Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Framing the investigation of diverse cancers as a machine learning problem has recently shown significant potential in multi-omics analysis and cancer research. Empowering these successful machine learning models are the high-quality training datasets with sufficient data volume and adequate preprocessing. However, while there exist several public data portals including The Cancer Genome Atlas (TCGA) multi-omics initiative or open-bases such as the LinkedOmics, these databases are not off-the-shelf for existing machine learning models. we propose MLOmics, an open cancer multi-omics database aiming at serving better the development and evaluation of bioinformatics and machine learning models. MLOmics contains 8,314 patient samples covering all 32 cancer types with four omics types, stratified features, and extensive baselines. Complementary support for downstream analysis and bio-knowledge linking are also included to support interdisciplinary analysis.
This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.
https://brightdata.com/licensehttps://brightdata.com/license
Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.
Xverum’s AI & ML Training Data provides one of the most extensive datasets available for AI and machine learning applications, featuring 800M B2B profiles with 100+ attributes. This dataset is designed to enable AI developers, data scientists, and businesses to train robust and accurate ML models. From natural language processing (NLP) to predictive analytics, our data empowers a wide range of industries and use cases with unparalleled scale, depth, and quality.
What Makes Our Data Unique?
Scale and Coverage: - A global dataset encompassing 800M B2B profiles from a wide array of industries and geographies. - Includes coverage across the Americas, Europe, Asia, and other key markets, ensuring worldwide representation.
Rich Attributes for Training Models: - Over 100 fields of detailed information, including company details, job roles, geographic data, industry categories, past experiences, and behavioral insights. - Tailored for training models in NLP, recommendation systems, and predictive algorithms.
Compliance and Quality: - Fully GDPR and CCPA compliant, providing secure and ethically sourced data. - Extensive data cleaning and validation processes ensure reliability and accuracy.
Annotation-Ready: - Pre-structured and formatted datasets that are easily ingestible into AI workflows. - Ideal for supervised learning with tagging options such as entities, sentiment, or categories.
How Is the Data Sourced? - Publicly available information gathered through advanced, GDPR-compliant web aggregation techniques. - Proprietary enrichment pipelines that validate, clean, and structure raw data into high-quality datasets. This approach ensures we deliver comprehensive, up-to-date, and actionable data for machine learning training.
Primary Use Cases and Verticals
Natural Language Processing (NLP): Train models for named entity recognition (NER), text classification, sentiment analysis, and conversational AI. Ideal for chatbots, language models, and content categorization.
Predictive Analytics and Recommendation Systems: Enable personalized marketing campaigns by predicting buyer behavior. Build smarter recommendation engines for ecommerce and content platforms.
B2B Lead Generation and Market Insights: Create models that identify high-value leads using enriched company and contact information. Develop AI systems that track trends and provide strategic insights for businesses.
HR and Talent Acquisition AI: Optimize talent-matching algorithms using structured job descriptions and candidate profiles. Build AI-powered platforms for recruitment analytics.
How This Product Fits Into Xverum’s Broader Data Offering Xverum is a leading provider of structured, high-quality web datasets. While we specialize in B2B profiles and company data, we also offer complementary datasets tailored for specific verticals, including ecommerce product data, job listings, and customer reviews. The AI Training Data is a natural extension of our core capabilities, bridging the gap between structured data and machine learning workflows. By providing annotation-ready datasets, real-time API access, and customization options, we ensure our clients can seamlessly integrate our data into their AI development processes.
Why Choose Xverum? - Experience and Expertise: A trusted name in structured web data with a proven track record. - Flexibility: Datasets can be tailored for any AI/ML application. - Scalability: With 800M profiles and more being added, you’ll always have access to fresh, up-to-date data. - Compliance: We prioritize data ethics and security, ensuring all data adheres to GDPR and other legal frameworks.
Ready to supercharge your AI and ML projects? Explore Xverum’s AI Training Data to unlock the potential of 800M global B2B profiles. Whether you’re building a chatbot, predictive algorithm, or next-gen AI application, our data is here to help.
Contact us for sample datasets or to discuss your specific needs.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.
GitHub page: https://github.com/soarsmu/NICHE
UCI Machine Learning Repository is a collection of over 550 datasets.
Factori's AI & ML training data is thoroughly tested and reviewed to ensure that what you receive on your end is of the best quality.
Integrate the comprehensive AI & ML training data provided by Grepsr and develop a superior AI & ML model.
Whether you're training algorithms for natural language processing, sentiment analysis, or any other AI application, we can deliver comprehensive datasets tailored to fuel your machine learning initiatives.
Enhanced Data Quality: We have rigorous data validation processes and also conduct quality assurance checks to guarantee the integrity and reliability of the training data for you to develop the AI & ML models.
Gain a competitive edge, drive innovation, and unlock new opportunities by leveraging the power of tailored Artificial Intelligence and Machine Learning training data with Factori.
