Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset encompasses the historical data of major stock indices from around the world, sourced directly from Yahoo Finance. With data reaching back to the early 1920s (where available), it serves as an invaluable repository for academic researchers, financial analysts, and market enthusiasts. Users can delve into trends across decades, evaluate historical market behaviors, or even design and validate predictive financial models.
Photo by Tötös Ádám on Unsplash
all_indices_data.csv:
date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.ticker: The ticker symbol of the stock index.individual_indices_data/[SYMBOL]_data.csv:
[SYMBOL] denotes the ticker symbol of the respective stock index. Each dataset is curated from Yahoo Finance's historical data archives.date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
The provided dataset is extracted from yahoo finance using pandas and yahoo finance library in python. This deals with stock market index of the world best economies. The code generated data from Jan 01, 2003 to Jun 30, 2023 that’s more than 20 years. There are 18 CSV files, dataset is generated for 16 different stock market indices comprising of 7 different countries. Below is the list of countries along with number of indices extracted through yahoo finance library, while two CSV files deals with annualized return and compound annual growth rate (CAGR) has been computed from the extracted data.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F90ce8a986761636e3edbb49464b304d8%2FNumber%20of%20Index.JPG?generation=1688490342207096&alt=media" alt="">
This dataset is useful for research purposes, particularly for conducting comparative analyses involving capital market performance and could be used along with other economic indicators.
There are 18 distinct CSV files associated with this dataset. First 16 CSV files deals with number of indices and last two CSV file deals with annualized return of each year and CAGR of each index. If data in any column is blank, it portrays that index was launch in later years, for instance: Bse500 (India), this index launch in 2007, so earlier values are blank, similarly China_Top300 index launch in year 2021 so early fields are blank too.
The extraction process involves applying different criteria, like in 16 CSV files all columns are included, Adj Close is used to calculate annualized return. The algorithm extracts data based on index name (code given by the yahoo finance) according start and end date.
Annualized return and CAGR has been calculated and illustrated in below image along with machine readable file (CSV) attached to that.
To extract the data provided in the attachment, various criteria were applied:
Content Filtering: The data was filtered based on several attributes, including the index name, start and end date. This filtering process ensured that only relevant data meeting the specified criteria.
Collaborative Filtering: Another filtering technique used was collaborative filtering using yahoo finance, which relies on index similarity. This approach involves finding indices that are similar to other index or extended dataset scope to other countries or economies. By leveraging this method, the algorithm identifies and extracts data based on similarities between indices.
In the last two CSV files, one belongs to annualized return, that was calculated based on the Adj close column and new DataFrame created to store its outcome. Below is the image of annualized returns of all index (if unreadable, machine-readable or CSV format is attached with the dataset).
As far as annualised rate of return is concerned, most of the time India stock market indices leading, followed by USA, Canada and Japan stock market indices.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F37645bd90623ea79f3708a958013c098%2FAnnualized%20Return.JPG?generation=1688525901452892&alt=media" alt="">
The best performing index based on compound growth is Sensex (India) that comprises of top 30 companies is 15.60%, followed by Nifty500 (India) that is 11.34% and Nasdaq (USA) all is 10.60%.
The worst performing index is China top300, however this is launch in 2021 (post pandemic), so would not possible to examine at that stage (due to less data availability). Furthermore, UK and Russia indices are also top 5 in the worst order.
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F15657145%2F58ae33f60a8800749f802b46ec1e07e7%2FCAGR.JPG?generation=1688490409606631&alt=media" alt="">
Geography: Stock Market Index of the World Top Economies
Time period: Jan 01, 2003 – June 30, 2023
Variables: Stock Market Index Title, Open, High, Low, Close, Adj Close, Volume, Year, Month, Day, Yearly_Return and CAGR
File Type: CSV file
This is not a financial advice; due diligence is required in each investment decision.
