100+ datasets found
  1. d

    A Dataset for Machine Learning Algorithm Development

    • catalog.data.gov
    • fisheries.noaa.gov
    Updated May 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (Point of Contact, Custodian) (2024). A Dataset for Machine Learning Algorithm Development [Dataset]. https://catalog.data.gov/dataset/a-dataset-for-machine-learning-algorithm-development2
    Explore at:
    Dataset updated
    May 1, 2024
    Dataset provided by
    (Point of Contact, Custodian)
    Description

    This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.

  2. Machine Learning Dataset

    • brightdata.com
    .json, .csv, .xlsx
    Updated Jun 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bright Data (2024). Machine Learning Dataset [Dataset]. https://brightdata.com/products/datasets/machine-learning
    Explore at:
    .json, .csv, .xlsxAvailable download formats
    Dataset updated
    Jun 19, 2024
    Dataset authored and provided by
    Bright Datahttps://brightdata.com/
    License

    https://brightdata.com/licensehttps://brightdata.com/license

    Area covered
    Worldwide
    Description

    Utilize our machine learning datasets to develop and validate your models. Our datasets are designed to support a variety of machine learning applications, from image recognition to natural language processing and recommendation systems. You can access a comprehensive dataset or tailor a subset to fit your specific requirements, using data from a combination of various sources and websites, including custom ones. Popular use cases include model training and validation, where the dataset can be used to ensure robust performance across different applications. Additionally, the dataset helps in algorithm benchmarking by providing extensive data to test and compare various machine learning algorithms, identifying the most effective ones for tasks such as fraud detection, sentiment analysis, and predictive maintenance. Furthermore, it supports feature engineering by allowing you to uncover significant data attributes, enhancing the predictive accuracy of your machine learning models for applications like customer segmentation, personalized marketing, and financial forecasting.

  3. Data from: MLOmics: Cancer Multi-Omics Database for Machine Learning

    • figshare.com
    bin
    Updated May 25, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rikuto Kotoge (2025). MLOmics: Cancer Multi-Omics Database for Machine Learning [Dataset]. http://doi.org/10.6084/m9.figshare.28729127.v2
    Explore at:
    binAvailable download formats
    Dataset updated
    May 25, 2025
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Rikuto Kotoge
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Framing the investigation of diverse cancers as a machine learning problem has recently shown significant potential in multi-omics analysis and cancer research. Empowering these successful machine learning models are the high-quality training datasets with sufficient data volume and adequate preprocessing. However, while there exist several public data portals including The Cancer Genome Atlas (TCGA) multi-omics initiative or open-bases such as the LinkedOmics, these databases are not off-the-shelf for existing machine learning models. we propose MLOmics, an open cancer multi-omics database aiming at serving better the development and evaluation of bioinformatics and machine learning models. MLOmics contains 8,314 patient samples covering all 32 cancer types with four omics types, stratified features, and extensive baselines. Complementary support for downstream analysis and bio-knowledge linking are also included to support interdisciplinary analysis.

  4. U

    Training dataset for NABat Machine Learning V1.0

    • data.usgs.gov
    • catalog.data.gov
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Benjamin Gotthold; Ali Khalighifar; Bethany Straw; Brian Reichert, Training dataset for NABat Machine Learning V1.0 [Dataset]. http://doi.org/10.5066/P969TX8F
    Explore at:
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Benjamin Gotthold; Ali Khalighifar; Bethany Straw; Brian Reichert
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    Jul 18, 2012 - Jun 17, 2021
    Description

    Bats play crucial ecological roles and provide valuable ecosystem services, yet many populations face serious threats from various ecological disturbances. The North American Bat Monitoring Program (NABat) aims to assess status and trends of bat populations while developing innovative and community-driven conservation solutions using its unique data and technology infrastructure. To support scalability and transparency in the NABat acoustic data pipeline, we developed a fully-automated machine-learning algorithm. This dataset includes audio files of bat echolocation calls that were considered to develop V1.0 of the NABat machine-learning algorithm, however the test set (i.e., holdout dataset) has been excluded from this release. These recordings were collected by various bat monitoring partners across North America using ultrasonic acoustic recorders for stationary acoustic and mobile acoustic surveys. For more information on how these surveys may be conducted, see Chapters 4 and ...

  5. m

    Data for: MACHINE LEARNING IN MEDICINE: CLASSIFICATION AND PREDICTION OF...