We offer web activity data of users that are browsing popular websites around the world. This data can be used to analyze web behavior across the web and build highly accurate audience segments based on web activity for targeting ads based on interest categories and search/browsing intent.
Web Data Reach: Our reach data represents the total number of data counts available within various categories and comprises attributes such as Country, Anonymous ID, IP addresses, Search Query, and so on.
Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method at a suitable interval (daily/weekly/monthly).
Data Attributes: Anonymous_id IDType Timestamp Estid Ip userAgent browserFamily deviceType Os Url_metadata_canonical_url Url_metadata_raw_query_params refDomain mappedEvent Channel searchQuery Ttd_id Adnxs_id Keywords Categories Entities Concepts
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Developments in Artificial Intelligence (AI) have had an enormous impact on scientific research in recent years. Yet, relatively few robust methods have been reported in the field of structure-based drug discovery. To train AI models to abstract from structural data, highly curated and precise biomolecule-ligand interaction datasets are urgently needed. We present MISATO, a curated dataset of almost 20000 experimental structures of protein-ligand complexes, associated molecular dynamics traces, and electronic properties. Semi-empirical quantum mechanics was used to systematically refine protonation states of proteins and small molecule ligands. Molecular dynamics traces for protein-ligand complexes were obtained in explicit water. The dataset is made readily available to the scientific community via simple python data-loaders. AI baseline models are provided for dynamical and electronic properties. This highly curated dataset is expected to enable the next-generation of AI models for structure-based drug discovery. Our vision is to make MISATO the first step of a vibrant community project for the development of powerful AI-based drug discovery tools.
Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and 5 of “A Plan for the North American Bat Monitoring Program” (https://doi.org/10.2737/SRS-GTR-208). These data were then post-processed by bat monitoring partners to remove noise files (or those that do not contain recognizable bat calls) and apply a species label to each file. There is undoubtedly variation in the steps that monitoring partners take to apply a species label, but the steps documented in “A Guide to Processing Bat Acoustic Data for the North American Bat Monitoring Program” (https://doi.org/10.3133/ofr20181068) include first processing with an automated classifier and then manually reviewing to confirm or downgrade the suggested species label. Once a manual ID label was applied, audio files of bat acoustic recordings were submitted to the NABat database in Waveform Audio File format. From these available files in the NABat database, we considered files from 35 classes (34 species and a noise class). Files for 4 species were excluded due to low sample size (Corynorhinus rafinesquii, N=3; Eumops floridanus, N =3; Lasiurus xanthinus, N = 4; Nyctinomops femorosaccus, N =11). From this pool, files were randomly selected until files for each species/grid cell combination were exhausted or the number of recordings reach 1250. The dataset was then randomly split into training, validation, and test sets (i.e., holdout dataset). This data release includes all files considered for training and validation, including files that had been excluded from model development and testing due to low sample size for a given species or because the threshold for species/grid cell combinations had been met. The test set (i.e., holdout dataset) is not included. Audio files are grouped by species, as indicated by the four-letter species code in the name of each folder. Definitions for each four-letter code, including Family, Genus, Species, and Common name, are also included as a dataset in this release.
prsdm/Machine-Learning-QA-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
SYNERGY is a free and open dataset on study selection in systematic reviews, comprising 169,288 academic works from 26 systematic reviews. Only 2,834 (1.67%) of the academic works in the binary classified dataset are included in the systematic reviews. This makes the SYNERGY dataset a unique dataset for the development of information retrieval algorithms, especially for sparse labels. Due to the many available variables available per record (i.e. titles, abstracts, authors, references, topics), this dataset is useful for researchers in NLP, machine learning, network analysis, and more. In total, the dataset contains 82,668,134 trainable data points. The easiest way to get the SYNERGY dataset is via the synergy-dataset Python package. See https://github.com/asreview/synergy-dataset for all information.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
three of these models are available:
US Deep Learning Market Size 2025-2029
The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.
The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights.
However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability.
What will be the Size of the market During the Forecast Period?
Request Free Sample
Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.
In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.
How is this market segmented and which is the largest segment?
The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.
Application
Image recognition
Voice recognition
Video surveillance and diagnostics
Data mining
Type
Software
Services
Hardware
End-user
Security
Automotive
Healthcare
Retail and commerce
Others
Geography
North America
US
By Application Insights
The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.
Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
According to our latest research, the global In-Database Machine Learning market size reached USD 2.77 billion in 2024. The market is exhibiting robust momentum, with a compound annual growth rate (CAGR) of 28.4% projected over the forecast period. By 2033, the In-Database Machine Learning market is expected to escalate to USD 21.13 billion globally, driven by increasing enterprise adoption of advanced analytics and artificial intelligence embedded directly within databases. This exponential growth is fueled by the surging demand for real-time data processing, operational efficiency, and the seamless integration of machine learning (ML) models within business-critical applications.
