/Northeastern University Mass Killings Database.
In all, there were 45 mass killings, defined as when four or more people are killed excluding the perpetrator. Of those, 33 were mass shootings . This summer was especially violent, with three high-profile public mass shootings occurring in the span of just four weeks, leaving 38 killed and 66 injured.
A total of 229 people died in mass killings in 2019.
The AP's analysis found that more than 50% of the incidents were family annihilations, which is similar to prior years. Although they are far less common, the 9 public mass shootings during the year were the most deadly type of mass murder, resulting in 73 people's deaths, not including the assailants.
One-third of the offenders died at the scene of the killing or soon after, half from suicides.
The Associated Press/USA TODAY/Northeastern University Mass Killings database tracks all U.S. homicides since 2006 involving four or more people killed (not including the offender) over a short period of time (24 hours) regardless of weapon, location, victim-offender relationship or motive. The database includes information on these and other characteristics concerning the incidents, offenders, and victims.
The AP/USA TODAY/Northeastern database represents the most complete tracking of mass murders by the above definition currently available. Other efforts, such as the Gun Violence Archive or Everytown for Gun Safety may include events that do not meet our criteria, but a review of these sites and others indicates that this database contains every event that matches the definition, including some not tracked by other organizations.
This data will be updated periodically and can be used as an ongoing resource to help cover these events.
To get basic counts of incidents of mass killings and mass shootings by year nationwide, use these queries:
To get these counts just for your state:
Mass murder is defined as the intentional killing of four or more victims by any means within a 24-hour period, excluding the deaths of unborn children and the offender(s). The standard of four or more dead was initially set by the FBI.
This definition does not exclude cases based on method (e.g., shootings only), type or motivation (e.g., public only), victim-offender relationship (e.g., strangers only), or number of locations (e.g., one). The time frame of 24 hours was chosen to eliminate conflation with spree killers, who kill multiple victims in quick succession in different locations or incidents, and to satisfy the traditional requirement of occurring in a “single incident.”
Offenders who commit mass murder during a spree (before or after committing additional homicides) are included in the database, and all victims within seven days of the mass murder are included in the victim count. Negligent homicides related to driving under the influence or accidental fires are excluded due to the lack of offender intent. Only incidents occurring within the 50 states and Washington D.C. are considered.
Project researchers first identified potential incidents using the Federal Bureau of Investigation’s Supplementary Homicide Reports (SHR). Homicide incidents in the SHR were flagged as potential mass murder cases if four or more victims were reported on the same record, and the type of death was murder or non-negligent manslaughter.
Cases were subsequently verified utilizing media accounts, court documents, academic journal articles, books, and local law enforcement records obtained through Freedom of Information Act (FOIA) requests. Each data point was corroborated by multiple sources, which were compiled into a single document to assess the quality of information.
In case(s) of contradiction among sources, official law enforcement or court records were used, when available, followed by the most recent media or academic source.
Case information was subsequently compared with every other known mass murder database to ensure reliability and validity. Incidents listed in the SHR that could not be independently verified were excluded from the database.
Project researchers also conducted extensive searches for incidents not reported in the SHR during the time period, utilizing internet search engines, Lexis-Nexis, and Newspapers.com. Search terms include: [number] dead, [number] killed, [number] slain, [number] murdered, [number] homicide, mass murder, mass shooting, massacre, rampage, family killing, familicide, and arson murder. Offender, victim, and location names were also directly searched when available.
This project started at USA TODAY in 2012.
Contact AP Data Editor Justin Myers with questions, suggestions or comments about this dataset at jmyers@ap.org. The Northeastern University researcher working with AP and USA TODAY is Professor James Alan Fox, who can be reached at j.fox@northeastern.edu or 617-416-4400.