    • data.mendeley.com
    Updated Jul 2, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gopi Battineni (2019). Data for: MACHINE LEARNING IN MEDICINE: CLASSIFICATION AND PREDICTION OF DEMENTIA BY SUPPORT VECTOR MACHINES (SVM) [Dataset]. http://doi.org/10.17632/tsy6rbc5d4.1
    Explore at:
    Dataset updated
    Jul 2, 2019
    Authors
    Gopi Battineni
    License

    Attribution-NonCommercial 3.0 (CC BY-NC 3.0)https://creativecommons.org/licenses/by-nc/3.0/
    License information was derived automatically

    Description

    This set consists of a longitudinal collection of 150 subjects aged 60 to 96. Each subject was scanned on two or more visits, separated by at least one year for a total of 373 imaging sessions. For each subject, 3 or 4 individual T1-weighted MRI scans obtained in single scan sessions are included. The subjects are all right-handed and include both men and women. 72 of the subjects were characterized as nondemented throughout the study. 64 of the included subjects were characterized as demented at the time of their initial visits and remained so for subsequent scans, including 51 individuals with mild to moderate Alzheimer’s disease. Another 14 subjects were characterized as nondemented at the time of their initial visit and were subsequently characterized as demented at a later visit.

  6. D

    SYNERGY - Open machine learning dataset on study selection in systematic...

    • dataverse.nl
    csv, json, txt, zip
    Updated Apr 24, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot (2023). SYNERGY - Open machine learning dataset on study selection in systematic reviews [Dataset]. http://doi.org/10.34894/HE6NAQ
    Explore at:
    txt(212), json(702), zip(16028323), json(19426), txt(263), zip(3560967), txt(305), json(470), txt(279), zip(2355371), json(23201), csv(460956), txt(200), json(685), json(546), csv(63996), zip(2989015), zip(5749455), txt(331), txt(315), json(691), json(23775), csv(672721), json(468), txt(415), json(22778), csv(31919), csv(746832), json(18392), zip(62992826), csv(234822), txt(283), zip(34788857), json(475), txt(242), json(533), csv(42227), json(24548), zip(738232), json(22477), json(25491), zip(11463283), json(17741), csv(490660), json(19662), json(578), csv(19786), zip(14708207), zip(24619707), zip(2404439), json(713), json(27224), json(679), json(26426), txt(185), json(906), zip(18534723), json(23550), txt(266), txt(317), zip(6019723), json(33943), txt(436), csv(388378), json(469), zip(2106498), txt(320), csv(451336), txt(338), zip(19428163), json(14326), json(31652), txt(299), csv(96153), txt(220), csv(114789), json(15452), csv(5372708), json(908), csv(317928), csv(150923), json(465), csv(535584), json(26090), zip(8164831), json(19633), txt(316), json(23494), csv(133950), json(18638), csv(3944082), json(15345), json(473), zip(4411063), zip(10396095), zip(835096), txt(255), json(699), csv(654705), txt(294), csv(989865), zip(1028035), txt(322), zip(15085090), txt(237), txt(310), json(756), json(30628), json(19490), json(25908), txt(401), json(701), zip(5543909), json(29397), zip(14007470), json(30058), zip(58869042), csv(852937), json(35711), csv(298011), csv(187163), txt(258), zip(3526740), json(568), json(21552), zip(66466788), csv(215250), json(577), csv(103010), txt(306), zip(11840006)Available download formats
    Dataset updated
    Apr 24, 2023
    Dataset provided by
    DataverseNL
    Authors
    Jonathan De Bruin; Jonathan De Bruin; Yongchao Ma; Yongchao Ma; Gerbrich Ferdinands; Gerbrich Ferdinands; Jelle Teijema; Jelle Teijema; Rens Van de Schoot; Rens Van de Schoot
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    SYNERGY is a free and open dataset on study selection in systematic reviews, comprising 169,288 academic works from 26 systematic reviews. Only 2,834 (1.67%) of the academic works in the binary classified dataset are included in the systematic reviews. This makes the SYNERGY dataset a unique dataset for the development of information retrieval algorithms, especially for sparse labels. Due to the many available variables available per record (i.e. titles, abstracts, authors, references, topics), this dataset is useful for researchers in NLP, machine learning, network analysis, and more. In total, the dataset contains 82,668,134 trainable data points. The easiest way to get the SYNERGY dataset is via the synergy-dataset Python package. See https://github.com/asreview/synergy-dataset for all information.

