69 datasets found
  1. a

    QGIS Training Tutorials: Using Spatial Data in Geographic Information...

    • catalogue.arctic-sdi.org
    • datasets.ai
    • +1more
    Updated Oct 28, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV
    Explore at:
    Dataset updated
    Oct 28, 2019
    Description

    Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

  2. a

    Collision Data Analysis Review

    • hub.arcgis.com
    Updated Oct 21, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Civic Analytics Network (2016). Collision Data Analysis Review [Dataset]. https://hub.arcgis.com/documents/2d387e525120475b9d361acee2ce87bc
    Explore at:
    Dataset updated
    Oct 21, 2016
    Dataset authored and provided by
    Civic Analytics Network
    Description

    In this blog I’ll share the workflow and tools used in the GIS part of this analysis. To understand where crashes are occurring, first the dataset had to be mapped. The software of choice in this instance was ArcGIS, though most of the analysis could have been done using QGIS. Heat maps are all the rage, and if you want to make simple heat maps for free and you appreciate good documentation, I recommend the QGIS Heatmap plugin. There are also some great tools in the free open-source program GeoDa for spatial statistics.

  3. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  4. OpenStreetMap Data French Polynesia

    • tonga-data.sprep.org
    • americansamoa-data.sprep.org
    • +13more
    txt, zip
    Updated Feb 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Secretariat of the Pacific Regional Environment Programme (2025). OpenStreetMap Data French Polynesia [Dataset]. https://tonga-data.sprep.org/dataset/openstreetmap-data-french-polynesia
    Explore at:
    txt, zipAvailable download formats
    Dataset updated
    Feb 20, 2025
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Pacific Region, French Polynesia, Polynesia
    Description

    OpenStreetMap (OSM) is a free, editable map & spatial database of the whole world. This dataset is an extract of OpenStreetMap data for French Polynesia in a GIS-friendly format.

    The OSM data has been split into separate layers based on themes (buildings, roads, points of interest, etc), and it comes bundled with a QGIS project and styles, to help you get started with using the data in your maps. This OSM product will be updated weekly.

    The goal is to increase awareness among Pacific GIS users of the richness of OpenStreetMap data in Pacific countries, as well as the gaps, so that they can take advantage of this free resource, become interested in contributing to OSM, and perhaps join the global OSM community.

    OpenStreetMap data is open data, with a very permissive licence. You can download it and use it for any purpose you like, as long as you credit OpenStreetMap and its contributors. You don't have to pay anyone, or ask anyone's permission. When you download and use the data, you're granted permission to do that under the Open Database Licence (ODbL). The only conditions are that you Attribute, Share-Alike, and Keep open.

    The required credit is “© OpenStreetMap contributors”. If you make a map, you should display this credit somewhere. If you provide the data to someone else, you should make sure the license accompanies the data

  5. e

    Base map

    • data.europa.eu
    json
    Updated Feb 20, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Helsingborgs stad (2022). Base map [Dataset]. https://data.europa.eu/data/datasets/https-datakatalog-helsingborg-se-store-3-resource-356/embed
    Explore at:
    jsonAvailable download formats
    Dataset updated
    Feb 20, 2022
    Dataset authored and provided by
    Helsingborgs stad
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The base map consists of the city’s basic geographical information and has the highest level of detail used in the urban development area as a whole. The map is also used outside the city’s activities in areas such as planning and planning. By providing the base map as open data, the city opens up for wider use and the possibility of new innovative applications.ContentBasic map includes:

    BuildingsCommunicationMarket useAddressesRegistermap (property limits and rights, etc.) The information in the register map has no legal effect and may be poorly accurate. In case of exact information requirements, verification should be carried out on the basis of decision documents.AtkomstBaskartan is downloaded via http://kartor.helsingborg.se/oppnageodata/baskarta.phpFormat and object modelThe map is delivered as a zip file containing one GeoJSON file per object type. Coordinate system is SWEREF99 13 30. The files are a direct export from the Helsingborg City Planning Administration’s database and are named as follows:

    Object types sometimes have attributes that come from domains. Then a value can be represented in a digit instead of saving a string over and over again. During export we have exploded the domains with the suffix “_resolved” so that they can still be seen in plain text.“PURPOSE”:10, “PURPOSE_resolved”:“Småhus — detached”

    The tables in the theme “Registration map” have a specific title in two letters. Exempel:Registerkarta AQIn order to understand the contents of those tables, it may help to examine the attribute “dep” where a more readable description is given. Complete documentation on the registry map is currently missing. However, Lantmäteriet provides similar products where table names exist. Please see exempel:https://www.lantmateriet.se/globalassets/kartor-oc...MetadataEn mapping to translate table names into English can be found here. Structure:[{“Geo object class”:“Facility, point”, “Geo object class English”:“MAPCONSTRUCTIONP”},... ]

    Refresh rate The zip file is updated weekly, the night between Saturday and Sunday. In the zip file there is a folder metadata. In it is readme.txt which contains a date stamp that tells you when the actual export was made.

