Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a
transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent
symbol may need to be set for these places after a filter is
chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation
combining the cells from a source year and 2021 to make a change index
value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security,
and hydrologic modeling, among other things. This dataset can be used to
visualize land cover anywhere on Earth. This
layer can also be used in analyses that require land cover input. For
example, the Zonal Statistics tools allow a user to understand the
composition of a specified area by reporting the total estimates for
each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas
where water was predominantly present throughout the year; may not
cover areas with sporadic or ephemeral water; contains little to no
sparse vegetation, no rock outcrop nor built up features like docks;
examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny
significant clustering of tall (~15-m or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation,
clusters of dense tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water or canopy too
thick to detect water underneath).4. Flooded vegetationAreas
of any type of vegetation with obvious intermixing of water throughout a
majority of the year; seasonally flooded area that is a mix of
grass/shrub/trees/bare ground; examples: flooded mangroves, emergent
vegetation, rice paddies and other heavily irrigated and inundated
agriculture.5. CropsHuman
planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman
made structures; major road and rail networks; large homogenous
impervious surfaces including parking structures, office buildings and
residential housing; examples: houses, dense villages / towns / cities,
paved roads, asphalt.8. Bare groundAreas
of rock or soil with very sparse to no vegetation for the entire year;
large areas of sand and deserts with no to little vegetation; examples:
exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried
lake beds, mines.9. Snow/IceLarge
homogenous areas of permanent snow or ice, typically only in mountain
areas or highest latitudes; examples: glaciers, permanent snowpack, snow
fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open
areas covered in homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting
(i.e., not a plotted field); examples: natural meadows and fields with
sparse to no tree cover, open savanna with few to no trees, parks/golf
courses/lawns, pastures. Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock;
scrub-filled clearings within dense forests that are clearly not taller
than trees; examples: moderate to sparse cover of bushes, shrubs and
tufts of grass, savannas with very sparse grasses, trees or other
plants.CitationKarra,
Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep
learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2021.AcknowledgementsTraining
data for this project makes use of the National Geographic Society
Dynamic World training dataset, produced for the Dynamic World Project
by National Geographic Society in partnership with Google and the World
Resources Institute.For questions please email environment@esri.com
Sieve filters are lacking in ArcGIS. Therefore, I developed a simple model that will perform a sieve filter based on the Jeffrey Evans' comments in the following forum:http://gis.stackexchange.com/questions/91609/where-can-i-use-a-sieve-filterThe basic idea of the sieve filter is that you can remove small "specks" or "polygons" from a categorical raster replacing them with their neighoring values. Unlike a focal majority operation which generalizes your data the sieve filter preserves the basic shapes of the "polygons". the only parameter required is the minimum number of cells in "polygon" (region group in raster terminology).Alternatively there may be some instances where you wish to generalize your data using a focal majority operation. However, the focal majority will return No Data in the case of a tie. Usually these are single cells or very small clusters of cells. The focal sieve tool allows you to remove these "specks" from your data. Hence, you get the generalization of the focal majority but use the sieve operation to clean up the specks. The focal sieve tool requires both a neighborhood size like a typical focal statistic but also a minimum number of cells.