  7. A

    AI Training Data Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Aug 8, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). AI Training Data Report [Dataset]. https://www.datainsightsmarket.com/reports/ai-training-data-1500199
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Aug 8, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The AI training data market is experiencing robust growth, driven by the increasing adoption of artificial intelligence across diverse sectors. The market's expansion is fueled by the escalating demand for high-quality data to train sophisticated AI models, enabling improved accuracy and performance in applications like computer vision, natural language processing, and machine learning. The market size in 2025 is estimated at $15 billion, projecting a Compound Annual Growth Rate (CAGR) of 25% from 2025 to 2033. This significant growth trajectory is underpinned by several key factors: the proliferation of AI-powered applications across industries, advancements in AI algorithms requiring larger and more diverse datasets, and the rising availability of data annotation tools and platforms. However, challenges remain, including data privacy concerns, the high cost of data acquisition and annotation, and the need for skilled professionals to manage and curate these vast datasets. The market is segmented by data type (text, image, video, audio), application (autonomous vehicles, healthcare, finance), and region, with North America currently holding the largest market share due to early adoption of AI technologies and the presence of major technology companies. Key players in the market, such as Google (Kaggle), Amazon Web Services, Microsoft, and Appen Limited, are strategically investing in developing advanced data annotation tools and expanding their data acquisition capabilities to cater to this burgeoning demand. The competitive landscape is characterized by both established players and emerging startups, leading to innovation in data acquisition techniques, data quality control, and the development of specialized data annotation services. The future of the market is poised for further expansion, driven by the growing adoption of AI in emerging technologies like the metaverse and the Internet of Things (IoT), along with increasing government investments in AI research and development. Addressing data privacy concerns and fostering ethical data collection practices will be crucial to sustainable growth in the coming years. This will involve greater transparency and robust regulatory frameworks.

  8. d

    Factori Machine Learning (ML) Data | 247 Countries Coverage | 5.2 B Event...

    • datarade.ai
    .csv
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Factori, Factori Machine Learning (ML) Data | 247 Countries Coverage | 5.2 B Event per Day [Dataset]. https://datarade.ai/data-products/factori-ai-ml-training-data-web-data-machine-learning-d-factori
    Explore at:
    .csvAvailable download formats
    Dataset authored and provided by
    Factori
    Area covered
    Uzbekistan, Cameroon, Sweden, Egypt, Faroe Islands, Austria, Japan, Palestine, Taiwan, Turks and Caicos Islands
    Description

    Factori's AI & ML training data is thoroughly tested and reviewed to ensure that what you receive on your end is of the best quality.

    Integrate the comprehensive AI & ML training data provided by Grepsr and develop a superior AI & ML model.

    Whether you're training algorithms for natural language processing, sentiment analysis, or any other AI application, we can deliver comprehensive datasets tailored to fuel your machine learning initiatives.

    Enhanced Data Quality: We have rigorous data validation processes and also conduct quality assurance checks to guarantee the integrity and reliability of the training data for you to develop the AI & ML models.

    Gain a competitive edge, drive innovation, and unlock new opportunities by leveraging the power of tailored Artificial Intelligence and Machine Learning training data with Factori.

    We offer web activity data of users that are browsing popular websites around the world. This data can be used to analyze web behavior across the web and build highly accurate audience segments based on web activity for targeting ads based on interest categories and search/browsing intent.

    Web Data Reach: Our reach data represents the total number of data counts available within various categories and comprises attributes such as Country, Anonymous ID, IP addresses, Search Query, and so on.

    Data Export Methodology: Since we collect data dynamically, we provide the most updated data and insights via a best-suited method at a suitable interval (daily/weekly/monthly).

    Data Attributes: Anonymous_id IDType Timestamp Estid Ip userAgent browserFamily deviceType Os Url_metadata_canonical_url Url_metadata_raw_query_params refDomain mappedEvent Channel searchQuery Ttd_id Adnxs_id Keywords Categories Entities Concepts

  9. m

    Machine learning for corrosion database

    • data.mendeley.com
    Updated Oct 26, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Leonardo Bertolucci Coelho (2021). Machine learning for corrosion database [Dataset]. http://doi.org/10.17632/jfn8yhrphd.1
    Explore at:
    Dataset updated
    Oct 26, 2021
    Authors
    Leonardo Bertolucci Coelho
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This database was firstly created for the scientific article entitled: "Reviewing Machine Learning of corrosion prediction: a data-oriented perspective"

    L.B. Coelho 1 , D. Zhang 2 , Y.V. Ingelgem 1 , D. Steckelmacher 3 , A. Nowé 3 , H.A. Terryn 1

    1 Department of Materials and Chemistry, Research Group Electrochemical and Surface Engineering, Vrije Universiteit Brussel, Brussels, Belgium 2 A Beijing Advanced Innovation Center for Materials Genome Engineering, National Materials Corrosion and Protection Data Center, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, China 3 VUB Artificial Intelligence Lab, Vrije Universiteit Brussel, Brussels, Belgium

    Different metrics are possible to evaluate the prediction accuracy of regression models. However, only papers providing relative metrics (MAPE, R²) were included in this database. We tried as much as possible to include descriptors of all major ML procedure steps, including data collection (“Data acquisition”), data cleaning feature engineering (“Feature reduction”), model validation (“Train-Test split”*), etc.