    FAQ base map

    How can I look at the map without any specific program? Download the zip file and unpack it. Search “GeoJSON viewer” in your browser. For example, http://www.mapshaper.org/. Drag in and drop a GeoJSON file to view it.

    Can I use the base map in my CAD system?Plugin/app is available to Autodesk. https://apps.autodesk.com/ACD/en/Detail/Index?id=5...

    Can I use the base map in my GIS? QGIS has good support for GeoJSON. ArcMap requires Data Interopability add-on. FME can read and convert.

    Can I convert GeoJSON to shape? Several free services are available to convert to shape. Among others, http://www.mapshaper.org/.

  6. f

    Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods

    • figshare.com
    zip
    Updated Jan 19, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab) (2024). Estimating Ephemeral Streams QGIS Layer Packages, Map Files, and Methods [Dataset]. http://doi.org/10.6084/m9.figshare.24975744.v5
    Explore at:
    zipAvailable download formats
    Dataset updated
    Jan 19, 2024
    Dataset provided by
    figshare
    Authors
    Stream, Rivers and Estuaries Laboratory (STRIVE Lab)
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset was used to estimate total ephemeral stream length within the Coeur d'Alene, Fort Apache, and Menominee Reservations. It includes data that is publicly available through the USGS "The National Map" (USGS TNM Download v2.0), including NHDPlus High Resolution hydrography data, and Contour (1:24,000-scale) elevation data. It also includes geographic boundaries for the above mentioned Native American Reservations, as well as "eph5ha" raster data (Fesenmyer et al. 2021), which was used to approximate ephemeral stream locations. The remaining layers in the dataset include exported, site-specific NHDPlus hydrography data, and hand-digitized, estimated ephemeral streams, based on the eph5ha raster data. A map PNG of all three reservations is also included, as well as the map file used to create that map image. Lastly, a PDF of the methods used for this mapping project is also attached.

  7. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • home-ecgis.hub.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  8. H

    GeoServer Tutorials

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Aug 4, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jacob Wise Calhoon (2022). GeoServer Tutorials [Dataset]. https://www.hydroshare.org/resource/753127b14dd443a1a4f2cf9634835d7a
    Explore at:
    zip(14.4 MB)Available download formats
    Dataset updated
    Aug 4, 2022
    Dataset provided by
    HydroShare
    Authors
    Jacob Wise Calhoon
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This resources contains PDF files and Python notebook files that demonstrate how to create geospatial resources in HydroShare and how to use these resources through web services provided by the built-in HydroShare GeoServer instance. Geospatial resources can be consumed directly into ArcMap, ArcGIS, Story Maps, Quantum GIS (QGIS), Leaflet, and many other mapping environments. This provides HydroShare users with the ability to store data and retrieve it via services without needing to set up new data services. All tutorials cover how to add WMS and WFS connections. WCS connections are available for QGIS and are covered in the QGIS tutorial. The tutorials and examples provided here are intended to get the novice user up-to-speed with WMS and GeoServer, though we encourage users to read further on these topic using internet searches and other resources. Also included in this resource is a tutorial designed to that walk users through the process of creating a GeoServer connected resource.

    The current list of available tutorials: - Creating a Resource - ArcGIS Pro - ArcMap - ArcGIS Story Maps - QGIS - IpyLeaflet - Folium

  9. Connectivity of North East Australia Seascapes – Data and Maps (NESP TWQ...

    • catalogue.eatlas.org.au
    • researchdata.edu.au
    Updated May 10, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Australian Institute of Marine Science (2019). Connectivity of North East Australia Seascapes – Data and Maps (NESP TWQ 3.3.3, AIMS and JCU) [Dataset]. https://catalogue.eatlas.org.au/geonetwork/srv/api/records/5b7f73ff-b23e-44d2-a2aa-2d7fa588d5ca
    Explore at:
    www:link-1.0-http--link, www:link-1.0-http--related, www:link-1.0-http--downloaddataAvailable download formats
    Dataset updated
    May 10, 2019
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Time period covered
    Aug 17, 2017 - Sep 5, 2018
    Area covered
    Australia
    Description

    This dataset shows the results of mapping the connectivity of key values (natural heritage, indigenous heritage, social and historic and economic) of the Great Barrier Reef with its neighbouring regions (Torres Strait, Coral Sea and Great Sandy Strait). The purpose of this mapping process was to identify values that need joint management across multiple regions. It contains a spreadsheet containing the connection information obtained from expert elicitation, all maps derived from this information and all GIS files needed to recreate these maps. This dataset contains the connection strength for 59 attributes of the values between 7 regions (GBR Far Northern, GBR Cairns-Cooktown, GBR Whitsunday-Townsville, GBR Mackay-Capricorn, Torres Strait, Coral Sea and Great Sandy Strait) based on expert opinion. Each connection is assessed based on its strength, mechanism and confidence. Where a connection was known to not exist between two regions then this was also explicitly recorded. A video tutorial on this dataset and its maps is available from https://vimeo.com/335053846.

