Facebook
Twitter[Metadata] Description: Major Land Resource Areas as of 2002Source: Natural Resources Conservation Service (NRCS), 2002Major land resource areas (MLRAs) are geographically associated land resource units (LRUs). Identification of these large areas is important in statewide agricultural planning and has value in interstate, regional, and national planning.June 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of a 2016 GIS database conversion and were no longer needed.For additional information, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/majlandresareas.pdf or https://files.hawaii.gov/dbedt/op/gis/data/majlandresareas_meta.htm or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.
Facebook
TwitterThe seventeen major drainage basins, or watersheds, which are the basis for management, monitoring, and assessment activities by the New York State Department of Environmental Conservation. The major basins are further divided into 68 (sub)basins.For background information, see Chapter X - Division Of WaterFor layer information or to download layer, see NYS Major Water BasinsDownload the metadata to learn more information about how the data was created and details about the attributes. Metadata Link
Facebook
TwitterPolygon coverage of major rivers in Florida
Facebook
TwitterMarch 2024
Facebook
TwitterMajor streets in Chicago. To view or use these files, compression software and special GIS software, such as ESRI ArcGIS, is required.
Facebook
Twitterhttps://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy
The Geographic Information System (GIS) software market is projected to expand significantly, with a market size of XXX million in 2025 and a CAGR of XX% during the forecast period of 2025-2033. The growing adoption of GIS technology across various industries, including urban planning, environmental management, and transportation, is driving market growth. Additionally, the increasing availability of spatial data and the advancements in cloud computing and mobile GIS are further fueling market expansion. Key trends in the GIS software market include the rise of web-based GIS platforms, the integration of artificial intelligence (AI) and machine learning (ML) capabilities, and the growing popularity of open-source GIS solutions. North America and Europe are the major markets for GIS software, while the Asia Pacific region is expected to witness significant growth in the coming years. Major players in the GIS software market include Esri, Hexagon, Pitney Bowes, SuperMap, Bentley Systems, GE, GeoStar, and Zondy Cyber Group. These companies offer a wide range of GIS software products and services to meet the varying needs of different industries and organizations.
Facebook
TwitterDecember 2019
Facebook
TwitterThis layer is a component of 2007_NAIP_COVERAGE_3.mxd.
Facebook
Twitter
Facebook
TwitterThis U.S. Geological Survey (USGS) data release provides a digital geospatial database for the geologic map of the Hailey 1 x 2 degree quadrangle, Idaho (Worl and others, 1991). Attribute tables and geospatial features (lines and polygons) conform to the Geologic Map Schema (USGS NCGMP, 2020) and represent the geologic map as published in Idaho Geological Survey Geologic Map 10 (Worl and others, 1991). The database represents the geology for the 4.4-million-acre map plate at a publication scale of 1:250,000. References: Worl, R.G., Kiilsgaard, T.H., Bennett, E.H., Link, P.K., Lewis, R.S., Mitchell, V.E., Johnson, K.M., and Snyder, L.D., 1991, Geologic map of the Hailey 1 x 2 degree quadrangle, Idaho: Idaho Geological Survey, Geologic Map GM-10, scale 1:250,000; https://www.idahogeology.org/Product/GM-10. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
Facebook
TwitterThe MOSF program applies to facilities that store a total of 400,000 gallons or more of petroleum in aboveground and underground storage tanks. Facilities must be licensed by DEC and managed in compliance with applicable regulations for the storage and handling of petroleum.Service layer is updated daily.applicable regulations for the storage of petroleum.Service layer is updated dailyFor more information or to download layer see https://gis.ny.gov/gisdata/inventories/details.cfm?DSID=1253Download the metadata to learn more information about how the data was created and details about the attributes. Use the links within the metadata document to expand the sections of interest.http://gis.ny.gov/gisdata/metadata/nysdec.BS.xml.1. The NYS DEC asks to be credited in derived products.2. Secondary Distribution of the data is not allowed.3. Any documentation provided is an integral part of the data set. Failure to use the documentation in conjunction with the digital data constitutes misuse of the data.4. Although every effort has been made to ensure the accuracy of information, errors may be reflected in the data supplied. The user must be aware of data conditions and bear responsibility for the appropriate use of the information with respect to possible errors, original map scale, collection methodology, currency of data, and other conditions.
Facebook
Twitterhttps://www.technavio.com/content/privacy-noticehttps://www.technavio.com/content/privacy-notice
Geographic Information System Analytics Market Size 2024-2028
The geographic information system analytics market size is forecast to increase by USD 12 billion at a CAGR of 12.41% between 2023 and 2028.
