The Geology of the Northern Jetty Peninsula GIS dataset contains the shapefiles and tables of the basement geology of the Northern Jetty Peninsula in East Antarctica. This dataset is derived from the map product ‘Geology of Northern Jetty Peninsula, Mac.Robertson Land, Antarctica'.
Northern Jetty Peninsula, incorporating Else Platform (~140 km2) and Kamenistaja Platform (~15 km2), represents a mostly ice-free low-lying region located on the western flanks of the Lambert Graben. The region is underlain by granulite-facies Proterozoic gneisses and unmetamorphosed Permian sediments.
This is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Geospatial data about Placer County, California MAC Boundaries. Export to CAD, GIS, PDF, CSV and access via API.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains 63 shapefiles that represent the areas of relevance for each research project under the National Environmental Science Program Marine and Coastal Hub, northern and southern node projects for Rounds 1, 2 & 3.
Methods: Each project map is developed using the following steps: 1. The project map was drawn based on the information provided in the research project proposals. 2. The map was refined based on feedback during the first data discussions with the project leader. 3. Where projects are finished most maps were updated based on the extents of datasets generated by the project and followup checks with the project leader.
The area mapped includes on-ground activities of the project, but also where the outputs of the project are likely to be relevant. The maps were refined by project leads, by showing them the initial map developed from the proposal, then asking them "How would you change this map to better represent the area where your project is relevant?". In general, this would result in changes such as removing areas where they were no longer intending research to be, or trimming of the extents to better represent the habitats that are relevant.
The project extent maps are intentionally low resolution (low number of polygon vertices), limiting the number of vertices 100s of points. This is to allow their easy integration into project metadata records and for presenting via interactive web maps and spatial searching. The goal of the maps was to define the project extent in a manner that was significantly more accurate than a bounding box, reducing the number of false positives generated from a spatial search. The geometry was intended to be simple enough that projects leaders could describe the locations verbally and the rough nature of the mapping made it clear that the regions of relevance are approximate.
In some cases, boundaries were drawn manually using a low number of vertices, in the process adjusting them to be more relevant to the project. In others, high resolution GIS datasets (such as the EEZ, or the Australian coastline) were used, but simplified at a resolution of 5-10km to ensure an appopriate vertices count for the final polygon extent. Reference datasets were frequently used to make adjustments to the maps, for example maps of wetlands and rivers were used to better represent the inner boundary of projects that were relevant for wetlands.
In general, the areas represented in the maps tend to show an area larger then the actual project activities, for example a project focusing on coastal restoration might include marine areas up to 50 km offshore and 50 km inshore. This buffering allows the coastline to be represented with a low number of verticies without leading to false negatives, where a project doesn't come up in a search because the area being searched is just outside the core area of a project.
Limitations of the data: The areas represented in this data are intentionally low resolution. The polygon features from the various projects overlap significantly and thus many boundaries are hidden with default styling. This dataset is not a complete representation of the work being done by the NESP MaC projects as it was collected only 3 years into a 7 year program.
Format of the data: The maps were drawn in QGIS using relevant reference layers and saved as shapefiles. These are then converted to GeoJSON or WKT (Well-known Text) and incorporated into the ISO19115-3 project metadata records in GeoNetwork. Updates to the map are made to the original shapefiles, and the metadata record subsequently updated.
All projects are represented as a single multi-polygon. The multiple polygons was developed by merging of separate areas into a single multi-polygon. This was done to improve compatibility with web platforms, allowing easy conversion to GeoJSON and WKT.
This dataset will be updated periodically as new NESP MaC projects are developed and as project progress and the map layers are improved. These updates will typically be annual.