    Methods:

    The information for the connectivity maps was gathered from experts (~30) during a 3-day workshop in August 2017. Experts were provided with a template containing a map of Queensland and the neighbouring seas, with an overlay of the regions of interest to assess the connectivity. These were Torres Strait, GBR:Far North Queensland, GBR:Cairns to Cooktown, GBC: Townsville to Whitsundays, GBR: Mackay to Capricorn Bunkers and Great Sandy Strait (which includes Hervey bay). A range of reference maps showing locations of the values were provided, where this information could be obtained. As well as the map the template provided 7x7 table for filling in the connectivity strength and connection type between all combinations of these regions. The experts self-organised into groups to discuss and complete the template for each attribute to be mapped. Each expert was asked to estimate the strength of connection between each region as well as the connection mechanism and their confidence in the information. Due to the limited workshop time the experts were asked to focus on initially recording the connections between the GBR and its neighbouring regions and not to worry about the internal connections in the GBR, or long-distance connections along the Queensland coast. In the second half of the workshop the experts were asked to review the maps created and expand on the connections to include those internal to the GBR. After the workshop an initial set of maps were produced and reviewed by the project team and a range of issues were identified and resolved. Additional connectivity maps for some attributes were prepared after the workshop by the subject experts within the project team. The data gathered from these templates was translated into a spreadsheet, then processing into the graphic maps using QGIS to present the connectivity information. The following are the value attributes where their connectivity was mapped: Seagrass meadows: pan-regional species (e.g. Halophila spp. and Halodule spp.) Seagrass meadows: tropical/sub-tropical (Cymodocea serrulata, Syringodium isoetifolium) Seagrass meadows: tropical (Thalassia, Cymodocea, Thalassodendron, Enhalus, Rotundata) Seagrass meadows: Zostera muelleri Mangroves & saltmarsh Hard corals Crustose coralline algae Macroalgae Crown of thorns starfish larval flow Acropora larval flow Casuarina equisetifolia & Pandanus tectorius Argusia argentia Pisonia grandis: cay vegetation Inter-reef gardens (sponges + gorgonians) (Incomplete) Halimeda Upwellings Pelagic foraging seabirds Inshore and offshore foraging seabirds Migratory shorebirds Ornate rock lobster Yellowfin tuna Black marlin Spanish mackerel Tiger shark Grey nurse shark Humpback whales Dugongs Green turtles Hawksbill turtles Loggerhead turtles Flatback turtles Longfin & Shortfin Eels Red-spot king prawn Brown tiger prawn Eastern king prawns Great White Shark Sandfish (H. scabra) Black teatfish (H. whitmaei) Location of sea country Tangible cultural resources Location of place attachment Location of historic shipwrecks Location of places of social significance Location of commercial fishing activity Location of recreational use Location of tourism destinations Australian blacktip shark (C. tilstoni) Barramundi Common black tip shark (C. limbatus) Dogtooth tuna Grey mackerel Mud crab Coral trout (Plectropomus laevis) Coral trout (Plectropomus leopardus) Red throat emperor Reef manta Saucer scallop (Ylistrum balloti) Bull shark Grey reef shark

    Limitations of the data:

    The connectivity information in this dataset is only rough in nature, capturing the interconnections between 7 regions. The connectivity data is based on expert elicitation and so is limited by the knowledge of the experts that were available for the workshop. In most cases the experts had sufficient knowledge to create robust maps. There were however some cases where the knowledge of the participants was limited, or the available scientific knowledge on the topic was limited (particularly for the ‘inter-reefal gardens’ attribute) or the exact meaning of the value attribute was poorly understood or could not be agreed up on (particularly for the social and indigenous heritage maps). This information was noted with the maps. These connectivity maps should be considered as an initial assessment of the connections between each of the regions and should not be used as authoritative maps without consulting with additional sources of information. Each of the connectivity links between regions was recorded with a level of confidence, however these were self-reported, and each assessment was performed relatively quickly, with little time for reflection or review of all the available evidence. It is likely that in many cases the experts tended to have a bias to mark links with strong confidence. During subsequent revisions of some maps there were substantial corrections and adjustments even for connections with a strong confidence, indicating that there could be significant errors in the maps where the experts were not available for subsequent revisions. Each of the maps were reviewed by several project team members with broad general knowledge. Not all connection combinations were captured in this process due to the limited expert time available. A focus was made on capturing the connections between the GBR and its neighbouring regions. Where additional time was available the connections within 4 regions in the GBR was also captured. The connectivity maps only show connections between immediately neighbouring regions, not far connections such as between Torres Strait and Great Sandy Strait. In some cases the connection information for longer distances was recorded from the experts but not used in the mapping process. The coastline polygon and the region boundaries in the maps are not spatially accurate. They were simplified to make the maps more diagrammatic. This was done to reduce the chance of misinterpreting the connection arrows on the map as being spatially explicit.