The GIS Analytics Market analysis is experiencing significant growth, driven by the increasing need for efficient land management and emerging methods in data collection and generation. The defense industry's reliance on geospatial technology for situational awareness and real-time location monitoring is a major factor fueling market expansion. Additionally, the oil and gas industry's adoption of GIS for resource exploration and management is a key trend. Building Information Modeling (BIM) and smart city initiatives are also contributing to market growth, as they require multiple layered maps for effective planning and implementation. The Internet of Things (IoT) and Software as a Service (SaaS) are transforming GIS analytics by enabling real-time data processing and analysis.
Augmented reality is another emerging trend, as it enhances the user experience and provides valuable insights through visual overlays. Overall, heavy investments are required for setting up GIS stations and accessing data sources, making this a promising market for technology innovators and investors alike.
What will be the Size of the GIS Analytics Market during the forecast period?
Request Free Sample
The geographic information system analytics market encompasses various industries, including government sectors, agriculture, and infrastructure development. Smart city projects, building information modeling, and infrastructure development are key areas driving market growth. Spatial data plays a crucial role in sectors such as transportation, mining, and oil and gas. Cloud technology is transforming GIS analytics by enabling real-time data access and analysis. Startups are disrupting traditional GIS markets with innovative location-based services and smart city planning solutions. Infrastructure development in sectors like construction and green buildings relies on modern GIS solutions for efficient planning and management. Smart utilities and telematics navigation are also leveraging GIS analytics for improved operational efficiency.
GIS technology is essential for zoning and land use management, enabling data-driven decision-making. Smart public works and urban planning projects utilize mapping and geospatial technology for effective implementation. Surveying is another sector that benefits from advanced GIS solutions. Overall, the GIS analytics market is evolving, with a focus on providing actionable insights to businesses and organizations.
How is this Geographic Information System Analytics Industry segmented?
The geographic information system analytics industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.
End-user
Retail and Real Estate
Government
Utilities
Telecom
Manufacturing and Automotive
Agriculture
Construction
Mining
Transportation
Healthcare
Defense and Intelligence
Energy
Education and Research
BFSI
Components
Software
Services
Deployment Modes
On-Premises
Cloud-Based
Applications
Urban and Regional Planning
Disaster Management
Environmental Monitoring Asset Management
Surveying and Mapping
Location-Based Services
Geospatial Business Intelligence
Natural Resource Management
Geography
North America
US
Canada
Europe
France
Germany
UK
APAC
China
India
South Korea
Middle East and Africa
UAE
South America
Brazil
Rest of World
By End-user Insights
The retail and real estate segment is estimated to witness significant growth during the forecast period.
The GIS analytics market analysis is witnessing significant growth due to the increasing demand for advanced technologies in various industries. In the retail sector, for instance, retailers are utilizing GIS analytics to gain a competitive edge by analyzing customer demographics and buying patterns through real-time location monitoring and multiple layered maps. The retail industry's success relies heavily on these insights for effective marketing strategies. Moreover, the defense industries are integrating GIS analytics into their operations for infrastructure development, permitting, and public safety. Building Information Modeling (BIM) and 4D GIS software are increasingly being adopted for construction project workflows, while urban planning and designing require geospatial data for smart city planning and site selection.
The oil and gas industry is leveraging satellite imaging and IoT devices for land acquisition and mining operations. In the public sector, gover
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These data were extracted from the NHD in order to better represent the major rivers wider than 10 feet in Utah
The National Hydrography Dataset (NHD) is a feature-based database that interconnects and uniquely identifies the stream segments or reaches that make up the nation's surface water drainage system. NHD data was originally developed at 1:100,000-scale and exists at that scale for the whole country. This high-resolution NHD, generally developed at 1:24,000/1:12,000 scale, adds detail to the original 1:100,000-scale NHD. (Data for Alaska, Puerto Rico and the Virgin Islands was developed at high-resolution, not 1:100,000 scale.) Local resolution NHD is being developed where partners and data exist. The NHD contains reach codes for networked features, flow direction, names, and centerline representations for areal water bodies. Reaches are also defined on waterbodies and the approximate shorelines of the Great Lakes, the Atlantic and Pacific Oceans and the Gulf of Mexico. The NHD also incorporates the National Spatial Data Infrastructure framework criteria established by the Federal Geographic Data Committee.
Facebook
TwitterThe 32 major watersheds covering Massachusetts as defined by the USGS Water Resources Division and the MA Water Resources Commission. Unlike the Major Basins layer, the watersheds in this layer extend beyond the state boundary to include the full extent of either the full watershed or a full USGS sub-basin.See full metadata.Map service is also available.