A significant growth factor in the In-Database Machine Learning market is the rising need for organizations to derive actionable insights from massive volumes of data in real time. Traditional machine learning workflows often require extracting data from databases, leading to latency, security risks, and operational bottlenecks. In-database machine learning addresses these challenges by enabling ML algorithms to operate directly where the data resides, eliminating the need for data movement. This approach not only accelerates the analytics lifecycle but also enhances data security and compliance, which is particularly crucial in regulated industries such as banking, healthcare, and finance. Organizations are increasingly recognizing the strategic value of embedding ML capabilities within their database environments to unlock deeper insights, automate decision-making, and drive competitive advantage.
Another pivotal driver is the evolution of database technologies and the proliferation of cloud-based database platforms. Modern relational and NoSQL databases are now equipped with native machine learning functionalities, making it easier for enterprises to deploy, train, and operationalize ML models at scale. The shift towards cloud-based and hybrid database infrastructures further amplifies the adoption of in-database ML, as organizations seek scalable and flexible solutions that can handle diverse data types and workloads. Vendors are responding by offering integrated ML toolkits and APIs, lowering the entry barrier for data scientists and business analysts. Furthermore, the convergence of big data, artificial intelligence, and advanced analytics is fostering innovation, enabling organizations to tackle complex use cases such as fraud detection, predictive maintenance, and personalized customer experiences.
The increasing emphasis on digital transformation across industries is also propelling the growth of the In-Database Machine Learning market. Enterprises are under pressure to modernize their data architectures and leverage AI-driven insights to optimize operations, reduce costs, and enhance customer engagement. In-database ML empowers organizations to streamline their analytics workflows, achieve real-time intelligence, and respond swiftly to market changes. The technology’s ability to scale across large datasets and integrate seamlessly with existing business processes makes it an attractive proposition for both large enterprises and small and medium-sized enterprises (SMEs). As a result, investments in in-database ML solutions are expected to surge, with vendors continuously innovating to deliver enhanced performance, automation, and explainability.
From a regional perspective, North America currently leads the global In-Database Machine Learning market, accounting for the largest revenue share in 2024. This dominance is attributed to the region’s advanced IT infrastructure, high adoption of cloud technologies, and the strong presence of leading technology vendors. Europe follows closely, driven by stringent data privacy regulations and growing investments in AI-driven analytics across sectors such as BFSI, healthcare, and manufacturing. The Asia Pacific region is emerging as a high-growth market, propelled by rapid digitalization, expanding enterprise data volumes, and government initiatives to foster AI innovation. Latin America and the Middle East & Africa are also witnessing increased adoption, albeit at a slower pace, as organizations in these regions gradually embrace data-driven decision-making and cloud-based analytics platforms.
The In-Database Machine Learning market is segmented by component into Software and S
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.
The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.
Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.
The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.
Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).
As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).
The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The dataset is used to train machine learning model for the study of passivation effect of small molecules
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is an extension of my previous work on creating a dataset for natural language processing tasks. It leverages binary representation to characterise various machine learning models. The attributes in the dataset are derived from a dictionary, which was constructed from a corpus of prompts typically provided to a large language model (LLM). These prompts reference specific machine learning algorithms and their implementations. For instance, consider a user asking an LLM or a generative AI to create a Multi-Layer Perceptron (MLP) model for a particular application. By applying this concept to multiple machine learning models, we constructed our corpus. This corpus was then transformed into the current dataset using a bag-of-words approach. In this dataset, each attribute corresponds to a word from our dictionary, represented as a binary value: 1 indicates the presence of the word in a given prompt, and 0 indicates its absence. At the end of each entry, there is a label. Each entry in the dataset pertains to a single class, where each class represents a distinct machine learning model or algorithm. This dataset is intended for multi-class classification tasks, not multi-label classification, as each entry is associated with only one label and does not belong to multiple labels simultaneously. This dataset has been utilised with a Convolutional Neural Network (CNN) using the Keras Automodel API, achieving impressive training and testing accuracy rates exceeding 97%. Post-training, the model's predictive performance was rigorously evaluated in a production environment, where it continued to demonstrate exceptional accuracy. For this evaluation, we employed a series of questions, which are listed below. These questions were intentionally designed to be similar to ensure that the model can effectively distinguish between different machine learning models, even when the prompts are closely related.