    Format:

    This dataset is made up of a spreadsheet that contains all the connectivity information recorded from the expert elicitation and all the GIS files needed to recreate the generated maps.

    original/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_Master_v2018-09-05.xlsx: ‘Values connectivity’: This sheet contains the raw connectivity codes transcribed from the templates produced prepared by the subject experts. This is the master copy of the connection information. Subsequent sheets in the spreadsheet are derived using formulas from this table. 1-Vertical-data: This is a transformation of the ‘Values connectivity’ sheet so that each source and destination connection is represented as a single row. This also has the connection mechanism codes split into individual columns to allow easier processing in the map generation. This sheet pulls in the spatial information for the arrows on the maps (‘LinkGeom’ attribute) or crosses that represent no connections (‘NoLinkGeom’) using lookup tables from the ‘Arrow-Geom-LUT’ and ‘NoConnection-Geom-LUT’ sheets. 2.Point-extract: This contains all the ‘no connection’ points from the ‘Values connectivity’ dataset. This was saved as working/ GBR_NESP-TWQ-3-3-3_Seascape-connectivity_no-con-pt.csv and used by the QGIS maps to draw all the crosses on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘NoLinkGeom’ attribute is used to filter out all line features, by unchecking blank rows in the ‘NoLinkGeom’ filter. 2.Line-extract: This contains all the ‘connections’ between regions from the ‘Values connectivity’ dataset. This was saved as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_arrows.csv and used by the QGIS maps to draw all the arrows on the maps. This table is created by copy and pasting (values only) the ‘1-Vertical-data’ sheet when the ‘LinkGeom’ attribute is used to filter out all point features, by unchecking blank rows in the ‘LinkGeom’ filter. Map-Atlas-Settings: This contains the metadata for each of the maps generated by QGIS. This sheet was exported as working/GBR_NESP-TWQ-3-3-3_Seascape-connectivity_map-atlas-settings.csv and used by QGIS to drive its Atlas feature to generate one map per row of this table. The AttribID is used to enable and disable the appropriate connections on the map being generated. The WKT attribute (Well Known Text) determines the bounding box of the map to be generated and the other attributes are used to display text on the map. map-image-metadata: This table contains metadata descriptions for each of the value attribute maps. This metadata was exported as a CSV and saved into the final generated JPEG maps using the eAtlas Image Metadata Editor Application

  10. Mid-Century Map

    • hub.arcgis.com
    • data.baltimorecity.gov
    • +15more
    Updated Jan 3, 2017
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2017). Mid-Century Map [Dataset]. https://hub.arcgis.com/maps/esri::mid-century-map/about
    Explore at:
    Dataset updated
    Jan 3, 2017
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    Description

    The Mid-Century Map (World Edition) web map provides a customized world basemap symbolized with a unique "Mid-Century" style. It takes its inspiration from the art and advertising of the 1950's with unique fonts. The symbols for cities and capitals have an atomic slant to them. The map data includes highways, major roads, minor roads, railways, water features, cities, parks, landmarks, building footprints, and administrative boundaries.This basemap, included in the ArcGIS Living Atlas of the World, uses the Mid-Century vector tile layer.The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer referenced in this map.

  11. d

    Mapping the Census using Open-Source GIS

    • dataone.org
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Elizabeth Sutherland (2023). Mapping the Census using Open-Source GIS [Dataset]. http://doi.org/10.5683/SP3/SFCC3J
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Elizabeth Sutherland
    Description

    Maps have always been a powerful tool for visualizing data. Participants will learn how to link the static data of census tables to census geographies by using open-source GIS software. Participants will learn how to join data, calculate new attributes, symbolize geography and create maps. No prior GIS experience is necessary. QGIS will be required to be downloaded prior to the workshop, and laptops will be required. Download instructions https://qgis.org/en/site/forusers/download.html. Download data files https://drive.google.com/drive/folders/1xrAj_BrPtMDBgdi9MXWGcrcuVGfTsGgi?usp=sharing

  12. layers analysis

    • figshare.com
    zip
    Updated Mar 14, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Abdullah Alharbi; Muhammad Almatar (2025). layers analysis [Dataset]. http://doi.org/10.6084/m9.figshare.28599647.v1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Mar 14, 2025
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Abdullah Alharbi; Muhammad Almatar
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Kuwait's arid desert landscape, geological formations, and extreme climate conditions make it a potential site for establishing a terrestrial Mars analog, as this research presents a new GIS-based methodology. The Analog Conjunctive Method (ACM) was specifically developed to identify a suitable location in Kuwait to hold a terrestrial Mars analog using a geographic information system (GIS) and remote sensing techniques. Analogs play a crucial role in simulating different Martian conditions, supporting astronaut training, testing various exploration technologies, and doing different types of scientific research on these environments. The ACM method integrates GIS and remote sensing techniques to evaluate the study area, resulting in potential sites for analog. The analysis employs two stages to finalize the best location. In stage one, the newly developed ACM is applied; it systematically eliminates unstable areas while allowing minimal flexibility for real-world environmental adjustment, particularly in regions with natural wind barriers. ACM is used to process the buffers created for the seven criteria (urban areas and farms, coastal areas, streets, airports, oil fields, natural reserves, and country borders) in QGIS to exclude unsuitable areas. Stage two screens the stage one map locations using different data (STRM, Copernicus sentinel-2, and field visits) to polish the selection based on other criteria (water bodies, dust rate, vegetation cover, and topography). The result shows nine locations in Jal Al-Zor as potential analog sites where a random location is selected for a 3D model creation to visualize the analog. Java Mission-planning and Analysis for Remote Sensing (JMARS) software was used to identify similarities between specific areas, such as the Jal Al-Zor escarpment and Huwaimllyah sand dunes in the Kuwait desert, and comparable terrains on Mars. The research concluded that Jal Al-Zor holds substantial potential as a terrestrial Mars analog site due to its geological and topographical similarities to Martian landscapes. This makes it an ideal location for crew training, Mars equipment testing, and further research in Mars analog studies, providing valuable insights for future planetary exploration.