This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020.By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter.1. Click the filter button.2. Next, click add expression.3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent symbol may need to be set for these places after a filter is chosen. To do this:4. Click the styles button.5. Under unique values click style options.6. Click the symbol next to No Change at the bottom of the legend.7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro.1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties.2. In the dialogue that comes up, choose the tab that says processing templates.3. On the right where it says processing template, choose the pair of years you would like to display.The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer:Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation combining the cells from a source year and 2021 to make a change index value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe.Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security, and hydrologic modeling, among other things. This dataset can be used to visualize land cover anywhere on Earth. This layer can also be used in analyses that require land cover input. For example, the Zonal Statistics tools allow a user to understand the composition of a specified area by reporting the total estimates for each of the classes.Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map.Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas where water was predominantly present throughout the year; may not cover areas with sporadic or ephemeral water; contains little to no sparse vegetation, no rock outcrop nor built up features like docks; examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny significant clustering of tall (~15-m or higher) dense vegetation, typically with a closed or dense canopy; examples: wooded vegetation, clusters of dense tall vegetation within savannas, plantations, swamp or mangroves (dense/tall vegetation with ephemeral water or canopy too thick to detect water underneath).4. Flooded vegetationAreas of any type of vegetation with obvious intermixing of water throughout a majority of the year; seasonally flooded area that is a mix of grass/shrub/trees/bare ground; examples: flooded mangroves, emergent vegetation, rice paddies and other heavily irrigated and inundated agriculture.5. CropsHuman planted/plotted cereals, grasses, and crops not at tree height; examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman made structures; major road and rail networks; large homogenous impervious surfaces including parking structures, office buildings and residential housing; examples: houses, dense villages / towns / cities, paved roads, asphalt.8. Bare groundAreas of rock or soil with very sparse to no vegetation for the entire year; large areas of sand and deserts with no to little vegetation; examples: exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried lake beds, mines.9. Snow/IceLarge homogenous areas of permanent snow or ice, typically only in mountain areas or highest latitudes; examples: glaciers, permanent snowpack, snow fields. 10. CloudsNo land cover information due to persistent cloud cover.11. RangelandOpen areas covered in homogenous grasses with little to no taller vegetation; wild cereals and grasses with no obvious human plotting (i.e., not a plotted field); examples: natural meadows and fields with sparse to no tree cover, open savanna with few to no trees, parks/golf courses/lawns, pastures. Mix of small clusters of plants or single plants dispersed on a landscape that shows exposed soil or rock; scrub-filled clearings within dense forests that are clearly not taller than trees; examples: moderate to sparse cover of bushes, shrubs and tufts of grass, savannas with very sparse grasses, trees or other plants.CitationKarra, Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2021.AcknowledgementsTraining data for this project makes use of the National Geographic Society Dynamic World training dataset, produced for the Dynamic World Project by National Geographic Society in partnership with Google and the World Resources Institute.For questions please email environment@esri.com
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Important Note: This item is in mature support as of February 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. This layer displays change in pixels of the Sentinel-2 10m Land Use/Land Cover product developed by Esri, Impact Observatory, and Microsoft. Available years to compare with 2021 are 2018, 2019 and 2020. By default, the layer shows all comparisons together, in effect showing what changed 2018-2021. But the layer may be changed to show one of three specific pairs of years, 2018-2021, 2019-2021, or 2020-2021.Showing just one pair of years in ArcGIS Online Map ViewerTo show just one pair of years in ArcGIS Online Map viewer, create a filter. 1. Click the filter button. 2. Next, click add expression. 3. In the expression dialogue, specify a pair of years with the ProductName attribute. Use the following example in your expression dialogue to show only places that changed between 2020 and 2021:ProductNameis2020-2021By default, places that do not change appear as a
transparent symbol in ArcGIS Pro. But in ArcGIS Online Map Viewer, a transparent
symbol may need to be set for these places after a filter is