Facebook
TwitterThis is a yahoo finance mapper for world indices. You can use this file to fetch the historical data using the YFinance API.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This is the name of the 38 global main stock indexes in the world. We collected from Yahoo! Finance. For the convenience of expression and computation later, we numbered it. For each item, the front is its serial number, followed by the corresponding stock index.
Facebook
TwitterOpen Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The "yahoo_finance_dataset(2018-2023)" dataset is a financial dataset containing daily stock market data for multiple assets such as equities, ETFs, and indexes. It spans from April 1, 2018 to March 31, 2023, and contains 1257 rows and 7 columns. The data was sourced from Yahoo Finance, and the purpose of the dataset is to provide researchers, analysts, and investors with a comprehensive dataset that they can use to analyze stock market trends, identify patterns, and develop investment strategies. The dataset can be used for various tasks, including stock price prediction, trend analysis, portfolio optimization, and risk management. The dataset is provided in XLSX format, which makes it easy to import into various data analysis tools, including Python, R, and Excel.
The dataset includes the following columns:
Date: The date on which the stock market data was recorded. Open: The opening price of the asset on the given date. High: The highest price of the asset on the given date. Low: The lowest price of the asset on the given date. Close*: The closing price of the asset on the given date. Note that this price does not take into account any after-hours trading that may have occurred after the market officially closed. Adj Close**: The adjusted closing price of the asset on the given date. This price takes into account any dividends, stock splits, or other corporate actions that may have occurred, which can affect the stock price. Volume: The total number of shares of the asset that were traded on the given date.
Facebook
Twitterhttps://www.ycharts.com/termshttps://www.ycharts.com/terms
View market daily updates and historical trends for CBOE Equity Put/Call Ratio. from United States. Source: Chicago Board Options Exchange. Track economic…
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This data series of stock market indices includes FTSE 100(FTSE), AEX Index(AEX), DAX(GDAXI) and Straits Times Index(STI), from January 2007 to December 2017. And all these data is from a third party, downloaded with R software from 'Yahoo finance'.
Facebook
TwitterThis data-set has data spanning from 2013 till 2018. The S&P 500 stock market index, maintained by S&P Dow Jones Indices, comprises 505 common stocks issued by 500 large-cap companies and traded on American stock exchanges, and covers about 80 percent of the American equity market by capitalization. The index is weighted by free-float market capitalization, so more valuable companies account for relatively more of the index. The index constituents and the constituent weights are updated regularly using rules published by S&P Dow Jones Indices. Although the index is called the S&P "500", the index contains 505 stocks because it includes two share classes of stock from 5 of its component companies.
The dataset comprises of all the S&P 500 components with the records created for each stock's open and closing rate spanning from last 5 years.
yahoo finance
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Cotton futures showed resilience with gains despite early weakness, influenced by dollar and oil trends, CFTC positioning, and ICE stock changes.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Stocks and financial instrument trading is a lucrative proposition. Stock markets across the world facilitate such trades and thus wealth exchanges hands. Stock prices move up and down all the time and having ability to predict its movement has immense potential to make one rich. Stock price prediction has kept people interested from a long time. There are hypothesis like the Efficient Market Hypothesis, which says that it is almost impossible to beat the market consistently and there are others which disagree with it.
There are a number of known approaches and new research going on to find the magic formula to make you rich. One of the traditional methods is the time series forecasting. Fundamental analysis is another method where numerous performance ratios are analyzed to assess a given stock. On the emerging front, there are neural networks, genetic algorithms, and ensembling techniques.
Another challenging problem in stock price prediction is Black Swan Event, unpredictable events that cause stock market turbulence. These are events that occur from time to time, are unpredictable and often come with little or no warning.
A black swan event is an event that is completely unexpected and cannot be predicted. Unexpected events are generally referred to as black swans when they have significant consequences, though an event with few consequences might also be a black swan event. It may or may not be possible to provide explanations for the occurrence after the fact – but not before. In complex systems, like economies, markets and weather systems, there are often several causes. After such an event, many of the explanations for its occurrence will be overly simplistic.