  13. Z

    BVNA Community Informatics Project Dataset I

    • data.niaid.nih.gov
    Updated Jul 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    McKay, Laurie; Clement, Gail (2024). BVNA Community Informatics Project Dataset I [Dataset]. https://data.niaid.nih.gov/resources?id=zenodo_8260155
    Explore at:
    Dataset updated
    Jul 11, 2024
    Dataset provided by
    University of North Carolina at Greensboro
    Beaverdam Valley Neighborhood Association
    Authors
    McKay, Laurie; Clement, Gail
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This collection comprises geospatial datasets used to create the Beaverdam Valley Neighborhood Association community map and the resulting map in pdf and jpeg formats. This scope of the map covers the borders of Buncombe County, North Carolina, the city limits of Asheville, NC, and the three registered neighborhoods of the Beaverdam Valley (Beaverdam Valley, Hills of Beaverdam, and Beaverdam Run). The geospatial data includes the following layers and associated files:

    "AVL City Limits.geojson": City of Asheville GIS municipal boundary data

    "AVL City Limits.qmd": QGIS metadata file for the above

    "AVL Neighborhoods.geojson": City of Asheville GIS registered neighborhood data

    "AVL Neighborhoods.qmd": QGIS metadata file for the above

    "Buncombe_County_Parcels.geojson": Buncombe County GIS parcel data.

    "Buncombe_County_Parcels.qmd": QGIS metadata file for the above

    "BV Boundaries.geojson": Beaverdam Valley Neighborhood boundaries.

    "BV Boundaries.qmd": QGIS metadata file for the above

    "BV Parcel Intersection.geojson": Intersection of the Beverdam Valley Neighborhood boundaries with the Buncombe County Parcel data.

    "BV Parcel Intersection.qmd": QGIS metadata file for the above

    "BVNA_Map_2022_v2.pdf": BVNA CIP Community Map

    "BVNA_Map_2022_v2_825.jpg": BVNA CIP Community Map

    "City Limits.geojson": Buncombe county boundaries and city limits boundaries witin the county.

    "QGIS BVNA CIP.zip": Zip file containing the above layers in a QGIS project folder and file.

    About the Project: The Beaverdam Valley Neighborhood Association (BVNA) Community Informatics Project aims to gain deeper understanding of the Beaverdam Valley community and to work towards gathering and sharing information about the community and its history. This collection represents a deliverable produced under the 2022-2023 City of Asheville Neighborhood Matching Grant program.

  14. Georeferenced and cropped "Half Inch" (1:126,720) maps of Burma (colonial...

    • zenodo.org
    bin, jpeg, zip
    Updated Nov 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Horst Held; Horst Held (2024). Georeferenced and cropped "Half Inch" (1:126,720) maps of Burma (colonial period) [Dataset]. http://doi.org/10.5281/zenodo.13346102
    Explore at:
    jpeg, bin, zipAvailable download formats
    Dataset updated
    Nov 24, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Horst Held; Horst Held
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Myanmar (Burma)
    Description

    Georeferenced (to WGS1984) and cropped set of about 555 historic maps of Burma at a scale of 1 inch per two miles (1:126,720) covering most of the country. Those topographic maps, originally produced and published by the Great Trigonometrical Survey of India between 1878 and 1949, have been scanned and shared with the public as "Old Survey Of India Maps” Community under a CC BY 4.0 International Licence.

    Each of the map sheet scans was georeferenced using the Latitude-Longitude corner coordinates in Everest 1830 projection. Those map sheets were cropped, keeping only the map area - to allow a seamless mosaic without the mapframe overlapping adjacent map sheets when several map sheets are put together in a GIS. Those cropped map sheets were projected from Everest 1830 to WGS1984 (EPSG:4326) - standard GPS - projection to make them easier to use and combine with other GIS data.

    Many grid cells in this dataset are covered by 2 versions of map sheets - those with hill shade and only lat-lon grid and those without hill shade and featuring a LCC map grid.

    Those map sheets can be loaded directly in any GIS such as QGIS or ESRI ArcGIS.

