Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.
Facebook
TwitterDNRGPS is an update to the popular DNRGarmin application. DNRGPS and its predecessor were built to transfer data between Garmin handheld GPS receivers and GIS software.
DNRGPS was released as Open Source software with the intention that the GPS user community will become stewards of the application, initiating future modifications and enhancements.
DNRGPS does not require installation. Simply run the application .exe
See the DNRGPS application documentation for more details.
Compatible with: Windows (XP, 7, 8, 10, and 11), ArcGIS shapefiles and file geodatabases, Google Earth, most hand-held Garmin GPSs, and other NMEA output GPSs
Limited Compatibility: Interactions with ArcMap layer files and ArcMap graphics are no longer supported. Instead use shapefile or geodatabase.
Prerequisite: .NET 4 Framework
DNR Data and Software License Agreement
Subscribe to the DNRGPS announcement list to be notified of upgrades or updates.
Facebook
TwitterThe PALEOMAP project produces paleogreographic maps illustrating the Earth's plate tectonic, paleogeographic, climatic, oceanographic and biogeographic development from the Precambrian to the Modern World and beyond.
A series of digital data sets has been produced consisting of plate tectonic data, climatically sensitive lithofacies, and biogeographic data. Software has been devloped to plot maps using the PALEOMAP plate tectonic model and digital geographic data sets: PGIS/Mac, Plate Tracker for Windows 95, Paleocontinental Mapper and Editor (PCME), Earth System History GIS (ESH-GIS), PaleoGIS(uses ArcView), and PALEOMAPPER.
Teaching materials for educators including atlases, slide sets, VHS animations, JPEG images and CD-ROM digital images.
Some PALEOMAP products include: Plate Tectonic Computer Animation (VHS) illustrating motions of the continents during the last 850 million years.
Paleogeographic Atlas consisting of 20 full color paleogeographic maps. (Scotese, 1997).
Paleogeographic Atlas Slide Set (35mm)
Paleogeographic Digital Images (JPEG, PC/Mac diskettes)
Paleogeographic Digital Image Archive (EPS, PC/Mac Zip disk) consists of the complete digital archive of original digital graphic files used to produce plate tectonic and paleographic maps for the Paleographic Atlas.
GIS software such as PaleoGIS and ESH-GIS.
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 845.5(USD Million) |
| MARKET SIZE 2025 | 905.5(USD Million) |
| MARKET SIZE 2035 | 1800.0(USD Million) |
| SEGMENTS COVERED | Application, Deployment Type, End Use, Platform, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | Growing demand for 3D modeling, Increase in gaming industry, Rising adoption of virtual reality, Advancements in software technologies, Need for efficient design workflows |
| MARKET FORECAST UNITS | USD Million |
| KEY COMPANIES PROFILED | Chaos Group, Autodesk, Nemetschek, Blender Foundation, Substance by Adobe, Maya by Autodesk, Pixologic, Maxon, Solidworks, Epic Games, Esri, Foundry, CLO Virtual Fashion, Magics by Materialise, Adobe, Unity Technologies |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Rising demand in gaming industry, Increasing adoption of AR/VR technologies, Growth in 3D printing applications, Enhanced features for automation, Integration with AI tools |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 7.1% (2025 - 2035) |
Facebook
Twitterhttps://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy
| BASE YEAR | 2024 |
| HISTORICAL DATA | 2019 - 2023 |
| REGIONS COVERED | North America, Europe, APAC, South America, MEA |
| REPORT COVERAGE | Revenue Forecast, Competitive Landscape, Growth Factors, and Trends |
| MARKET SIZE 2024 | 2397.5(USD Million) |
| MARKET SIZE 2025 | 2538.9(USD Million) |
| MARKET SIZE 2035 | 4500.0(USD Million) |
| SEGMENTS COVERED | Application, Deployment Type, End User, Compatibility, Regional |
| COUNTRIES COVERED | US, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA |
| KEY MARKET DYNAMICS | increasing digitalization, growing remote collaboration, rise in visual communication, demand for user-friendly tools, integration with cloud services |
| MARKET FORECAST UNITS | USD Million |
| KEY COMPANIES PROFILED | EdrawMax, Sketch, Cacoo, Canva, Diagramly, InVision, Adobe, Gliffy, Creately, Microsoft, Miro, SmartDraw, Lucid Software, MindMeister, Visme |
| MARKET FORECAST PERIOD | 2025 - 2035 |
| KEY MARKET OPPORTUNITIES | Integration with collaboration tools, Increased adoption of remote work, Demand for user-friendly interfaces, Growth in educational software, Customization for industry-specific needs |
| COMPOUND ANNUAL GROWTH RATE (CAGR) | 5.9% (2025 - 2035) |
Facebook
Twitterhttps://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global Drone-Based Landslide Mapping market size reached USD 1.32 billion in 2024, with a robust compound annual growth rate (CAGR) of 17.8% projected from 2025 to 2033. By the end of 2033, the market is forecasted to attain a value of approximately USD 6.4 billion. This remarkable growth is primarily fueled by the rising demand for advanced geospatial solutions in disaster-prone regions, alongside technological advancements in drone hardware and analytics software, which are significantly enhancing landslide risk assessment and mitigation efforts worldwide.
The growth trajectory of the Drone-Based Landslide Mapping market is shaped by a confluence of factors. Increasing frequency and severity of landslides due to climate change have raised the stakes for timely, accurate, and cost-effective mapping solutions. Governments and private sector stakeholders are now prioritizing investments in cutting-edge drone technologies to monitor vulnerable terrains and rapidly assess post-landslide damages. Moreover, the integration of high-resolution imaging sensors, LiDAR, and AI-based analytics in drones has allowed for more precise mapping and early warning systems, reducing the risks associated with manual ground surveys and enabling faster disaster response.