#
#
https://www.visualcapitalist.com/wp-content/uploads/2020/03/mm3_black_swan_events_shareable.jpg">
#
#
New bleeding age state-of-the-art deep learning models stock predictions is overcoming such obstacles e.g. "Transformer and Time Embeddings". An objectives are to apply these novel models to forecast stock price.
Stock price prediction is the task of forecasting the future value of a given stock. Given the historical daily close price for S&P 500 Index, prepare and compare forecasting solutions. S&P 500 or Standard and Poor's 500 index is an index comprising of 500 stocks from different sectors of US economy and is an indicator of US equities. Other such indices are the Dow 30, NIFTY 50, Nikkei 225, etc. For the purpose of understanding, we are utilizing S&P500 index, concepts, and knowledge can be applied to other stocks as well.
The historical stock price information is also publicly available. For our current use case, we will utilize the pandas_datareader library to get the required S&P 500 index history using Yahoo Finance databases. We utilize the closing price information from the dataset available though other information such as opening price, adjusted closing price, etc., are also available. We prepare a utility function get_raw_data() to extract required information in a pandas dataframe. The function takes index ticker name as input. For S&P 500 index, the ticker name is ^GSPC. The following snippet uses the utility function to get the required data.(See Simple LSTM Regression)
Features and Terminology: In stock trading, the high and low refer to the maximum and minimum prices in a given time period. Open and close are the prices at which a stock began and ended trading in the same period. Volume is the total amount of trading activity. Adjusted values factor in corporate actions such as dividends, stock splits, and new share issuance.
Mining and updating of this dateset will depend upon Yahoo Finance .
Sort of variation of sequence modeling and bleeding age e.g. attention can be applied for research and forecasting
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Full historical data for the S&P 500 (ticker ^GSPC), sourced from Yahoo Finance (https://finance.yahoo.com/).
Including Open, High, Low and Close prices in USD + daily volumes.
Info about S&P 500: https://en.wikipedia.org/wiki/S%26P_500
Facebook
TwitterAs of October 2025, Google represented ***** percent of the global online search engine referrals on desktop devices. Despite being much ahead of its competitors, this represents a modest increase from the previous months. Meanwhile, its longtime competitor Bing accounted for ***** percent, as tools like Yahoo and Yandex held shares of over **** percent and **** percent respectively. Google and the global search market Ever since the introduction of Google Search in 1997, the company has dominated the search engine market, while the shares of all other tools has been rather lopsided. The majority of Google revenues are generated through advertising. Its parent corporation, Alphabet, was one of the biggest internet companies worldwide as of 2024, with a market capitalization of **** trillion U.S. dollars. The company has also expanded its services to mail, productivity tools, enterprise products, mobile devices, and other ventures. As a result, Google earned one of the highest tech company revenues in 2024 with roughly ****** billion U.S. dollars. Search engine usage in different countries Google is the most frequently used search engine worldwide. But in some countries, its alternatives are leading or competing with it to some extent. As of the last quarter of 2023, more than ** percent of internet users in Russia used Yandex, whereas Google users represented little over ** percent. Meanwhile, Baidu was the most used search engine in China, despite a strong decrease in the percentage of internet users in the country accessing it. In other countries, like Japan and Mexico, people tend to use Yahoo along with Google. By the end of 2024, nearly half of the respondents in Japan said that they had used Yahoo in the past four weeks. In the same year, over ** percent of users in Mexico said they used Yahoo.
Facebook
TwitterData consists of 30-years of Close prices for various market indexes, commodities, agriculture and US Treasure Bills.