KNN How would you create a KNN model to classify emails as spam or not spam based on their content and metadata? How could you implement a KNN model to classify handwritten digits using the MNIST dataset? How would you use a KNN approach to build a recommendation system for suggesting movies to users based on their ratings and preferences? How could you employ a KNN algorithm to predict the price of a house based on features such as its location, size, and number of bedrooms etc? Can you create a KNN model for classifying different species of flowers based on their petal length, petal width, sepal length, and sepal width? How would you utilise a KNN model to predict the sentiment (positive, negative, or neutral) of text reviews or comments? Can you create a KNN model for me that could be used in malware classification? Can you make me a KNN model that can detect a network intrusion when looking at encrypted network traffic? Can you make a KNN model that would predict the stock price of a given stock for the next week? Can you create a KNN model that could be used to detect malware when using a dataset relating to certain permissions a piece of software may have access to?
Decision Tree Can you describe the steps involved in building a decision tree model to classify medical images as malignant or benign for cancer diagnosis and return a model for me? How can you utilise a decision tree approach to develop a model for classifying news articles into different categories (e.g., politics, sports, entertainment) based on their textual content? What approach would you take to create a decision tree model for recommending personalised university courses to students based on their academic strengths and weaknesses? Can you describe how to create a decision tree model for identifying potential fraud in financial transactions based on transaction history, user behaviour, and other relevant data? In what ways might you apply a decision tree model to classify customer complaints into different categories determining the severity of language used? Can you create a decision tree classifier for me? Can you make me a decision tree model that will help me determine the best course of action across a given set of strategies? Can you create a decision tree model for me that can recommend certain cars to customers based on their preferences and budget? How can you make a decision tree model that will predict the movement of star constellations in the sky based on data provided by the NASA website? How do I create a decision tree for time-series forecasting?
Random Forest Can you describe the steps involved in building a random forest model to classify different types of anomalies in network traffic data for cybersecurity purposes and return the code for me? In what ways could you implement a random forest model to predict the severity of traffic congestion in urban areas based on historical traffic patterns, weather...
The open dataset, software, and other files accompanying the manuscript "An Open Combinatorial Diffraction Dataset Including Consensus Human and Machine Learning Labels with Quantified Uncertainty for Training New Machine Learning Models," submitted for publication to Integrated Materials and Manufacturing Innovations.Machine learning and autonomy are increasingly prevalent in materials science, but existing models are often trained or tuned using idealized data as absolute ground truths. In actual materials science, "ground truth" is often a matter of interpretation and is more readily determined by consensus. Here we present the data, software, and other files for a study using as-obtained diffraction data as a test case for evaluating the performance of machine learning models in the presence of differing expert opinions. We demonstrate that experts with similar backgrounds can disagree greatly even for something as intuitive as using diffraction to identify the start and end of a phase transformation. We then use a logarithmic likelihood method to evaluate the performance of machine learning models in relation to the consensus expert labels and their variance. We further illustrate this method's efficacy in ranking a number of state-of-the-art phase mapping algorithms. We propose a materials data challenge centered around the problem of evaluating models based on consensus with uncertainty. The data, labels, and code used in this study are all available online at data.gov, and the interested reader is encouraged to replicate and improve the existing models or to propose alternative methods for evaluating algorithmic performance.
FileMarket provides premium Large Language Model (LLM) Data designed to support and enhance a wide range of AI applications. Our globally sourced LLM Data sets are meticulously curated to ensure high quality, diversity, and accuracy, making them ideal for training robust and reliable language models. In addition to LLM Data, we also offer comprehensive datasets across Object Detection Data, Machine Learning (ML) Data, Deep Learning (DL) Data, and Biometric Data. Each dataset is carefully crafted to meet the specific needs of cutting-edge AI and machine learning projects.
Key use cases of our Large Language Model (LLM) Data:
Text generation Chatbots and virtual assistants Machine translation Sentiment analysis Speech recognition Content summarization Why choose FileMarket's data:
Object Detection Data: Essential for training AI in image and video analysis. Machine Learning (ML) Data: Ideal for a broad spectrum of applications, from predictive analysis to NLP. Deep Learning (DL) Data: Designed to support complex neural networks and deep learning models. Biometric Data: Specialized for facial recognition, fingerprint analysis, and other biometric applications. FileMarket's premier sources for top-tier Large Language Model (LLM) Data and other specialized datasets ensure your AI projects drive innovation and achieve success across various applications.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In practical media distribution systems
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Framing the investigation of diverse cancers as a machine learning problem has recently shown significant potential in multi-omics analysis and cancer research. Empowering these successful machine learning models are the high-quality training datasets with sufficient data volume and adequate preprocessing. However, while there exist several public data portals including The Cancer Genome Atlas (TCGA) multi-omics initiative or open-bases such as the LinkedOmics, these databases are not off-the-shelf for existing machine learning models. we propose MLOmics, an open cancer multi-omics database aiming at serving better the development and evaluation of bioinformatics and machine learning models. MLOmics contains 8,314 patient samples covering all 32 cancer types with four omics types, stratified features, and extensive baselines. Complementary support for downstream analysis and bio-knowledge linking are also included to support interdisciplinary analysis.