Another critical driver for the market is the expanding application scope of drone-based mapping beyond disaster management. Industries such as construction, mining, agriculture, and forestry are leveraging these technologies for land surveying, slope stability analysis, and environmental monitoring. The ability of drones to access hard-to-reach or hazardous locations, coupled with real-time data transmission and processing capabilities, is transforming traditional workflows. This has significantly reduced operational costs and time, making drone-based solutions a preferred choice for both public and private entities seeking to enhance safety and operational efficiency.
The supportive regulatory environment and growing public-private partnerships are also pivotal in propelling the Drone-Based Landslide Mapping market forward. Governments across Asia Pacific, North America, and Europe have launched initiatives to modernize disaster management infrastructure, often in collaboration with technology providers and research institutes. These efforts are not only fostering innovation in drone hardware and software but also facilitating the standardization of mapping protocols and data integration with existing geospatial information systems. As a result, the market is witnessing increased adoption rates and higher investments in R&D, further accelerating its expansion.
Regionally, the Asia Pacific segment dominates the global market, accounting for over 38% of the total revenue in 2024, driven by the region’s susceptibility to landslides and rapid infrastructure development in countries like China, India, and Japan. North America follows closely, supported by advanced technological infrastructure and significant government funding for disaster management. Europe is also emerging as a key market, with a focus on environmental monitoring and sustainable land use planning. Meanwhile, Latin America and the Middle East & Africa are gradually increasing their adoption of drone-based mapping solutions, primarily in response to growing environmental and infrastructural challenges.
The solution segment of the Drone-Based Landslide Mapping market is categorized into hardware, software, and services, each playing a distinct role in the ecosystem. Hardware remains the backbone of this segment, comprising drones equipped with advanced sensors, cameras, and LiDAR systems. The evolution of drone hardware has been marked by significant improvements in flight endurance, payload capacity, and sensor accuracy, enabling more comprehensive and precise landslide mapping. Manufacturers are increasingly focusing on ruggedized designs to withstand harsh terrains, while also integrating modular payloads that allow for customized data collection based on specific project requirements.
Software solutions have witnessed exponential growth, as they are essential for processing and analyzing the vast amounts of geospatial data captured by drones. Modern mapping software leverages AI, mac
Facebook
TwitterThis CD-ROM contains digital high resolution seismic reflection data collected during the USGS ATSV 99044 cruise. The coverage is the nearshore of the northern South Carolina. The seismic-reflection data are stored as SEG-Y standard format that can be read and manipulated by most seismic-processing software. Much of the information specific to the data are contained in the headers of the SEG-Y format files. The file system format is ISO 9660 which can be read with DOS, Unix, and MAC operating systems with the appropriate CD-ROM driver software installed.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterThis is a collection of all GPS- and computer-generated geospatial data specific to the Alpine Treeline Warming Experiment (ATWE), located on Niwot Ridge, Colorado, USA. The experiment ran between 2008 and 2016, and consisted of three sites spread across an elevation gradient. Geospatial data for all three experimental sites and cone/seed collection locations are included in this package. ––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––– Geospatial files include cone collection, experimental site, seed trap, and other GPS location/terrain data. File types include ESRI shapefiles, ESRI grid files or Arc/Info binary grids, TIFFs (.tif), and keyhole markup language (.kml) files. Trimble-imported data include plain text files (.txt), Trimble COR (CorelDRAW) files, and Trimble SSF (Standard Storage Format) files. Microsoft Excel (.xlsx) and comma-separated values (.csv) files corresponding to the attribute tables of many files within this package are also included. A complete list of files can be found in this document in the “Data File Organization” section in the included Data User's Guide. Maps are also included in this data package for reference and use. These maps are separated into two categories, 2021 maps and legacy maps, which were made in 2010. Each 2021 map has one copy in portable network graphics (.png) format, and the other in .pdf format. All legacy maps are in .pdf format. .png image files can be opened with any compatible programs, such as Preview (Mac OS) and Photos (Windows). All GIS files were imported into geopackages (.gpkg) using QGIS, and double-checked for compatibility and data/attribute integrity using ESRI ArcGIS Pro. Note that files packaged within geopackages will open in ArcGIS Pro with “main.” preceding each file name, and an extra column named “geom” defining geometry type in the attribute table. The contents of each geospatial file remain intact, unless otherwise stated in “niwot_geospatial_data_list_07012021.pdf/.xlsx”. This list of files can be found as an .xlsx and a .pdf in this archive. As an open-source file format, files within gpkgs (TIFF, shapefiles, ESRI grid or “Arc/Info Binary”) can be read using both QGIS and ArcGIS Pro, and any other geospatial softwares. Text and .csv files can be read using TextEdit/Notepad/any simple text-editing software; .csv’s can also be opened using Microsoft Excel and R. .kml files can be opened using Google Maps or Google Earth, and Trimble files are most compatible with Trimble’s GPS Pathfinder Office software. .xlsx files can be opened using Microsoft Excel. PDFs can be opened using Adobe Acrobat Reader, and any other compatible programs. A selection of original shapefiles within this archive were generated using ArcMap with associated FGDC-standardized metadata (xml file format). We are including these original files because they contain metadata only accessible using ESRI programs at this time, and so that the relationship between shapefiles and xml files is maintained. Individual xml files can be opened (without a GIS-specific program) using TextEdit or Notepad. Since ESRI’s compatibility with FGDC metadata has changed since the generation of these files, many shapefiles will require upgrading to be compatible with ESRI’s latest versions of geospatial software. These details are also noted in the “niwot_geospatial_data_list_07012021” file.