The U.S. Geological Survey’s StreamStats program is a publicly-accessible web application (https://streamstats.usgs.gov) that can be used to delineate drainage areas, compute basin characteristics, and estimate flow statistics for user-selected locations on streams. StreamStats services are typically implemented at the statewide or watershed scale (referred to as state or basin applications), and although the three core functionalities remain consistent, many states have implemented custom tools to address specific water-resources planning and management needs. In Massachusetts, a watershed-scale application for the Mystic River Basin was developed to support stakeholder efforts to address stormwater challenges in this highly urbanized basin. The Mystic River Basin stormwater functionality was developed by incorporating 1-meter resolution lidar-derived elevation data and municipal storm drain data to accurately represent urban topography and stormwater flow (that is, subsurface piped flow). In the Mystic River Basin application, users can view the network of stormwater pipes and inlets, delineate drainage areas derived from lidar topography and stormwater infrastructure, and compute land-use/land-cover (LULC) basin characteristics. This data release contains the LULC data available in the Mystic River Basin StreamStats application as a Georeferenced Tagged Image File Format (GeoTIFF) raster dataset. This dataset was developed by processing Massachusetts 2016 LULC data (MassGIS, 2019) and Soil Survey Geographic data (SSURGO; NRCS, 2020) according to Massachusetts Department of Environmental Protection guidelines to produce categories consistent with the 2016 Massachusetts Small Municipal Separate Storm Sewer System (MS4) General Permit Pollutant Loading Export Rates for aggregated land uses (Schifman, 2022). References: MassGIS, 2019, 2016 Land Cover/Land Use: MassGIS Bureau of Geographic Information, accessed April 11, 2022, at https://www.mass.gov/info-details/massgis-data-2016-land-coverland-use. Natural Resources Conservation Service [NRCS], 2020, Soils Polygons for Massachusetts with "Top 20" Fields: MassGIS Bureau of Geographic Information, accessed December 1, 2021, at https://www.mass.gov/info-details/massgis-data-soils-ssurgo-certified-nrcs. Schifman, L.A, 2022, 2016 Massachusetts Small MS4 Permit Pollutant Loading Export Rates applied to the 2016 Massachusetts Land Use/Land Cover GIS Dataset: Massachusetts Department of Environmental Protection, 7 p., accessed May 23, 2022, at https://www.mass.gov/doc/2016-massachusetts-small-ms4-permit-pollutant-loading-export-rates.
This U.S. Geological Survey data release contains coastal wetland synthesis products for Massachusetts. Metrics for resiliency, including unvegetated to vegetated ratio (UVVR), marsh elevation, and tidal range are calculated for smaller units delineated from a digital elevation model, providing the spatial variability of physical factors that influence wetland health. The U.S. Geological Survey has been expanding national assessment of coastal change hazards and forecast products to coastal wetlands with the intent of providing federal, state, and local managers with tools to estimate the vulnerability and ecosystem service potential of these wetlands. For this purpose, the response and resilience of coastal wetlands to physical factors need to be assessed in terms of the ensuing change to their vulnerability and ecosystem services.These USGS datasets are mirrored from the published coastal wetlands datasets on USGS ScienceBase. To download data and metadata: Ackerman, K.V., Defne, Z., and Ganju, N.K., 2021, Geospatial characterization of salt marshes for Massachusetts: U.S. Geological Survey data release, https://doi.org/10.5066/P97E086F.
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
Reporting of Aggregate Case and Death Count data was discontinued May 11, 2023, with the expiration of the COVID-19 public health emergency declaration. Although these data will continue to be publicly available, this dataset will no longer be updated.
This archived public use dataset has 11 data elements reflecting United States COVID-19 community levels for all available counties.
The COVID-19 community levels were developed using a combination of three metrics — new COVID-19 admissions per 100,000 population in the past 7 days, the percent of staffed inpatient beds occupied by COVID-19 patients, and total new COVID-19 cases per 100,000 population in the past 7 days. The COVID-19 community level was determined by the higher of the new admissions and inpatient beds metrics, based on the current level of new cases per 100,000 population in the past 7 days. New COVID-19 admissions and the percent of staffed inpatient beds occupied represent the current potential for strain on the health system. Data on new cases acts as an early warning indicator of potential increases in health system strain in the event of a COVID-19 surge.
Using these data, the COVID-19 community level was classified as low, medium, or high.
COVID-19 Community Levels were used to help communities and individuals make decisions based on their local context and their unique needs. Community vaccination coverage and other local information, like early alerts from surveillance, such as through wastewater or the number of emergency department visits for COVID-19, when available, can also inform decision making for health officials and individuals.
For the most accurate and up-to-date data for any county or state, visit the relevant health department website. COVID Data Tracker may display data that differ from state and local websites. This can be due to differences in how data were collected, how metrics were calculated, or the timing of web updates.