Data dictionary: NAME - Title of the layer PROJ - Project code of the project relating to the layer NODE - Whether the project is part of the Northern or Southern Nodes TITLE - Title of the project P_LEADER - Name of the Project leader and institution managing the project PROJ_LINK - Link to the project metadata MAP_DESC - Brief text description of the map area MAP_TYPE - Describes whether the map extent is a 'general' area of relevance for the project work, or 'specific' where there is on ground survey or sampling activities MOD_DATE - Last modification date to the individual map layer (prior to merging)
Updates & Processing: These maps were created by eAtlas and IMAS Data Wranglers as part of the NESP MaC Data Management activities. As new project information is made available, the maps may be updated and republished. The update log will appear below with notes to indicate when individual project maps are updated: 20220626 - Dataset published (All shapefiles have MOD_DATE 20230626)
Location of the data: This dataset is filed in the eAtlas enduring data repository at: data\custodian esp-mac-3\AU_AIMS-UTAS_NESP-MaC_Project-extents-maps
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
GIS-Sebahagian Senarai Inventori Pokok Presint 1 sehingga Mac 2018
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
The approximate extent of seabird colonies on Scullin Monolith, Mac.Robertson Land, Antarctica in 1986/87.
The species include Adélie Penguin, Antarctic Petrel, Cape Petrel, Southern Fulmar and South Polar Skua.
The Federal Housing Finance Agency (FHFA) is an independent regulatory agency that is not part of the Department of Housing and Urban Development (HUD).
The FHFA was established by the Housing and Economic Recovery Act of 2008 (HERA) and is responsible for the effective supervision, regulation, and housing mission oversight of Fannie Mae, Freddie Mac (the Enterprises), Common Securitization Solutions, LLC (CSS), and the Federal Home Loan Bank System, which includes the 11 Federal Home Loan Banks (FHLBanks) and the Office of Finance. Since 2008, FHFA has also served as conservator of Fannie Mae and Freddie Mac.
Conforming Loan Limits are mortgage limits set annually (as required by HERA) by the FHFA. In order for a mortgage loan to be eligible to be insured by Freddie Mac or Fannie Mae, the loan amount must be less than the loan limit. Mortgage exceeding the Conforming Loan Limit are referred to as "non-conforming loans" or "jumbo loans." While most counties use a single set of Conforming Loan Limits based on the number of units, high cost of living counties use higher Conforming Loan Limits. The FHFA analyzes year-over-year change in average home prices in October of each year using the Monthly Interest Rate Survey (MIRS) to adjust the Conforming Loan Limits for the upcoming year.
Geospatial data in this feature service uses the Census 2010 County geographies.
To learn more about about the FHFA, please visit:https://www.fhfa.gov/AboutUs
For more information about FHFA Conforming Loan Limits, please visit:https://www.fhfa.gov/DataTools/Downloads/Pages/Conforming-Loan-Limits.aspx, for questions about the spatial attribution of this dataset, please reach out to us at GISHelpdesk@hud.gov.
Date of Coverage: 2022 Data Dictionary:DD_FHFA Conforming Loan Limits
This webmap features the USGS GAP application of the vegetation cartography design based on NVCS mapping being done at the Alliance level by the California
Native Plant Society (CNPS), the California Dept of Fish and Game (CDFG), and the US National Park Service, combined with Ecological Systems Level mapping being done by USGS GAP, Landfire and Natureserve. Although the latter are using 3 different approaches to mapping, this project adopted a common cartography and a common master crossover in order to allow them to be used intercheangably as complements to the detailed NVCS Alliance & Macrogroup Mapping being done in Calif by the California Native Plant Society (CNPS) and Calif Dept of Fish & Wildlife (CDFW). A primary goal of this project was to develop ecological layers to use
as overlays on top of high-resolution imagery, in order to help
interpret and better understand the natural landscape. You can see the
source national GAP rasters by clicking on either of the "USGS GAP Landcover Source RASTER" layers at
the bottom of the contents list.Using polygons has several advantages: Polygons are how most
conservation plans and land decisions/managment are done so
polygon-based outputs are more directly useable in management and
planning. Unlike rasters, Polygons permit webmaps with clickable links
to provide additional information about that ecological community. At
the analysis level, polygons allow vegetation/ecological systems
depicted to be enriched with additional ecological attributes for each