chosen. To do this:4. Click the styles button. 5. Under unique values click style options. 6. Click the symbol next to No Change at the bottom of the legend. 7. Click the slider next to "enable fill" to turn the symbol off.Showing just one pair of years in ArcGIS ProTo show just one pair of years in ArcGIS Pro, choose one of the layer's processing templates to single out a particular pair of years. The processing template applies a definition query that works in ArcGIS Pro. 1. To choose a processing template, right click the layer in the table of contents for ArcGIS Pro and choose properties. 2. In the dialogue that comes up, choose the tab that says processing templates. 3. On the right where it says processing template, choose the pair of years you would like to display. The processing template will stay applied for any analysis you may want to perform as well.How the change layer was created, combining LULC classes from two yearsImpact Observatory, Esri, and Microsoft used artificial intelligence to classify the world in 10 Land Use/Land Cover (LULC) classes for the years 2017-2021. Mosaics serve the following sets of change rasters in a single global layer: Change between 2018 and 2021Change between 2019 and 2021Change between 2020 and 2021To make this change layer, Esri used an arithmetic operation
combining the cells from a source year and 2021 to make a change index
value. ((from year * 16) + to year) In the example of the change between 2020 and 2021, the from year (2020) was multiplied by 16, then added to the to year (2021). Then the combined number is served as an index in an 8 bit unsigned mosaic with an attribute table which describes what changed or did not change in that timeframe. Variable mapped: Change in land cover between 2018, 2019, or 2020 and 2021 Data Projection: Universal Transverse Mercator (UTM)Mosaic Projection: WGS84Extent: GlobalSource imagery: Sentinel-2Cell Size: 10m (0.00008983152098239751 degrees)Type: ThematicSource: Esri Inc.Publication date: January 2022What can you do with this layer?Global LULC maps provide information on conservation planning, food security,
and hydrologic modeling, among other things. This dataset can be used to
visualize land cover anywhere on Earth. This
layer can also be used in analyses that require land cover input. For
example, the Zonal Statistics tools allow a user to understand the
composition of a specified area by reporting the total estimates for
each of the classes. Land Cover processingThis map was produced by a deep learning model trained using over 5 billion hand-labeled Sentinel-2 pixels, sampled from over 20,000 sites distributed across all major biomes of the world. The underlying deep learning model uses 6 bands of Sentinel-2 surface reflectance data: visible blue, green, red, near infrared, and two shortwave infrared bands. To create the final map, the model is run on multiple dates of imagery throughout the year, and the outputs are composited into a final representative map. Processing platformSentinel-2 L2A/B data was accessed via Microsoft’s Planetary Computer and scaled using Microsoft Azure Batch.Class definitions1. WaterAreas
where water was predominantly present throughout the year; may not
cover areas with sporadic or ephemeral water; contains little to no
sparse vegetation, no rock outcrop nor built up features like docks;
examples: rivers, ponds, lakes, oceans, flooded salt plains.2. TreesAny
significant clustering of tall (~15-m or higher) dense vegetation,
typically with a closed or dense canopy; examples: wooded vegetation,
clusters of dense tall vegetation within savannas, plantations, swamp or
mangroves (dense/tall vegetation with ephemeral water or canopy too
thick to detect water underneath).4. Flooded vegetationAreas
of any type of vegetation with obvious intermixing of water throughout a
majority of the year; seasonally flooded area that is a mix of
grass/shrub/trees/bare ground; examples: flooded mangroves, emergent
vegetation, rice paddies and other heavily irrigated and inundated
agriculture.5. CropsHuman
planted/plotted cereals, grasses, and crops not at tree height;
examples: corn, wheat, soy, fallow plots of structured land.7. Built AreaHuman
made structures; major road and rail networks; large homogenous
impervious surfaces including parking structures, office buildings and
residential housing; examples: houses, dense villages / towns / cities,
paved roads, asphalt.8. Bare groundAreas
of rock or soil with very sparse to no vegetation for the entire year;
large areas of sand and deserts with no to little vegetation; examples:
exposed rock or soil, desert and sand dunes, dry salt flats/pans, dried
lake beds, mines.9. Snow/IceLarge
homogenous areas of permanent snow or ice, typically only in mountain
areas or highest latitudes; examples: glaciers, permanent snowpack, snow
fields. 10. CloudsNo land cover information due to persistent cloud cover.11. Rangeland Open
areas covered in homogenous grasses with little to no taller
vegetation; wild cereals and grasses with no obvious human plotting
(i.e., not a plotted field); examples: natural meadows and fields with
sparse to no tree cover, open savanna with few to no trees, parks/golf
courses/lawns, pastures. Mix of small clusters of plants or single
plants dispersed on a landscape that shows exposed soil or rock;
scrub-filled clearings within dense forests that are clearly not taller
than trees; examples: moderate to sparse cover of bushes, shrubs and
tufts of grass, savannas with very sparse grasses, trees or other
plants.CitationKarra,
Kontgis, et al. “Global land use/land cover with Sentinel-2 and deep
learning.” IGARSS 2021-2021 IEEE International Geoscience and Remote
Sensing Symposium. IEEE, 2021.AcknowledgementsTraining
data for this project makes use of the National Geographic Society
Dynamic World training dataset, produced for the Dynamic World Project
by National Geographic Society in partnership with Google and the World
Resources Institute.For questions please email environment@esri.com