    *the total dataset is typically split into training sets and testing (unknown data) sets for performance evaluation of the model. Nonetheless, sometimes only the training or the testing performances were reported (“?” marks were added in the respective evaluation metric field(s)). The “Average R²” was sometimes considered for studies employing “CV” (cross-validation) on the dataset. For a detailed description of the ML basic procedures, the reader could refer to the References topic in the Review article.

  10. h

    Machine-Learning-QA-dataset

    • huggingface.co
    Updated Jan 11, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Prasad Mahamulkar (2025). Machine-Learning-QA-dataset [Dataset]. https://huggingface.co/datasets/prsdm/Machine-Learning-QA-dataset
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Jan 11, 2025
    Authors
    Prasad Mahamulkar
    Description

    prsdm/Machine-Learning-QA-dataset dataset hosted on Hugging Face and contributed by the HF Datasets community

  11. f

    Data from: NICHE: A Curated Dataset of Engineered Machine Learning Projects...

    • figshare.com
    txt
    Updated May 30, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO (2023). NICHE: A Curated Dataset of Engineered Machine Learning Projects in Python [Dataset]. http://doi.org/10.6084/m9.figshare.21967265.v1
    Explore at:
    txtAvailable download formats
    Dataset updated
    May 30, 2023
    Dataset provided by
    figshare
    Authors
    Ratnadira Widyasari; Zhou YANG; Ferdian Thung; Sheng Qin Sim; Fiona Wee; Camellia Lok; Jack Phan; Haodi Qi; Constance Tan; Qijin Tay; David LO
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Machine learning (ML) has gained much attention and has been incorporated into our daily lives. While there are numerous publicly available ML projects on open source platforms such as GitHub, there have been limited attempts in filtering those projects to curate ML projects of high quality. The limited availability of such high-quality dataset poses an obstacle to understanding ML projects. To help clear this obstacle, we present NICHE, a manually labelled dataset consisting of 572 ML projects. Based on evidences of good software engineering practices, we label 441 of these projects as engineered and 131 as non-engineered. In this repository we provide "NICHE.csv" file that contains the list of the project names along with their labels, descriptive information for every dimension, and several basic statistics, such as the number of stars and commits. This dataset can help researchers understand the practices that are followed in high-quality ML projects. It can also be used as a benchmark for classifiers designed to identify engineered ML projects.

    GitHub page: https://github.com/soarsmu/NICHE

  12. Machine Learning Materials Datasets

    • figshare.com
    txt
    Updated Sep 11, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dane Morgan (2018). Machine Learning Materials Datasets [Dataset]. http://doi.org/10.6084/m9.figshare.7017254.v5
    Explore at:
    txtAvailable download formats
    Dataset updated
    Sep 11, 2018
    Dataset provided by
    Figsharehttp://figshare.com/
    Authors
    Dane Morgan
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Description

    Three datasets are intended to be used for exploring machine learning applications in materials science. They are formatted in simple form and in particular for easy input into the MAterials Simulation Toolkit - Machine Learning (MAST-ML) package (see https://github.com/uw-cmg/MAST-ML).Each dataset is a materials property of interest and associated descriptors. For detailed information, please see the attached REAME text file.The first dataset for dilute solute diffusion can be used to predict an effective diffusion barrier for a solute element moving through another host element. The dataset has been calculated with DFT methods.The second dataset for perovskite stability gives energies of compostions of potential perovskite materials relative to the convex hull calculated with DFT. The perovskite dataset also includes columns with information about the A site, B site, and X site in the perovskite structure in order to perform more advanced grouping of the data.The third dataset is a metallic glasses dataset which has values of reduced glass transition temperature (Trg) for a variety of metallic alloys. An additional column is included for majority element for each alloy, which can be an interesting property to group on during tests.

  13. Data from: Code4ML: a Large-scale Dataset of annotated Machine Learning Code...

    • zenodo.org
    csv
    Updated Sep 15, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Anonymous authors; Anonymous authors (2023). Code4ML: a Large-scale Dataset of annotated Machine Learning Code [Dataset]. http://doi.org/10.5281/zenodo.6607065
    Explore at:
    csvAvailable download formats
    Dataset updated
    Sep 15, 2023
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Anonymous authors; Anonymous authors
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    We present Code4ML: a Large-scale Dataset of annotated Machine Learning Code, a corpus of Python code snippets, competition summaries, and data descriptions from Kaggle.

    The data is organized in a table structure. Code4ML includes several main objects: competitions information, raw code blocks collected form Kaggle and manually marked up snippets. Each table has a .csv format.

    Each competition has the text description and metadata, reflecting competition and used dataset characteristics as well as evaluation metrics (competitions.csv). The corresponding datasets can be loaded using Kaggle API and data sources.