polygon from multiple overlay sources be they raster or vector. In this map, the "Gap Mac base-mid scale" layers are enriched with links to USGS/USNVC macrogroup summary reports, and the "Gap Eco base scale" layers are enriched with links to the Naturserve Ecological Systems summary reports.Comparsion with finer scale ground ecological mapping is provided by the "Ecol Overlay" layers of Alliance and Macrogroup Mapping from CNPS/CDFW. The CNPS Vegetation
Program has worked for over 15 years to provide standards and tools for
identifying and representing vegetation, as an important feature of California's
natural heritage and biodiversity. Many knowledgeable ecologists and botanists
support the program as volunteers and paid staff. Through grants, contracts,
and grass-roots efforts, CNPS collects field data and compiles information into
reports, manuals, and maps on California's vegetation, ecology and rare plants in order to better protect and manage
them. We provide these services to governmental, non-governmental and other
organizations, and we collaborate on vegetation resource assessment projects
around the state. CNPS is also the publisher of the authoritative Manual of
California Vegetation, you can purchase a copy HERE. To support the work of the CNPS, please JOIN NOW
and become a member!The CDFG Vegetation
Classification and Mapping Program develops
and maintains California's expression of the National Vegetation Classification
System. We implement its use through assessment and mapping projects in
high-priority conservation and management areas, through training programs, and
through working continuously on best management practices for field assessment,
classification of vegetation data, and fine-scale vegetation mapping.HOW THE OVERLAY LAYERS WERE CREATED:Nserve and GapLC Sources:
Early shortcomings
in the NVC standard led to Natureserve's development of a mid-scale
mapping-friendly "Ecological Systems" standard roughly corresponding to
the "Group" level of the NVC, which facilitated NVC-based mapping of
entire continents. Current scientific work is leading to the
incorporation of Ecological Systems into the NVC as group and macrogroup
concepts are revised. Natureserve and Gap Ecological Systems layers
differ slightly even though both were created from 30m landsat data and
both follow the NVC-related Ecological Systems Classification curated by
Natureserve. In either case, the vector overlay was created by first
enforcing a .3ha minimum mapping unit, that required deleting any
classes consisting of fewer than 4 contiguous landsat cells either
side-side or cornerwise. This got around the statistical problem of
numerous single-cell classes with types that seemed improbable given
their matrix, and would have been inaccurate to use as an n=1 sample
compared to the weak but useable n=4 sample. A primary goal in this
elimination was to best preserve riparian and road features that might
only be one pixel wide, hence the use of cornerwise contiguous
groupings. Eliminated cell groups were absorbed into whatever
neighboring class they shared the longest boundary with. The remaining
raster groups were vectorized with light simplification to smooth out
the stairstep patterns of raster data and hopefully improve the fidelity
of the boundaries with the landscape. The resultant vectors show a
range of fidelity with the landscape, where there is less apparent
fidelity it must be remembered that ecosystems are normally classified
with a mixture of visible and non-visible characteristics including
soil, elevation and slope. Boundaries can be assigned based on the
difference between 10% shrub cover and 20% shrub cover. Often large landscape areas would create "godzilla" polygons of more than 50,000 vertices, which can affect performance. These were eliminated using SIMPLIFY POLYGONS to reduce vertex spacing from 30m down to 50-60m where possible. Where not possible DICE was used, which bisects all large polygons with arbitrary internal divisions until no polygon has more than 50,000 vertices. To create midscale layers, ecological systems were dissolved into the macrogroups that they belonged to and resymbolized on macrogroup. This was another frequent source for godzillas as larger landscape units were delineate, so simplify and dice were then run again. Where the base ecol system tiles could only be served up by individual partition tile, macrogroups typically exhibited a 10-1 or 20-1 reduction in feature count allowing them to be assembled into single integrated map services by region, ie NW, SW. CNPS
/ CDFW / National Park Service Sources: (see also base service definition page) Unlike the Landsat-based raster
modelling of the Natureserve and Gap national ecological systems, the
CNPS/CDFW/NPS data date back to the origin of the National Vegetation
Classification effort to map the US national parks in the mid 1990's.