Facebook
TwitterThe data release for the geologic and structure map of the Choteau 1 x 2 degree quadrangle, western Montana, is a Geologic Map Schema (GeMS)-compliant version that updates the GIS files for the geologic map published in U.S. Geological Survey (USGS) Miscellaneous Investigations Series Map I-1300 (Mudge and others, 2001). The updated digital data present the attribute tables and geospatial features (lines and polygons) in the format that meets GeMS requirements. This data release presents geospatial data for the geologic map that is published as two plates. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected in this version. The database represents the geology for the 4.2 million acre, geologically complex Choteau 1 x 2 degree quadrangle, at a publication scale of 1:250,000. The map covers primarily Lewis and Clark, Teton, Powell, Missoula, Lake, and Flathead Counties, but also includes minor parts of Cascade County. These GIS data supersede those in the report: Mudge, M.R., Earhart, R.L., Whipple, J.W., Harrison, J.E., Munts, S.R., and Silkwood, J.T., 2001, Geologic and structure map of the Choteau 1 x 2 degree quadrangle, western Montana: a digital database: U.S. Geological Survey Miscellaneous Investigations Series Map I-1300, version 1.0, 38 p., scale 1:250,000, https://pubs.er.usgs.gov/publication/i1300.
Facebook
TwitterA fifteen degree grid in latitude and longitude covering the entire world
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The maps and tables presented here represent potential variability of projected climate change across the conterminous United States during three 30-year periods in this century and emphasizes the importance of evaluating multiple signals of change across large spatial domains. Maps of growing degree days, plant hardiness zones, heat zones, and cumulative drought severity depict the potential for markedly shifting conditions and highlight regions where changes may be multifaceted across these metrics. In addition to the maps, the potential change in these climate variables are summarized in tables according to the seven regions of the fourth National Climate Assessment to provide additional regional context. Viewing these data collectively further emphasizes the potential for novel climatic space under future projections of climate change and signals the wide disparity in these conditions based on relatively near-term human decisions of curtailing (or not) greenhouse gas emissions. More information available at https://www.fs.usda.gov/nrs/pubs/rmap/rmap_nrs9.pdf.This record was taken from the USDA Enterprise Data Inventory that feeds into the https://data.gov catalog. Data for this record includes the following resources: ISO-19139 metadata ArcGIS Hub Dataset ArcGIS GeoService For complete information, please visit https://data.gov.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Produced by the Kentucky Transportation Cabinet (KYTC), this data is to provide a base transportation network for use in Geographic Information Systems (GIS) .
Facebook
TwitterThis U.S. Geological Survey (USGS) data release updates the digital geospatial database for the southern portion of the geologic map of the western part of the Cut Bank 1 degree x 2 degrees quadrangle, northwestern Montana (Harrison and others, 1998). Attribute tables and geospatial features (points, lines, and polygons) conform to the Geologic Map Schema (USGS NCGMP, 2020). The 899,246-acre map area represents the geology at a publication scale of 1:250,000. Minor errors, such as mistakes in line decoration or differences between the digital data and the map image, are corrected, and missing orientation points are included in this version. The map covers primarily Flathead, Glacier, Pondera, and Teton Counties, but also includes minor parts of Lake County. References: Harrison, J.E., Whipple, J.W., and Lidke, 1998, Geologic Map of the Western Part of the Cut Bank 1 degree x 2 degrees quadrangle, Northwestern Montana: U.S. Geological Survey Miscellaneous Investigations Series Map I-2593, version 1.0, 31 p., scale 1:250,000, https://ngmdb.usgs.gov/Prodesc/proddesc_13063.htm. U.S. Geological Survey National Cooperative Geologic Mapping Program, 2020, GeMS (Geologic Map Schema) - A standard format for the digital publication of geologic maps: U.S. Geological Survey Techniques and Methods, book 11, chap. B10, 74 p., https://doi.org//10.3133/tm11B10.
Facebook
TwitterA six degree grid in latitude and longitude covering the entire world
Facebook
Twitter[Metadata] Description: Major Land Resource Areas as of 2002Source: Natural Resources Conservation Service (NRCS), 2002Major land resource areas (MLRAs) are geographically associated land resource units (LRUs). Identification of these large areas is important in statewide agricultural planning and has value in interstate, regional, and national planning.June 2024: Hawaii Statewide GIS Program staff removed extraneous fields that had been added as part of a 2016 GIS database conversion and were no longer needed.For additional information, please refer to complete metadata at https://files.hawaii.gov/dbedt/op/gis/data/majlandresareas.pdf or https://files.hawaii.gov/dbedt/op/gis/data/majlandresareas_meta.htm or contact Hawaii Statewide GIS Program, Office of Planning and Sustainable Development, State of Hawaii; PO Box 2359, Honolulu, Hi. 96804; (808) 587-2846; email: gis@hawaii.gov; Website: https://planning.hawaii.gov/gis.