Archived Data Notes:
This dataset was renamed from "United States COVID-19 Community Levels by County as Originally Posted" to "United States COVID-19 Community Levels by County" on March 31, 2022.
March 31, 2022: Column name for county population was changed to “county_population”. No change was made to the data points previous released.
March 31, 2022: New column, “health_service_area_population”, was added to the dataset to denote the total population in the designated Health Service Area based on 2019 Census estimate.
March 31, 2022: FIPS codes for territories American Samoa, Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands were re-formatted to 5-digit numeric for records released on 3/3/2022 to be consistent with other records in the dataset.
March 31, 2022: Changes were made to the text fields in variables “county”, “state”, and “health_service_area” so the formats are consistent across releases.
March 31, 2022: The “%” sign was removed from the text field in column “covid_inpatient_bed_utilization”. No change was made to the data. As indicated in the column description, values in this column represent the percentage of staffed inpatient beds occupied by COVID-19 patients (7-day average).
March 31, 2022: Data values for columns, “county_population”, “health_service_area_number”, and “health_service_area” were backfilled for records released on 2/24/2022. These columns were added since the week of 3/3/2022, thus the values were previously missing for records released the week prior.
April 7, 2022: Updates made to data released on 3/24/2022 for Guam, Commonwealth of the Northern Mariana Islands, and United States Virgin Islands to correct a data mapping error.
April 21, 2022: COVID-19 Community Level (CCL) data released for counties in Nebraska for the week of April 21, 2022 have 3 counties identified in the high category and 37 in the medium category. CDC has been working with state officials to verify the data submitted, as other data systems are not providing alerts for substantial increases in disease transmission or severity in the state.
May 26, 2022: COVID-19 Community Level (CCL) data released for McCracken County, KY for the week of May 5, 2022 have been updated to correct a data processing error. McCracken County, KY should have appeared in the low community level category during the week of May 5, 2022. This correction is reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for several Florida counties for the week of May 19th, 2022, have been corrected for a data processing error. Of note, Broward, Miami-Dade, Palm Beach Counties should have appeared in the high CCL category, and Osceola County should have appeared in the medium CCL category. These corrections are reflected in this update.
May 26, 2022: COVID-19 Community Level (CCL) data released for Orange County, New York for the week of May 26, 2022 displayed an erroneous case rate of zero and a CCL category of low due to a data source error. This county should have appeared in the medium CCL category.
June 2, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a data processing error. Tolland County, CT should have appeared in the medium community level category during the week of May 26, 2022. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Tolland County, CT for the week of May 26, 2022 have been updated to correct a misspelling. The medium community level category for Tolland County, CT on the week of May 26, 2022 was misspelled as “meduim” in the data set. This correction is reflected in this update.
June 9, 2022: COVID-19 Community Level (CCL) data released for Mississippi counties for the week of June 9, 2022 should be interpreted with caution due to a reporting cadence change over the Memorial Day holiday that resulted in artificially inflated case rates in the state.
July 7, 2022: COVID-19 Community Level (CCL) data released for Rock County, Minnesota for the week of July 7, 2022 displayed an artificially low case rate and CCL category due to a data source error. This county should have appeared in the high CCL category.
July 14, 2022: COVID-19 Community Level (CCL) data released for Massachusetts counties for the week of July 14, 2022 should be interpreted with caution due to a reporting cadence change that resulted in lower than expected case rates and CCL categories in the state.
July 28, 2022: COVID-19 Community Level (CCL) data released for all Montana counties for the week of July 21, 2022 had case rates of 0 due to a reporting issue. The case rates have been corrected in this update.
July 28, 2022: COVID-19 Community Level (CCL) data released for Alaska for all weeks prior to July 21, 2022 included non-resident cases. The case rates for the time series have been corrected in this update.
July 28, 2022: A laboratory in Nevada reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate will be inflated in Clark County, NV for the week of July 28, 2022.
August 4, 2022: COVID-19 Community Level (CCL) data was updated on August 2, 2022 in error during performance testing. Data for the week of July 28, 2022 was changed during this update due to additional case and hospital data as a result of late reporting between July 28, 2022 and August 2, 2022. Since the purpose of this data set is to provide point-in-time views of COVID-19 Community Levels on Thursdays, any changes made to the data set during the August 2, 2022 update have been reverted in this update.