These mapping efforts are a hybrid of photo-interpretation, satellite
and corollary data to create draft ecological land units, which are then
sampled by field crews and traditional vegetation plot surveys to
quantify and analyze vegetation composition and distribution into the
final vector boundaries of the formal NVC classes identified and
classified. As such these are much more accurate maps, but the tradeoff
is they are only done on one field project area at a time so there is
not yet a national or even statewide coverage of these detailed maps.
However, with almost 2/3d's of California already mapped, that time is
approaching. The challenge in creating standard map layers for this
wide diversity of projects over the 2 decades since NVC began is the
extensive evolution in the NVC standard itself as well as evolution in
the field techniques and tools. To create a consistent set of map
layers, a master crosswalk table was built using every different
classification known at the time each map was created and then
crosswalking each as best as could be done into a master list of the
currently-accepted classifications. This field is called the "NVC_NAME"
in each of these layers, and it contains a mixture of scientific names
and common names at many levels of the classification from association
to division, whatever the ecologists were able to determine at the
time. For further precision, this field is split out into scientific
name equivalents and common name equivalents.MAP LAYER NAMING: The data sublayers in this webmap are all based on the
US National Vegetation Classification, a partnership of the USGS GAP
program, US Forest Service, Ecological Society of America and
Natureserve, with adoption and support from many federal & state
agencies and nonprofit conservation groups. The USNVC grew out of the
US National Park Service
Vegetation Mapping Program, a mid-1990's effort led by The Nature
Conservancy, Esri and the University of California. The classification
standard is now an international standard, with
associated ecological mapping occurring around the world. NVC is a hierarchical taxonomy of 8
levels, from top down: Class, Subclass, Formation, Division, Macrogroup,
Group, Alliance, Association. The layers in this webmap represent 4 distinct programs: 1. The California Native Plant Society/Calif Dept of Fish & Wildlife Vegetation Classification and Mapping Program (Full Description of these layers is at the CNPS MS10 Service Registration Page and Cnps MS10B Service Registration Page . 2. USGS Gap Protected Areas Database, full description at the PADUS registration page . 3. USGS Gap Landcover, full description below 4. Natureserve Ecological Systems, full description belowLAYER NAMING: All Layer names follow this pattern: Source - Program - Level - Scale - RegionSource - Program
= who created the data: Nserve = Natureserve, GapLC = USGS Gap
Program Landcover Data PADUS = USGS Gap Protected Areas of the USA
program Cnps/Cdfw = California Native Plant Society/Calif Dept of Fish
& Wildlife, often followed by the project name such as: SFhill =
Sierra Foothills, Marin Open Space, MMWD = Marin Municipal Water
District etc. National Parks are included and may be named by their
standard 4-letter code ie YOSE = Yosemite, PORE = Point Reyes.Level:
The level in the NVC Hierarchy which this layer is based on: Base =
Alliances and Associations Mac =
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
For more information about this tool see Batch Metadata Modifier Tool Toolbar Help.Modifying multiple files simultaneously that don't have identical structures is possible but not advised. Be especially careful modifying repeatable elements in multiple files that do not have and identical structureTool can be run as an ArcGIS Add-In or as a stand-alone Windows executableExecutable runs on PC only. (Not supported on Mac.)The ArcGIS Add-In requires ArcGIS Desktop version 10.2 or 10.3Metadata formats accepted: FGDC CSDGM, ArcGIS 1.0, ArcGIS ISO, and ISO 19115Contact Bruce Godfrey (bgodfrey@uidaho.edu) if you have questions or wish to collaborate on further developing this tool.Modifying and maintaining metadata for large batches of ArcGIS items can be a daunting task. Out-of-the-box graphical user interface metadata tools within ArcCatalog 10.x are designed primarily to allow users to interact with metadata for one item at a time. There are, however, a limited number of tools