    • The mm_HI_JBv2024_epsg4326 folder contains the cropped end georeferenced map sheets in jpg-format as well as accompagning georeference and metadata incl.
      • The mm_HI_JBv2024_epsg4326_kmlLinks contains a KML file for each map sheet facilitating their easy use in Google Earth byt linking them the georeferenced map sheet file located in the mm_HI_JBv2024_epsg4326 folder.
      • The mm_historicHI_EPSG4326.gdb contains three ESRI mosaic datasets to easily load all mapsheets, only mapheets with hillshading and lat-lon grid and only "regular" mapsheets without hillshading and LCC grid into ArcGIS
    • The mm_HI_JBv2024_scanMaps folder contains the uncropped original map scans (renamed though) in jpg-format.
    • The mm_historicTopoHI_JBv2024 is a masterlist cataloguing all map sheets for easier use and matching them with the original source files as shared via the "Old Survey Of India Maps” Community (e.g. to identify new mapsheets should new maps be released)

    All georeferenced map scans are based on maps shared as part of the "Old Survey Of India Maps” via Zenodo. Links to each file can be found in the above mentined excel file and most can be also accessed through the zenodo repository below.

    The file naming convention is to first give the number of the 4 degree x 4 degree block followed by the letter (A to P) of the sixteen 1 degree x 1 degree blocks in each 4 degree block eg. 38 D, and this is followed by the cardinal direction letters (NE, NW, SE, SW) to indicate the 30x30 minutes sized map position in the 1 degree block.

    This Number - Letter - Cardinal direction letter designation is followed by the year of the edition, followed by the map series type either HI-hs (hillshaded) or HI-reg (regular), followed by the map sheet title/name.

    The original files as shared as part of the "Old Survey Of India Maps” have been renamed to further standardize the file naming, sometimes correcting them and to make them unique in the case several editions of the same map sheet were available.

    Lineage: This version (1.01, Upload 2024-08-20) has some file attributes fixed.

  15. Open Source GIS Training for Improved Protected Area Planning and Management...

    • samoa-data.sprep.org
    • pacific-data.sprep.org
    pdf, zip
    Updated Feb 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bradley Eichelberger, SPREP PIPAP GIS Consultant (2022). Open Source GIS Training for Improved Protected Area Planning and Management in Samoa [Dataset]. https://samoa-data.sprep.org/dataset/open-source-gis-training-improved-protected-area-planning-and-management-samoa
    Explore at:
    pdf(1016525), zip(791238585), pdf(4922394), pdf(3655929)Available download formats
    Dataset updated
    Feb 15, 2022
    Dataset provided by
    Pacific Regional Environment Programmehttps://www.sprep.org/
    Authors
    Bradley Eichelberger, SPREP PIPAP GIS Consultant
    License

    Public Domain Mark 1.0https://creativecommons.org/publicdomain/mark/1.0/
    License information was derived automatically

    Area covered
    Samoa, 188.90562057495 -14.517952072974)), POLYGON ((186.75230026245 -14.517952072974, 188.90562057495 -13.120440826626, 186.75230026245 -13.120440826626
    Description

    Dataset contains training material on using open source Geographic Information Systems (GIS) to improve protected area planning and management from workshops that were conducted on February 19-21 and October 6-7, 2020. Specifically, the dataset contains lectures on GIS fundamentals, QGIS 3.x, and global positioning system (GPS), as well as country-specific datasets and a workbook containing exercises for viewing data, editing/creating datasets, and creating map products in QGIS. Supplemental videos that narrate a step-by-step recap and overview of these processes are found in the Related Content section of this dataset.

    Funding for this workshop and material was funded by the Biodiversity and Protected Areas Management (BIOPAMA) programme. The BIOPAMA programme is an initiative of the Organisation of African, Caribbean and Pacific (ACP) Group of States financed by the European Union's 11th European Development Fund. BIOPAMA is jointly implemented by the International Union for Conservation of Nature {IUCN) and the Joint Research Centre of the European Commission (EC-JRC). In the Pacific region, BIOPAMA is implemented by IUCN's Oceania Regional Office (IUCN ORO) in partnership with the Secretariat of the Pacific Regional Environment Programme (SPREP). The overall objective of the BIOPAMA programme is to contribute to improving the long-term conservation and sustainable use of biodiversity and natural resources in the Pacific ACP region in protected areas and surrounding communities through better use and monitoring of information and capacity development on management and governance.

  16. n

    Data for: Predicting habitat suitability for Townsend’s big-eared bats...

    • data.niaid.nih.gov
    • datadryad.org
    zip
    Updated Dec 12, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natalie Hamilton; Michael Morrison; Leila Harris; Joseph Szewczak; Scott Osborn (2022). Data for: Predicting habitat suitability for Townsend’s big-eared bats across California in relation to climate change [Dataset]. http://doi.org/10.5061/dryad.4j0zpc8f1
    Explore at:
    zipAvailable download formats
    Dataset updated
    Dec 12, 2022
    Dataset provided by
    California Department of Fish and Wildlife
    Texas A&M University
    California State Polytechnic University
    University of California, Davis
    Authors
    Natalie Hamilton; Michael Morrison; Leila Harris; Joseph Szewczak; Scott Osborn
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    California
    Description