    The code blocks themselves and their metadata are collected to the data frames concerning the publishing year of the initial kernels. The current version of the corpus includes two code blocks files: snippets from kernels up to the 2020 year (сode_blocks_upto_20.csv) and those from the 2021 year (сode_blocks_21.csv) with corresponding metadata. The corpus consists of 2 743 615 ML code blocks collected from 107 524 Jupyter notebooks.

    Marked up code blocks have the following metadata: anonymized id, the format of the used data (for example, table or audio), the id of the semantic type, a flag for the code errors, the estimated relevance to the semantic class (from 1 to 5), the id of the parent notebook, and the name of the competition. The current version of the corpus has ~12 000 labeled snippets (markup_data_20220415.csv).

    As marked up code blocks data contains the numeric id of the code block semantic type, we also provide a mapping from this number to semantic type and subclass (actual_graph_2022-06-01.csv).

    The dataset can help solve various problems, including code synthesis from a prompt in natural language, code autocompletion, and semantic code classification.

  14. d

    Data from: Machine-learning model predictions and groundwater-quality...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Machine-learning model predictions and groundwater-quality rasters of specific conductance, total dissolved solids, and chloride in aquifers of the Mississippi Embayment [Dataset]. https://catalog.data.gov/dataset/machine-learning-model-predictions-and-groundwater-quality-rasters-of-specific-conductance
    Explore at:
    Dataset updated
    Oct 7, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    Groundwater is a vital resource in the Mississippi embayment of the central United States. An innovative approach using machine learning (ML) was employed to predict groundwater salinity—including specific conductance (SC), total dissolved solids (TDS), and chloride (Cl) concentrations—across three drinking-water aquifers of the Mississippi embayment. A ML approach was used because it accommodates a large and diverse set of explanatory variables, does not assume monotonic relations between predictors and response data, and results can be extrapolated to areas of the aquifer not sampled. These aspects of ML allowed potential drivers and sources of high salinity water that have been hypothesized in other studies to be included as explanatory variables. The ML approach integrated output from a groundwater-flow model and water-quality data to predict salinity, and the approach can be applied to other aquifers to provide context for the long-term availability of groundwater resources. The Mississippi embayment includes two principal regional aquifer systems; the surficial aquifer system, dominated by the Quaternary Mississippi River Valley Alluvial aquifer (MRVA), and the Mississippi embayment aquifer system, which includes deeper Tertiary aquifers and confining units. Based on the distribution of groundwater use for drinking water, the modeling focused on the MRVA, middle Claiborne aquifer (MCAQ), and lower Claiborne aquifer (LCAQ). Boosted regression tree (BRT) models (Elith and others, 2008; Kuhn and Johnson, 2013) were developed to predict SC and Cl to 1-kilometer (km) raster grid cells of the National Hydrologic Grid (Clark and others, 2018) for 7 aquifer layers (1 MRVA, 4 MCAQ, 2 LCAQ) following the hydrogeologic framework of Hart and others (2008). TDS maps were created using the correlation between SC and TDS. Explanatory variables for the BRT models included attributes associated with well location and construction, surficial variables (such as soils and land use), and variables extracted from a MODFLOW groundwater flow model for the Mississippi embayment (Haugh and others, 2020a; Haugh and others, 2020b). Prediction intervals were calculated for SC and Cl by bootstrapping raster-cell predictions following methods from Ransom and others (2017). For a full description of modeling workflow and final model selection see Knierim and others (2020).

  15. D

    Machine Learning Market Report | Global Forecast From 2025 To 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jan 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). Machine Learning Market Report | Global Forecast From 2025 To 2033 [Dataset]. https://dataintelo.com/report/machine-learning-market
    Explore at:
    csv, pptx, pdfAvailable download formats
    Dataset updated
    Jan 7, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    Machine Learning Market Outlook



    The global machine learning market is projected to witness a remarkable growth trajectory, with the market size estimated to reach USD 21.17 billion in 2023 and anticipated to expand to USD 209.91 billion by 2032, growing at a compound annual growth rate (CAGR) of 29.2% over the forecast period. This extraordinary growth is primarily propelled by the escalating demand for artificial intelligence-driven solutions across various industries. As businesses seek to leverage machine learning for improving operational efficiency, enhancing customer experience, and driving innovation, the market is poised to expand rapidly. Key factors contributing to this growth include advancements in data generation, increasing computational power, and the proliferation of big data analytics.



    A pivotal growth factor for the machine learning market is the ongoing digital transformation across industries. Enterprises globally are increasingly adopting machine learning technologies to optimize their operations, streamline processes, and make data-driven decisions. The healthcare sector, for example, leverages machine learning for predictive analytics to improve patient outcomes, while the finance sector uses machine learning algorithms for fraud detection and risk assessment. The retail industry is also utilizing machine learning for personalized customer experiences and inventory management. The ability of machine learning to analyze vast amounts of data in real-time and provide actionable insights is fueling its adoption across various applications, thereby driving market growth.