for performing metadata operations on multiple items. Therefore, the need exists to develop tools to modify metadata for numerous items more effectively and efficiently. The Batch Metadata Modifier Tools toolbar is a step in that direction. The Toolbar, which is available as an ArcGIS Add-In, currently contains two tools. The first tool, which is additionally available as a standalone Windows executable application, allows users to update metadata on multiple items iteratively. The tool enables users to modify existing elements, find and replace element content, delete metadata elements, and import metadata elements from external templates. The second tool of the Toolbar, a batch thumbnail creator, enables the batch-creation of the graphic that appears in an item’s metadata, illustrating the data an item contains. Both of these tools make updating metadata in ArcCatalog more efficient, since the tools are able to operate on numerous items iteratively through an easy-to-use graphic interface.This tool, developed by INSIDE Idaho at the University of Idaho Library, was created to assist researchers with modifying FGDC CSDGM, ArcGIS 1.0 Format and ISO 19115 metadata for numerous data products generated under EPSCoR award EPS-0814387.This tool is primarily designed to be used by those familiar with metadata, metadata standards, and metadata schemas. The tool is for use by metadata librarians and metadata managers and those having experience modifying standardized metadata. The tool is designed to expedite batch metadata maintenance. Users of this tool must fully understand the files they are modifying. No responsibility is assumed by the Idaho Geospatial Data Clearinghouse or the University of Idaho in the use of this tool. A portion of the development of this tool was made possible by an Idaho EPSCoR Office award.
The Federal Housing Enterprises Financial Safety and Soundness Act of 1992 establishes a duty for Fannie Mae and Freddie Mac (the Enterprises) to serve the housing needs of very low-, low-, and moderate-income families in rural areas. FHFA has issued a final rule that provides eligibility for Duty to Serve credit for Enterprise mortgage purchases and other activities in “rural areas,” as defined in the rule. Additionally, the final rule specifies supportfor high-needs rural regions as a Regulatory Activity that the Enterprises may consider when developing their plans for the Duty to Serve program. FHFA’s 2017 Rural Areas File designates census tracts in the Metropolitan Statistical Areas (MSAs) and outside of MSAs of the 50 states, the District of Columbia, and Puerto Rico that are considered rural areas or non-rural areas under the final rule. The File also identifies whether census tracts are located in “high-needs” counties in order to determine whether tracts meet the definition of “high-needs rural regions” in the final rule.This is a MD iMAP hosted service. Find more information at https://imap.maryland.gov.Feature Service Link:https://geodata.md.gov/imap/rest/services/BusinessEconomy/MD_HousingDesignatedAreas/FeatureServer/5
Attachment regarding mAC Development, LLC, Final Approval - Cedar Grove, Phase II, 8 lots on 23 acres off of SR 1540, Jones Ferry Rd., Baldwin Township
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset summarises 40 years of seagrass data collection (1983-2022) within Torres Strait and the Gulf of Carpentaria into two GIS shapefiles: (1) a point shapefile that includes survey data for 48,612 geolocated sites, and (2) a polygon geopackage describing seagrass at 641 individual or composite meadows.
Managing seagrass resources in northern Australia requires adequate baseline information on where seagrass is (presence/absence), the mapped extent of meadows, what species are present, and date of collection. This baseline is particularly important as a reference point against which to compare seagrass loss or change through time. The scale of northern Australia and the remoteness of many seagrass meadows from human populations present a challenge for research and management agencies reporting on the state of seagrass ecological indicators. Broad-scale and repeated surveys/studies of areas are logistically and financially impractical. However seagrass data is being collected through various projects which, although designed for specific reasons, are amenable to collating a picture of the extent and state of the seagrass resource.