    Aim: Effective management decisions depend on knowledge of species distribution and habitat use. Maps generated from species distribution models are important in predicting previously unknown occurrences of protected species. However, if populations are seasonally dynamic or locally adapted, failing to consider population level differences could lead to erroneous determinations of occurrence probability and ineffective management. The study goal was to model the distribution of a species of special concern, Townsend’s big-eared bats (Corynorhinus townsendii), in California. We incorporate seasonal and spatial differences to estimate the distribution under current and future climate conditions. Methods: We built species distribution models using all records from statewide roost surveys and by subsetting data to seasonal colonies, representing different phenological stages, and to Environmental Protection Agency Level III Ecoregions to understand how environmental needs vary based on these factors. We projected species’ distribution for 2061-2080 in response to low and high emissions scenarios and calculated the expected range shifts. Results: The estimated distribution differed between the combined (full dataset) and phenologically-explicit models, while ecoregion-specific models were largely congruent with the combined model. Across the majority of models, precipitation was the most important variable predicting the presence of C. townsendii roosts. Under future climate scnearios, distribution of C. townsendii is expected to contract throughout the state, however suitable areas will expand within some ecoregions. Main conclusion: Comparison of phenologically-explicit models with combined models indicate the combined models better predict the extent of the known range of C. townsendii in California. However, life history-explicit models aid in understanding of different environmental needs and distribution of their major phenological stages. Differences between ecoregion-specific and statewide predictions of habitat contractions highlight the need to consider regional variation when forecasting species’ responses to climate change. These models can aid in directing seasonally explicit surveys and predicting regions most vulnerable under future climate conditions. Methods Study area and survey data The study area covers the U.S. state of California, which has steep environmental gradients that support an array of species (Dobrowski et al. 2011). Because California is ecologically diverse, with regions ranging from forested mountain ranges to deserts, we examined local environmental needs by modeling at both the state-wide and ecoregion scale, using U.S. Environmental Protection Agency (EPA) Level III ecoregion designations and there are thirteen Level III ecoregions in California (Table S1.1) (Griffith et al. 2016). Species occurrence data used in this study were from a statewide survey of C. townsendii in California conducted by Harris et al. (2019). Briefly, methods included field surveys from 2014-2017 following a modified bat survey protocol to create a stratified random sampling scheme. Corynorhinus townsendii presence at roost sites was based on visual bat sightings. From these survey efforts, we have visual occurrence data for 65 maternity roosts, 82 hibernation roosts (hibernacula), and 91 active-season non-maternity roosts (transition roosts) for a total of 238 occurrence records (Figure 1, Table S1.1). Ecogeographical factors We downloaded climatic variables from WorldClim 2.0 bioclimatic variables (Fick & Hijmans, 2017) at a resolution of 5 arcmin for broad-scale analysis and 30 arcsec for our ecoregion-specific analyses. To calculate elevation and slope, we used a digital elevation model (USGS 2022) in ArcGIS 10.8.1 (ESRI, 2006). The chosen set of environmental variables reflects knowledge on climatic conditions and habitat relevant to bat physiology, phenology, and life history (Rebelo et al. 2010, Razgour et al. 2011, Loeb and Winters 2013, Razgour 2015, Ancillotto et al. 2016). To trim the global environmental variables to the same extent (the state of California), we used the R package “raster” (Hijmans et al. 2022). We performed a correlation analysis on the raster layers using the “layerStats” function and removed variables with a Pearson’s coefficient > 0.7 (see Table 1 for final model variables). For future climate conditions, we selected three general circulation models (GCMs) based on previous species distribution models of temperate bat species (Razgour et al. 2019) [Hadley Centre Global Environment Model version 2 Earth Systems model (HadGEM3-GC31_LL; Webb, 2019), Institut Pierre-Simon Laplace Coupled Model 6th Assessment Low Resolution (IPSL-CM6A-LR; Boucher et al., 2018), and Max Planck Institute for Meteorology Earth System Model Low Resolution (MPI-ESM1-2-LR; Brovkin et al., 2019)] and two contrasting greenhouse concentration trajectories (Shared Socio-economic Pathways (SSPs): a steady decline pathway with CO2 concentrations of 360 ppmv (SSP1-2.6) and an increasing pathway with CO2 reaching around 2,000 ppmv (SSP5-8.5) (IPCC6). We modeled distribution for present conditions future (2061-2080) time periods. Because one aim of our study was to determine the consequences of changing climate, we changed only the climatic data when projecting future distributions, while keeping the other variables constant over time (elevation, slope). Species distribution modeling We generated distribution maps for total occurrences (maternity + hibernacula + transition, hereafter defined as “combined models”), maternity colonies , hibernacula, and transition roosts. To estimate the present and future habitat suitability for C. townsendii in California, we used the maximum entropy (MaxEnt) algorithm in the “dismo” R package (Hijmans et al. 2021) through the advanced computing resources provided by Texas A&M High Performance Research Computing. We chose MaxEnt to aid in the comparisons of state-wide and ecoregion-specific models as MaxEnt outperforms other approaches when using small datasets (as is the case in our ecoregion-specific models). We created 1,000 background points from random points in the environmental layers and performed a 5-fold cross validation approach, which divided the occurrence records into training (80%) and testing (20%) datasets. We assessed the performance of our models by measuring the area under the receiver operating characteristic curve (AUC; Hanley & McNeil, 1982), where values >0.5 indicate that the model is performing better than random, values 0.5-0.7 indicating poor performance, 0.7-0.9 moderate performance and values of 0.9-1 excellent performance (BCCVL, Hallgren et al., 2016). We also measured the maximum true skill statistic (TSS; Allouche, Tsoar, & Kadmon, 2006) to assess model performance. The maxTSS ranges from -1 to +1:values <0.4 indicate a model that performs no better than random, 0.4-0.55 indicates poor performance, (0.55-0.7) moderate performance, (0.7-0.85) good performance, and values >0.80 indicate excellent performance (Samadi et al. 2022). Final distribution maps were generated using all occurrence records for each region (rather than the training/testing subset), and the models were projected onto present and future climate conditions. Additionally, because the climatic conditions of the different ecoregions of California vary widely, we generated separate models for each ecoregion in an attempt to capture potential local effects of climate change. A general rule in species distribution modeling is that the occurrence points should be 10 times the number of predictors included in the model, meaning that we would need 50 occurrences in each ecoregion. One common way to overcome this limitation is through the ensemble of small models (ESMs) (Breiner et al. 2015., 2018; Virtanen et al. 2018; Scherrer et al. 2019; Song et al. 2019) included in ecospat R package (references). For our ESMs we implemented MaxEnt modeling, and the final ensemble model was created by averaging individual bivariate models by weighted performance (AUC > 0.5). We also used null model significance testing with to evaluate the performance of our ESMs (Raes and Ter Steege 2007). To perform null model testing we compared AUC scores from 100 null models using randomly generated presence locations equal to the number used in the developed distribution model. All ecoregion models outperformed the null expectation (p<0.002). Estimating range shifts For each of the three GCMs and each RCP scenario, we converted the probability distribution map into a binary map (0=unsuitable, 1=suitable) using the threshold that maximizes sensitivity and specificity (Liu et al. 2016). To create the final maps for each SSP scenario, we summed the three binary GCM layers and took a consensus approach, meaning climatically suitable areas were pixels where at least two of the three models predicted species presence (Araújo and New 2007, Piccioli Cappelli et al. 2021). We combined the future binary maps (fmap) and the present binary maps (pmap) following the formula fmap x 2 + pmap (from Huang et al., 2017) to produce maps with values of 0 (areas not suitable), 1 (areas that are suitable in the present but not the future), 2 (areas that are not suitable in the present but suitable in the future), and 3 (areas currently suitable that will remain suitable) using the raster calculator function in QGIS. We then calculated the total area of suitability, area of maintenance, area of expansion, and area of contraction for each binary model using the “BIOMOD_RangeSize” function in R package “biomod2” (Thuiller et al. 2021).