    Another significant growth driver is the increasing integration of machine learning with the Internet of Things (IoT). The convergence of these technologies enables the creation of smarter, more efficient systems that enhance operational performance and productivity. In manufacturing, for instance, IoT devices equipped with machine learning capabilities can predict equipment failures and optimize maintenance schedules, leading to reduced downtime and costs. Similarly, in the automotive industry, machine learning algorithms are employed in autonomous vehicles to process and analyze sensor data, improving navigation and safety. The synergistic relationship between machine learning and IoT is expected to further propel market expansion during the forecast period.



    Moreover, the rising investments in AI research and development by both public and private sectors are accelerating the advancement and adoption of machine learning technologies. Governments worldwide are recognizing the potential of AI and machine learning to transform industries, leading to increased funding for research initiatives and innovation centers. Companies are also investing heavily in developing cutting-edge machine learning solutions to maintain a competitive edge. This robust investment landscape is fostering an environment conducive to technological breakthroughs, thereby contributing to the growth of the machine learning market.



    Supervised Learning, a subset of machine learning, plays a crucial role in the advancement of AI-driven solutions. It involves training algorithms on a labeled dataset, allowing the model to learn and make predictions or decisions based on new, unseen data. This approach is particularly beneficial in applications where the desired output is known, such as in classification or regression tasks. For instance, in the healthcare sector, supervised learning algorithms are employed to analyze patient data and predict health outcomes, thereby enhancing diagnostic accuracy and treatment efficacy. Similarly, in finance, these algorithms are used for credit scoring and fraud detection, providing financial institutions with reliable tools for risk assessment. As the demand for precise and efficient AI applications grows, the significance of supervised learning in driving innovation and operational excellence across industries becomes increasingly evident.



    From a regional perspective, North America holds a dominant position in the machine learning market due to the early adoption of advanced technologies and the presence of major technology companies. The region's strong focus on R&D and innovation, coupled with a well-established IT infrastructure, further supports market growth. In addition, Asia Pacific is emerging as a lucrative market for machine learning, driven by rapid industrialization, increasing digitalization, and government initiatives promoting AI adoption. The region is witnessing significant investments in AI technologies, particu

  16. D

    In-Database Machine Learning Market Research Report 2033

    • dataintelo.com
    csv, pdf, pptx
    Updated Jun 28, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dataintelo (2025). In-Database Machine Learning Market Research Report 2033 [Dataset]. https://dataintelo.com/report/in-database-machine-learning-market
    Explore at:
    pdf, pptx, csvAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Dataintelo
    License

    https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy

    Time period covered
    2024 - 2032
    Area covered
    Global
    Description

    In-Database Machine Learning Market Outlook




    According to our latest research, the global In-Database Machine Learning market size reached USD 2.77 billion in 2024. The market is exhibiting robust momentum, with a compound annual growth rate (CAGR) of 28.4% projected over the forecast period. By 2033, the In-Database Machine Learning market is expected to escalate to USD 21.13 billion globally, driven by increasing enterprise adoption of advanced analytics and artificial intelligence embedded directly within databases. This exponential growth is fueled by the surging demand for real-time data processing, operational efficiency, and the seamless integration of machine learning (ML) models within business-critical applications.




    A significant growth factor in the In-Database Machine Learning market is the rising need for organizations to derive actionable insights from massive volumes of data in real time. Traditional machine learning workflows often require extracting data from databases, leading to latency, security risks, and operational bottlenecks. In-database machine learning addresses these challenges by enabling ML algorithms to operate directly where the data resides, eliminating the need for data movement. This approach not only accelerates the analytics lifecycle but also enhances data security and compliance, which is particularly crucial in regulated industries such as banking, healthcare, and finance. Organizations are increasingly recognizing the strategic value of embedding ML capabilities within their database environments to unlock deeper insights, automate decision-making, and drive competitive advantage.




    Another pivotal driver is the evolution of database technologies and the proliferation of cloud-based database platforms. Modern relational and NoSQL databases are now equipped with native machine learning functionalities, making it easier for enterprises to deploy, train, and operationalize ML models at scale. The shift towards cloud-based and hybrid database infrastructures further amplifies the adoption of in-database ML, as organizations seek scalable and flexible solutions that can handle diverse data types and workloads. Vendors are responding by offering integrated ML toolkits and APIs, lowering the entry barrier for data scientists and business analysts. Furthermore, the convergence of big data, artificial intelligence, and advanced analytics is fostering innovation, enabling organizations to tackle complex use cases such as fraud detection, predictive maintenance, and personalized customer experiences.