In this project we compiled seagrass spatial data collected during surveys in Torres Strait and the Gulf of Carpentaria into a standardised form with point-specific and meadow-specific spatial and temporal information. We revisited, evaluated, simplified, standardised, and corrected individual records, including those collected several decades ago by drawing on the knowledge of one of our authors (RG Coles) who led the early seagrass data collection and mapping programs. We also incorporate new data, such as from photo records of an aerial assessment of mangroves in the Gulf of Carpentaria in 2017. This project was funded by the National Environmental Science Programme (NESP) Marine and Coastal Hub and Torres Strait Regional Authority (TSRA) in partnership with the Centre for Tropical Water and Aquatic Ecosystem Research (TropWATER), James Cook University. The project follows on from TropWATER’s previous work compiling 35 years of seagrass spatial point data and 30 years of seagrass meadow extent data for the Great Barrier Reef World Heritage Area (GBRWHA) and adjacent estuaries, funded through successive NESP Tropical Water Quality Hub Projects 3.1 (2015-2016) and 5.4 (2018-2020). These data sets are now publicly available through the eAtlas data portal: https://doi.org/10.25909/y1yk-9w85 . In making this data publicly available for management, the authors and data custodians request being contacted and involved in decision making processes that incorporate this data, to ensure its limitations are fully understood.
Methods: The data were collected using a variety of survey methods to describe and monitor seagrass sites and meadows. For intertidal sites/meadows, these include walking, observations from helicopters in low hover, and observations from hovercraft when intertidal banks were exposed. For subtidal sites/meadows, methods included free diving, scuba diving, video transects from towed cameras attached to a sled with/without a sled net, video drops with filmed quadrats, trawl and net samples, and van Veen grab samples. These methods were selected and tailored by the data custodians to the location, habitat surveyed, and technology available. Important site and method descriptions and contextual information is contained in the original trip reports and publications for each data set provided in Table 1 of Carter et al. (2022).
Geographic Information System (GIS) Mapping data for historic records (1980s) were transcribed from original logged and mapped data based on coastal topography, dead reckoning fixes and RADAR estimations. More recent data (1990’s onwards) is GPS located. All spatial data were converted to shapefiles with the same coordinate system (GDA 1994 Geoscience Australia Lambert), then compiled into a single point shapefile and a single polygon shapefile (seagrass meadows) using ArcMap (ArcGIS version 10.8 Redlands, CA: Environmental Systems Research Institute, ESRI). Some early spatial data was offset by several hundred metres and where this occurred data was repositioned to match the current coastline projection. The satellite base map used throughout this report is courtesy ESRI 2022.
Seagrass Site Layer:
This layer contains information on data collected at assessment sites, and includes:
1. Temporal survey details – Survey month and year;
2. Spatial position - Latitude/longitude;
3. Survey name;
4. Depth for each subtidal site is m below MSL Depth and was extracted from the Australian Bathymetry and Topography Grid, June 2009 (Whiteway 2009). This approach was taken due to inconsistencies in depth recordings among data sets, e.g., converted to depth below mean sea level, direct readings from depth sounder with no conversion, or no depth recorded. Depth for intertidal sites was recorded as 0 m MSL, with an intertidal site defined as one surveyed by helicopter, walking, or hovercraft when banks were exposed during low tide;
5. Seagrass information including presence/absence of seagrass, and whether individual species were present/absent at a site;
6. Dominant sediment - Sediment type in the original data sets were based on grain size analysis or deck descriptions. For consistency, in this compilation we include only the most dominant sediment type (mud, sand, shell, rock, rubble), removed descriptors such as “fine”, “very fine”, “coarse”, etc., and replaced redundant terms, e.g. “mud” and “silt” are termed “mud”;
7. Survey methods – In this compilation we have updated and standardised the terms used to describe survey methods from the original reports; and
8. Data custodians.
Seagrass Meadow Layer: Polygons in the meadow layer are drawn from extent data collected during some surveys. Not all surveys collected meadow extent data (e.g., Torres Strait lobster surveys). The seagrass meadow layer is a composite of all the spatial polygon data we could access where meadow boundaries were mapped as part of the survey. All spatial layers were compiled into a single spatial layer using the ArcToolbox ‘merge’ function in ArcMap. Where the same meadow was surveyed multiple times as part of a long-term monitoring program, the overlapping polygons were compiled into a single polygon using the ‘merge’ function in ArcMap. Because meadows surveyed more than once were merged, there were some cases where adjacent polygons overlap each other.