Yahoo Finance Python API was used to download 30-years of market data for time-series analysis (which I will eventually do :-)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Morocco's main stock market index, the CFG 25, fell to 18365 points on December 2, 2025, losing 0.38% from the previous session. Over the past month, the index has declined 6.83%, though it remains 24.69% higher than a year ago, according to trading on a contract for difference (CFD) that tracks this benchmark index from Morocco. Morocco Stock Market MASI - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comparison of evaluation metrics for different models.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Stock market data can be interesting to analyze, strong predictive models can have large financial payoff. The amount of financial data on the web is seemingly endless. A large and well structured dataset on a wide array of companies can be hard to come by. Here I view a dataset with historical stock prices for all companies on the S&P 500 index.
All the files have the following columns:
Date - in format: yy-mm-dd
Open - price of the stock at market open (this is NYSE data so all in USD)
High - highest price reached in the day
Low - lowest price reached in the day
Close - close price
Volume - number of shares traded
Thanks to Kaggle, Github, yahoo finance.
This dataset lends itself to a some very interesting visualizations. One can look at simple things like how prices change over time, graph an compare multiple stocks at once, or generate and graph new metrics from the data provided. From these data informative stock stats such as volatility and moving averages can be easily calculated. And people can build quantitative models such as: build portfoio, predict volatility, arbitrage, trading strategies.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
If you are satisfied in data and code, please upvote :)👍 The investing is necessary for everyone's future. I think that just knowing the meaning of the variables without interpreting this dataset is enough to study. This data is an Nasdaq index, taken from yahoo finance. Contains multiple financial statements and represents prices over a period of about 10 years(2010-01-01 - 2021-06-30) we can analyze price of stocks by time series with comparing financial statements that it is expected to be good measurement of correlation! Have you fun!🎉
The data format is received as json and can be used as a data frame. The script used can be checked at Github repository and if you want longer time scale data or up-to-date data, please run the script from the link. And also, if you want another list of stock, you should check the link which can analysis like Dow (tickers are 30), S&P500 (ticker are 500).
If you interest this data and code, Pleases see notebooks of strategy :)
I'm still learning Python, so if you find messy code execution or have a better way of doing it, let me know!! and Please contact me :) I think it will be a good study.
In FS_nasdaq_Value.json(csv) It is presented by price like 'Open', 'Close' and so on.
In FS_nasdaq_Recent+Value.json(csv) It is presented by recent price (2021-06-30)
All data is presented recently. If you want the statements before, Pleases check and fix below code.
I'm studying physics and writing code of python and c++. However I'm not used to it yet and also English :(. Let you know if it is not correctly for code and English :🙏
In interpreting the stock market, there are traditionally low PER and PBR strategies. Prior to this, an ML model using various statements and a price estimation model using time series data have been proposed recently, but we know that they are of little use. This data is highly likely to be used for various analyzes, and it is considered to be basic data for understanding the stock's market. Let's study together and find the best model!
If you are satisfied in data and code, please upvote :)👍
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
If you are satisfied in data and code, please upvote :)👍 The investing is necessary for everyone's future. I think that just knowing the meaning of the variables without interpreting this dataset is enough to study. This data is an Dow index, taken from yahoo finance. Contains multiple financial statements and represents prices over a period of about 10 years(2010-01-01 - 2021-06-11)
The data format is received as json and can be used as a data frame. The script used can be checked at Github repository and if you want longer time scale data or up-to-date data, please run the script from the link. And also, if you want another list of stock, you should check the link which can analysis like S&P 500 (tickers are 500), nasdaq (ticker are about 4000).
I'm still learning Python, so if you find messy code execution or have a better way of doing it, let me know!! and Please contact me :) I think it will be a good study.
In FS_dow_Value.json It is presented by price like 'Open', 'Close' and so on.
In FS_dow_stats.json. It is summary statement for each ticker.
In FS_dow_addstats.json It is fundamental statement not to be presented in summary.
In FS_dow_balsheets.json It is presented in balance sheets.
In FS_dow_income.json It is presented in income statements.
In FS_dow_flow.json It is presented by cash flow.