August 4, 2022: COVID-19 Community Level (CCL) data for the week of July 28, 2022 for 8 counties in Utah (Beaver County, Daggett County, Duchesne County, Garfield County, Iron County, Kane County, Uintah County, and Washington County) case data was missing due to data collection issues. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 4, 2022: Due to a reporting cadence change, case rates for all Alabama counties will be lower than expected. As a result, the CCL levels published on August 4, 2022 should be interpreted with caution.
August 11, 2022: COVID-19 Community Level (CCL) data for the week of August 4, 2022 for South Carolina have been updated to correct a data collection error that resulted in incorrect case data. CDC and its partners have resolved the issue and the correction is reflected in this update.
August 18, 2022: COVID-19 Community Level (CCL) data for the week of August 11, 2022 for Connecticut have been updated to correct a data ingestion error that inflated the CT case rates. CDC, in collaboration with CT, has resolved the issue and the correction is reflected in this update.
August 25, 2022: A laboratory in Tennessee reported a backlog of historic COVID-19 cases. As a result, the 7-day case count and rate may be inflated in many counties and the CCLs published on August 25, 2022 should be interpreted with caution.
August 25, 2022: Due to a data source error, the 7-day case rate for St. Louis County, Missouri, is reported as zero in the COVID-19 Community Level data released on August 25, 2022. Therefore, the COVID-19 Community Level for this county should be interpreted with caution.
September 1, 2022: Due to a reporting issue, case rates for all Nebraska counties will include 6 days of data instead of 7 days in the COVID-19 Community Level (CCL) data released on September 1, 2022. Therefore, the CCLs for all Nebraska counties should be interpreted with caution.
September 8, 2022: Due to a data processing error, the case rate for Philadelphia County, Pennsylvania,
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
SB: MA: Outlook: RN: Will Not Return to Normal Level data was reported at 9.900 % in 11 Apr 2022. This records a decrease from the previous number of 14.500 % for 04 Apr 2022. SB: MA: Outlook: RN: Will Not Return to Normal Level data is updated weekly, averaging 11.150 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 14.700 % in 29 Nov 2021 and a record low of 8.900 % in 21 Feb 2022. SB: MA: Outlook: RN: Will Not Return to Normal Level data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S039: Small Business Pulse Survey: by State: Northeast Region: Weekly, Beg Monday (Discontinued).
2020 Census data for the city of Boston, Boston neighborhoods, census tracts, block groups, and voting districts. In the 2020 Census, the U.S. Census Bureau divided Boston into 207 census tracts (~4,000 residents) made up of 581 smaller block groups. The Boston Planning and Development Agency uses the 2020 tracts to approximate Boston neighborhoods. The 2020 Census Redistricting data also identify Boston’s voting districts.
For analysis of Boston’s 2020 Census data including graphs and maps by the BPDA Research Division and Office of Digital Cartography and GIS, see 2020 Census Research Publications
For a complete official data dictionary, please go to 2020 Census State Redistricting Data (Public Law 94-171) Summary File, Chapter 6. Data Dictionary. 2020 Census State Redistricting Data (Public Law 94-171) Summary File
2020 Census Block Groups In Boston
Boston Neighborhood Boundaries Approximated By 2020 Census Tracts
Accessibility Observatory data reflects the number of jobs that are reachable by various modes within different travel times from different Census-defined geographies in Massachusetts (block, block group, tract). The data comes from the Accessibility Observatory at the University of Minnesota, and the underlying jobs data is sourced from the U.S. Census Bureau’s Local Employer Household Dynamics (LEHD) dataset. More information about data methodology is available here: https://access.umn.edu/publications/. The data posted on GeoDOT is initially organized by mode: Auto, Transit, Pedestrian, and Bike. With respect to Auto, Transit, and Pedestrian data, data is then organized by geography (group and block group), and then travel time threshold: 30, 45, and 60 minutes. Please note that MassDOT has access to data that reflects travel time thresholds in five minute increments, email Derek Krevat at derek.krevat@dot.state.ma.us for more information. With respect to Bike data, data is organized by geography (group and block group) and then by Level of Traffic Stress; there are four different levels that correspond to the ratings given