Meadow Data Includes: 1. Temporal survey details – Survey month and year, or a list of survey dates for meadows repeatedly sampled; 2. Survey methods; 3. Meadow persistence – Classified into three categories: a. Unknown – Unknown persistence as the meadow was surveyed less than five times; b. Enduring – Seagrass is present in the meadow ≥90% of the surveys; c. Transitory – Seagrass is present in the meadow <90% of the surveys; 4. Meadow depth – Classified into three categories: a. Intertidal – Meadow was mapped on an exposed bank during low tide, e.g. Karumba monitoring meadow; b. Subtidal – Meadow remains completely submerged during spring low tides, e.g. Dugong Sanctuary meadow; c. Intertidal-Subtidal – Meadow includes sections that expose during low tide and sections that remain completely submerged, e.g. meadows adjacent to the Thursday Island shipping channel; 5. Dominant species of the meadow based on the most recent survey; 6. Presence or absence of individual seagrass species in a meadow; 7. Meadow density categories – Seagrass meadows were classified as light, moderate, dense, variable or unknown based on the consistency of mean above-ground biomass of the dominant species among all surveys, or percent cover of all species combined (see Table 2 in Carter et al. 2022). For example, a Halophila ovalis dominated meadow would be classed as “light” if the mean meadow biomass was always <1 gram dry weight m-2 (g DW m-2) among years, “variable” if mean meadow biomass ranged from <1 - >5 g DW m-2, and “dense” if mean meadow biomass was always >5 g DW m-2 among years. For meadows with density assessments based on both percent cover (generally from older surveys) and biomass, we assessed density categories based on the biomass data as this made the assessment comparable to a greater number of meadows, and comparable to the most recent data. Meadows with only one year of data were assigned a density category based on that year but no assessment of variability could be made and these are classified as “unknown”; 8. The minimum and maximum annual mean above-ground biomass measured in g DW m-2 (+ standard error if available) for each meadow is included for meadows with >1 year of biomass data. For meadows that were only surveyed once the mean meadow biomass (+ standard error if available) is presented as the minimum and maximum biomass of the meadow. “-9999” represents meadows where no above-ground biomass data was collected.; 9. The minimum and maximum annual mean percent cover is included for each meadow with >1 year of percent cover data. For meadows that were only surveyed once the mean meadow percent cover is presented as the minimum and maximum percent cover of the meadow. Older surveys (e.g., 1986 Gulf of Carpentaria surveys) used percent cover rather than biomass. For some surveys percent cover was estimated as discrete categories or ‘data binning’ (e.g., <10% - >50%). “-9999” represents meadows where no percent cover data was collected; 10. Meadow area survey details – The minimum, maximum and total area (hectares; ha) for each meadow: a. Total area - Total area of each meadow was estimated in the GDA 1994 Geoscience Australia Lambert projection using the ‘calculate geometry’ function in ArcMap. For meadows that were mapped multiple times, meadow area represents the merged maximum extent for
MapServer is an Open Source platform for publishing spatial data and interactive mapping applications to the web. Originally developed in the mid-1990’s at the University of Minnesota, MapServer is released under an MIT-style license, and runs on all major platforms (Windows, Linux, Mac OS X). MapServer is not a full-featured GIS system, nor does it aspire to be. See the Site Gallery for live examples of MapServer in action.
Attachment regarding request by MAC Development, LLC for subdivision sketch design approval of “Cedar Grove Subdivision – Phase V”, (Lots 29 – 35), consisting of 7 lots on 23 acres, located off S. R. 1540, Jones Ferry Road, Baldwin Township.