    The increasing emphasis on digital transformation across industries is also propelling the growth of the In-Database Machine Learning market. Enterprises are under pressure to modernize their data architectures and leverage AI-driven insights to optimize operations, reduce costs, and enhance customer engagement. In-database ML empowers organizations to streamline their analytics workflows, achieve real-time intelligence, and respond swiftly to market changes. The technology’s ability to scale across large datasets and integrate seamlessly with existing business processes makes it an attractive proposition for both large enterprises and small and medium-sized enterprises (SMEs). As a result, investments in in-database ML solutions are expected to surge, with vendors continuously innovating to deliver enhanced performance, automation, and explainability.




    From a regional perspective, North America currently leads the global In-Database Machine Learning market, accounting for the largest revenue share in 2024. This dominance is attributed to the region’s advanced IT infrastructure, high adoption of cloud technologies, and the strong presence of leading technology vendors. Europe follows closely, driven by stringent data privacy regulations and growing investments in AI-driven analytics across sectors such as BFSI, healthcare, and manufacturing. The Asia Pacific region is emerging as a high-growth market, propelled by rapid digitalization, expanding enterprise data volumes, and government initiatives to foster AI innovation. Latin America and the Middle East & Africa are also witnessing increased adoption, albeit at a slower pace, as organizations in these regions gradually embrace data-driven decision-making and cloud-based analytics platforms.



    Component Analysis




    The In-Database Machine Learning market is segmented by component into Software and S

  17. n

    Data from: Assessing predictive performance of supervised machine learning...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated May 23, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Evans Omondi (2023). Assessing predictive performance of supervised machine learning algorithms for a diamond pricing model [Dataset]. http://doi.org/10.5061/dryad.wh70rxwrh
    Explore at:
    zipAvailable download formats
    Dataset updated
    May 23, 2023
    Dataset provided by
    Strathmore University
    Authors
    Evans Omondi
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Description

    The diamond is 58 times harder than any other mineral in the world, and its elegance as a jewel has long been appreciated. Forecasting diamond prices is challenging due to nonlinearity in important features such as carat, cut, clarity, table, and depth. Against this backdrop, the study conducted a comparative analysis of the performance of multiple supervised machine learning models (regressors and classifiers) in predicting diamond prices. Eight supervised machine learning algorithms were evaluated in this work including Multiple Linear Regression, Linear Discriminant Analysis, eXtreme Gradient Boosting, Random Forest, k-Nearest Neighbors, Support Vector Machines, Boosted Regression and Classification Trees, and Multi-Layer Perceptron. The analysis is based on data preprocessing, exploratory data analysis (EDA), training the aforementioned models, assessing their accuracy, and interpreting their results. Based on the performance metrics values and analysis, it was discovered that eXtreme Gradient Boosting was the most optimal algorithm in both classification and regression, with a R2 score of 97.45% and an Accuracy value of 74.28%. As a result, eXtreme Gradient Boosting was recommended as the optimal regressor and classifier for forecasting the price of a diamond specimen. Methods Kaggle, a data repository with thousands of datasets, was used in the investigation. It is an online community for machine learning practitioners and data scientists, as well as a robust, well-researched, and sufficient resource for analyzing various data sources. On Kaggle, users can search for and publish various datasets. In a web-based data-science environment, they can study datasets and construct models.

  18. R

    Data from: Project Machine Learning Dataset

    • universe.roboflow.com
    zip
    Updated Jun 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    soda (2024). Project Machine Learning Dataset [Dataset]. https://universe.roboflow.com/soda-fj5ov/project-machine-learning-8sjsi
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jun 6, 2024
    Dataset authored and provided by
    soda
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Variables measured
    Deteksi Rempah Rempah Bounding Boxes
    Description

    Project Machine Learning

    ## Overview
    
    Project Machine Learning is a dataset for object detection tasks - it contains Deteksi Rempah Rempah annotations for 1,270 images.
    
    ## Getting Started
    
    You can download this dataset for use within your own projects, or fork it into a workspace on Roboflow to create your own model.
    
      ## License
    
      This dataset is available under the [CC BY 4.0 license](https://creativecommons.org/licenses/CC BY 4.0).
    
  19. i

    Big Data Machine Learning Benchmark on Spark

    • ieee-dataport.org
    Updated Jun 6, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jairson Rodrigues (2019). Big Data Machine Learning Benchmark on Spark [Dataset]. https://ieee-dataport.org/open-access/big-data-machine-learning-benchmark-spark
    Explore at:
    Dataset updated
    Jun 6, 2019
    Authors
    Jairson Rodrigues
    Description

    net traffic

  20. US Deep Learning Market Analysis, Size, and Forecast 2025-2029

    • technavio.com
    pdf
    Updated Jul 8, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2025). US Deep Learning Market Analysis, Size, and Forecast 2025-2029 [Dataset]. https://www.technavio.com/report/us-deep-learning-market-industry-analysis
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Jul 8, 2025
    Dataset provided by
    TechNavio
    Authors
    Technavio
    License

    https://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice

    Time period covered
    2025 - 2029
    Description

    Snapshot img

    US Deep Learning Market Size 2025-2029

    The deep learning market size in US is forecast to increase by USD 5.02 billion at a CAGR of 30.1% between 2024 and 2029.