All data is presented recently. If you want the statements before, Pleases check and fix below code.
I'm studying physics and writing code of python and c++. However I'm not used to it yet and also English :(. Let you know if it is not correctly for code and English :🙏
In interpreting the stock market, there are traditionally low PER and PBR strategies. Prior to this, an ML model using various statements and a price estimation model using time series data have been proposed recently, but we know that they are of little use. This data is highly likely to be used for various analyzes, and it is considered to be basic data for understanding the stock's market. Let's study together and find the best model!
If you are satisfied in data and code, please upvote :)👍
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
If you are satisfied in data and code, please upvote :)👍 The investing is necessary for everyone's future. I think that just knowing the meaning of the variables without interpreting this dataset is enough to study. This data is an S&p500 index, taken from yahoo finance. Contains multiple financial statements and represents prices over a period of about 10 years(2010-01-01 - 2022-04-18(version 12)) we can analyze price of stocks by time series with comparing financial statements that it is expected to be good measurement of correlation! Have you fun!🎉
The data format is received as json and can be used as a data frame. The script used can be checked at Github repository and if you want longer time scale data or up-to-date data, please run the script from the link. And also, if you want another list of stock, you should check the link which can analysis like Dow (tickers are 30), nasdaq (ticker are about 3000).
If you interest this data and code, Pleases see notebooks of strategy :)
I'm still learning Python, so if you find messy code execution or have a better way of doing it, let me know!! and Please contact me :) I think it will be a good study.
In FS_sp500_Value.json It is presented by price like 'Open', 'Close' and so on.
In FS_sp500_RecentValue.json It is presented by Current price.
In FS_sp500_stats.json. It is summary statement for each ticker.
In FS_sp500_addstats.json It is fundamental statement not to be presented in stats.
In FS_sp500_balsheets.json It is presented in balance sheets.
In FS_sp500_income.json It is presented in income statements.
In FS_sp500_flow.json It is presented by cash flow.
All data is presented recently. If you want the statements before, Pleases check and fix below code.
I'm studying physics and writing code of python and c++. However I'm not used to it yet and also English :(. Let you know if it is not correctly for code and English :🙏
In interpreting the stock market, there are traditionally low PER and PBR strategies. Prior to this, an ML model using various statements and a price estimation model using time series data have been proposed recently, but we know that they are of little use. This data is highly likely to be used for various analyzes, and it is considered to be basic data for understanding the stock's market. Let's study together and find the best model!
If you are satisfied in data and code, please upvote :)👍
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Baltic Dry rose to 2,600 Index Points on December 2, 2025, up 0.66% from the previous day. Over the past month, Baltic Dry's price has risen 33.68%, and is up 110.19% compared to the same time last year, according to trading on a contract for difference (CFD) that tracks the benchmark market for this commodity. Baltic Exchange Dry Index - values, historical data, forecasts and news - updated on December of 2025.
Facebook
TwitterAttribution-NonCommercial 4.0 (CC BY-NC 4.0)https://creativecommons.org/licenses/by-nc/4.0/
License information was derived automatically
This dataset encompasses the historical data of major stock indices from around the world, sourced directly from Yahoo Finance. With data reaching back to the early 1920s (where available), it serves as an invaluable repository for academic researchers, financial analysts, and market enthusiasts. Users can delve into trends across decades, evaluate historical market behaviors, or even design and validate predictive financial models.
Photo by Tötös Ádám on Unsplash
all_indices_data.csv:
date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.ticker: The ticker symbol of the stock index.individual_indices_data/[SYMBOL]_data.csv:
[SYMBOL] denotes the ticker symbol of the respective stock index. Each dataset is curated from Yahoo Finance's historical data archives.date: The date of the data point (formatted as YYYY-MM-DD).open: The opening value of the index on that date.high: The highest value of the index during the trading session.low: The lowest value of the index during the trading session.close: The closing value of the index.volume: The trading volume of the index on that date.