https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0https://ottawa.ca/en/city-hall/get-know-your-city/open-data#open-data-licence-version-2-0
This is release 2.0 of geoOttaWOW, a Minecraft world based on data sets used in geoOttawa. This version was created with Minecraft PC version 1.7.10, using software that supports version 1.7.*, with NBT version 19133. This smaller, improved version of the original release requires around 494Mb of disk space, so it will run on most common devices where Minecraft has been installed. The zip file is a folder that you will need to un-zip in your saves directory.We have given Ottawa a new spin, allowing us to have flat-sided buildings. Be creative and build the Ottawa you want. We have provided you with the base structure, and done all the heavy lifting. Now it’s up to you to fill in the blocks and add some new structures to Ottawa, or tear down the old. Build and explore Roads, Rails, Rivers, and Ottawa’s buildings in this Minecraft world. This version focuses in on the most popular areas of Ottawa in 2017 and those that will change the most in the year ahead. Starting at Ottawa City Hall users can explore the city, and create an Ottawa the way they want it to be. We have even added a few surprises, celebrating Canada 150. Enjoy your fireworks.Most popular locations
Location
X Y Z
Ottawa
City Hall
-320 53.0000
-360
Parliament
Hill
-744 57.000 -878
National
Gallery of Canada -278
50.0000
-1314
Byward
Market
-90 49.000 -1084
Rails
1557 48.000 1635
How to Load geoOttaWOW
1. Locate the Minecraft Saves directory
You will first need to locate the saved file in your Minecraft "saves" folder, as that is where downloaded game files like maps are generally stored.
What is the Minecraft "saves" folder, and how do you locate it? The folder is in your directory of Minecraft files. There are a few ways to locate it:
Using the Minecraft Launcher:
·
a.
Open the Launcher, and select Edit Profile.
·
b.
Click the Open Game Dir option. "Dir" is short for
"Directory."
·
c.
Your "saves" folder will be in the .minecraft directory.
Using Windows
·
a.
Open the Start menu and select Run.
·
b.
Type (without quotes) "%appdata%.minecraft\saves" and hit Enter.
Using Mac OS
·
a.
Open the Finder.
·
b.
Select Go and Go to Folder...
·
c.
When prompted, enter (without quotes) "~/Library/Application
Support/minecraft/saves".
Using Ubuntu Linux
·
a.
Open the File Manager in your Home directory
·
b.
In the top menu select GO and Open Location
·
c.
Type (without quotes) “/.minecraft/saves”
2. Store the Minecraft Map Files
Having located the "saves" folder, you can copy the folder to the "saves" folder.
You can also rename your downloaded map if you like by renaming the folder.
3. Launch Your Downloaded Minecraft Map
If your downloaded map has been saved in the Minecraft "saves" folder, you should be able to select it when you play Minecraft when asked to select a World from your Worlds list.
Update Frequency: Updates should be bi-annual, but will be posted as needed.Contact: GIS Team
Attachment regarding request by MAC Development, LLC for preliminary subdivision review of “Cedar Grove Subdivision – Phase V (Lots 29 – 35) on 23 acres, located off S. R. 1540, Jones Ferry Road and Cedar Grove Road, Baldwin Township.
Attachment regarding request by MAC Development Company for subdivision final plat review of “Cedar Grove, Phase IV” , Lots 18 and 24 – 28, consisting of 6 lots on 25 acres, located off SR-1540, Jones Ferry Road, and Cedar Grove Road, Baldwin Township.
Attachment regarding request by Mac Development for subdivision final approval of Cedar Grove, Phase III, consisting of five (5) lots on approximately 12 acres located off SR-1540, Jones Ferry Road, Baldwin Township.
Attachment regarding request by MAC Development, LLC for subdivision sketch and preliminary design approval of “Cedar Grove Subdivision, Phase IV”, consisting of 11 lots on 43 acres, located off S. R. 1540, Jones Ferry Road.
The Geology of the Northern Jetty Peninsula GIS dataset contains the shapefiles and tables of the basement geology of the Northern Jetty Peninsula in East Antarctica. This dataset is derived from the map product ‘Geology of Northern Jetty Peninsula, Mac.Robertson Land, Antarctica'.
Northern Jetty Peninsula, incorporating Else Platform (~140 km2) and Kamenistaja Platform (~15 km2), represents a mostly ice-free low-lying region located on the western flanks of the Lambert Graben. The region is underlain by granulite-facies Proterozoic gneisses and unmetamorphosed Permian sediments.