    The deep learning market is experiencing robust growth, driven by the increasing adoption of artificial intelligence (AI) in various industries for advanced solutioning. This trend is fueled by the availability of vast amounts of data, which is a key requirement for deep learning algorithms to function effectively. Industry-specific solutions are gaining traction, as businesses seek to leverage deep learning for specific use cases such as image and speech recognition, fraud detection, and predictive maintenance. Alongside, intuitive data visualization tools are simplifying complex neural network outputs, helping stakeholders understand and validate insights. 
    
    
    However, challenges remain, including the need for powerful computing resources, data privacy concerns, and the high cost of implementing and maintaining deep learning systems. Despite these hurdles, the market's potential for innovation and disruption is immense, making it an exciting space for businesses to explore further. Semi-supervised learning, data labeling, and data cleaning facilitate efficient training of deep learning models. Cloud analytics is another significant trend, as companies seek to leverage cloud computing for cost savings and scalability. 
    

    What will be the Size of the market During the Forecast Period?

    Request Free Sample

    Deep learning, a subset of machine learning, continues to shape industries by enabling advanced applications such as image and speech recognition, text generation, and pattern recognition. Reinforcement learning, a type of deep learning, gains traction, with deep reinforcement learning leading the charge. Anomaly detection, a crucial application of unsupervised learning, safeguards systems against security vulnerabilities. Ethical implications and fairness considerations are increasingly important in deep learning, with emphasis on explainable AI and model interpretability. Graph neural networks and attention mechanisms enhance data preprocessing for sequential data modeling and object detection. Time series forecasting and dataset creation further expand deep learning's reach, while privacy preservation and bias mitigation ensure responsible use.

    In summary, deep learning's market dynamics reflect a constant pursuit of innovation, efficiency, and ethical considerations. The Deep Learning Market in the US is flourishing as organizations embrace intelligent systems powered by supervised learning and emerging self-supervised learning techniques. These methods refine predictive capabilities and reduce reliance on labeled data, boosting scalability. BFSI firms utilize AI image recognition for various applications, including personalizing customer communication, maintaining a competitive edge, and automating repetitive tasks to boost productivity. Sophisticated feature extraction algorithms now enable models to isolate patterns with high precision, particularly in applications such as image classification for healthcare, security, and retail.

    How is this market segmented and which is the largest segment?

    The market research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD million' for the period 2025-2029, as well as historical data from 2019-2023 for the following segments.

    Application
    
      Image recognition
      Voice recognition
      Video surveillance and diagnostics
      Data mining
    
    
    Type
    
      Software
      Services
      Hardware
    
    
    End-user
    
      Security
      Automotive
      Healthcare
      Retail and commerce
      Others
    
    
    Geography
    
      North America
    
        US
    

    By Application Insights

    The Image recognition segment is estimated to witness significant growth during the forecast period. In the realm of artificial intelligence (AI) and machine learning, image recognition, a subset of computer vision, is gaining significant traction. This technology utilizes neural networks, deep learning models, and various machine learning algorithms to decipher visual data from images and videos. Image recognition is instrumental in numerous applications, including visual search, product recommendations, and inventory management. Consumers can take photographs of products to discover similar items, enhancing the online shopping experience. In the automotive sector, image recognition is indispensable for advanced driver assistance systems (ADAS) and autonomous vehicles, enabling the identification of pedestrians, other vehicles, road signs, and lane markings.

    Furthermore, image recognition plays a pivotal role in augmented reality (AR) and virtual reality (VR) applications, where it tracks physical objects and overlays digital content onto real-world scenarios. The model training process involves the backpropagation algorithm, which calculates the loss fu

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(Point of Contact, Custodian) (2024). A Dataset for Machine Learning Algorithm Development [Dataset]. https://catalog.data.gov/dataset/a-dataset-for-machine-learning-algorithm-development2

A Dataset for Machine Learning Algorithm Development

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
May 1, 2024
Dataset provided by
(Point of Contact, Custodian)
Description

This dataset consists of imagery, imagery footprints, associated ice seal detections and homography files associated with the KAMERA Test Flights conducted in 2019. This dataset was subset to include relevant data for detection algorithm development. This dataset is limited to data collected during flights 4, 5, 6 and 7 from our 2019 surveys.

Search
Clear search
Close search
Google apps
Main menu