different roadway segments with respect to the level of 'traffic stress' imposed on cyclists LTS 1: Strong separation from all except low speed, low volume traffic. Simple crossings. Suitable for children. LTS 2: Except in low speed / low volume traffic situations, cyclists have their own place to ride that keeps them from having to interact with traffic except at formal crossings. Physical separation from higher speed and multilane traffic. Crossings that are easy for an adult to negotiate. Corresponds to design criteria for Dutch bicycle route facilities. A level of traffic stress that most adults can tolerate, particularly those sometimes classified as “interested but concerned.”LTS 3: Involves interaction with moderate speed or multilane traffic, or close proximity to higher speed traffic. A level of traffic stress acceptable to those classified as “enthused and confident.”LTS 4: Involves interaction with higher speed traffic or close proximity to high speed traffic. A level of stress acceptable only to those classified as “strong and fearless.” See https://www.northeastern.edu/peter.furth/research/level-of-traffic-stress/ for more information.· Data reflecting access to jobs via Auto is available for each hour of the day at the different travel time thresholds (30, 45 and 60 minute thresholds are posted; five minute thresholds are available by contacting Derek Krevat at derek.krevat@dot.state.ma.us).o For convenience, MassDOT has also created stand-alone summary files that reflect the total number of jobs available throughout the day within 30, 45, and 60 minutes of travel time. See the Data Dictionary, Auto All Jobs for more information.· Pedestrian and Transit data is only available for the morning peak travel period, 7:00 to 9:00 am.· Bicycle data is only available for the noontime hour.· Each of the data files contains data reflecting access to all jobs as well as discrete job opportunities as categorized by the U.S. Census bureau, such as jobs in specific industries, with specific types of workers, with specific wages, or in businesses of certain sizes or ages. See the Data Dictionary for more information.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States SB: MA: Outlook: FN: Increase Marketing/Sales data was reported at 26.000 % in 11 Apr 2022. This records a decrease from the previous number of 28.800 % for 04 Apr 2022. United States SB: MA: Outlook: FN: Increase Marketing/Sales data is updated weekly, averaging 26.800 % from Nov 2021 (Median) to 11 Apr 2022, with 18 observations. The data reached an all-time high of 30.200 % in 10 Jan 2022 and a record low of 21.600 % in 14 Feb 2022. United States SB: MA: Outlook: FN: Increase Marketing/Sales data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S039: Small Business Pulse Survey: by State: Northeast Region: Weekly, Beg Monday (Discontinued).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States SB: MA: CS: Prices Paid: Moderate Increase data was reported at 40.200 % in 11 Apr 2022. This records a decrease from the previous number of 41.300 % for 04 Apr 2022. United States SB: MA: CS: Prices Paid: Moderate Increase data is updated weekly, averaging 40.200 % from Feb 2022 (Median) to 11 Apr 2022, with 9 observations. The data reached an all-time high of 46.000 % in 14 Feb 2022 and a record low of 35.800 % in 07 Mar 2022. United States SB: MA: CS: Prices Paid: Moderate Increase data remains active status in CEIC and is reported by U.S. Census Bureau. The data is categorized under Global Database’s United States – Table US.S039: Small Business Pulse Survey: by State: Northeast Region: Weekly, Beg Monday (Discontinued).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States GDPS: 2012p: saar: MA: Pvt: Mining data was reported at 276.500 USD mn in Jun 2018. This records an increase from the previous number of 269.400 USD mn for Mar 2018. United States GDPS: 2012p: saar: MA: Pvt: Mining data is updated quarterly, averaging 226.650 USD mn from Mar 2005 (Median) to Jun 2018, with 54 observations. The data reached an all-time high of 512.300 USD mn in Mar 2016 and a record low of 153.900 USD mn in Mar 2011. United States GDPS: 2012p: saar: MA: Pvt: Mining data remains active status in CEIC and is reported by Bureau of Economic Analysis. The data is categorized under Global Database’s USA – Table US.A117: NIPA 2018: GDP by State: New England Region: Chain Linked 2012 Price: saar.
https://fred.stlouisfed.org/legal/#copyright-public-domainhttps://fred.stlouisfed.org/legal/#copyright-public-domain
Graph and download economic data for All Employees: Government: State Government in Massachusetts (SMS25000009092000001) from Jan 1990 to Dec 2024 about state govt, MA, government, employment, and USA.