  17. Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington...

    • catalog.data.gov
    • s.cnmilf.com
    Updated Nov 14, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2025). Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington (NPS, GRD, GRI, OLYM, OLYM digital map) adapted from Washington Division of Geology and Earth Resources Open File Report maps by Gerstel, Logan, Schasse and Lingley and other Washington Division of Geology and Earth Resources Staff (2000, 2003 and 2005) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-olympic-national-park-and-vicinity-washington-nps-grd-gri-olym
    Explore at:
    Dataset updated
    Nov 14, 2025
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Washington
    Description

    The Digital Geologic-GIS Map of Olympic National Park and Vicinity, Washington is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (olym_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (olym_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (olym_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (olym_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (olym_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (olym_geology_metadata_faq.pdf). Please read the olym_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Washington Division of Geology and Earth Resources. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (olym_geology_metadata.txt or olym_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:100,000 and United States National Map Accuracy Standards features are within (horizontally) 50.8 meters or 166.7 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  18. f

    Table1_Soil-geomorphological mapping of Samoylov Island based on UAV...

    • frontiersin.figshare.com
    docx
    Updated Jun 6, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vyacheslav Polyakov; Andrei Kartoziia; Timur Nizamutdinov; Wenjuan Wang; Evgeny Abakumov (2023). Table1_Soil-geomorphological mapping of Samoylov Island based on UAV imaging.DOCX [Dataset]. http://doi.org/10.3389/fenvs.2022.948367.s001
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 6, 2023
    Dataset provided by
    Frontiers
    Authors
    Vyacheslav Polyakov; Andrei Kartoziia; Timur Nizamutdinov; Wenjuan Wang; Evgeny Abakumov
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Soil-geomorphological mapping is a reliable tool for analyzing the patterns of soil distribution in various parts of Earth’s surface. Cryogenic and watershed areas are the most dynamic landscapes with relatively rapid transformation under the influence of climate change and river activity. The soil-geomorphological map obtained by unmanned aerial vehicle (UAV) imaging, classical soil sections, geomorphological observation, and determination of the main chemical parameters of soils are presented. Mapping of the spatial distribution was performed using QGIS 3.22, SAGA GIS 7.9.1, and ArcGIS 10.6 software. The investigation of soil cover was performed according to WRB soil classification. From the obtained data, four types of soils were identified due to their position in the relief and chemical parameters. The dominant soil type is Folic Cryosol (Siltic) (41.1%) which is formed on the periglacial landscape of wet polygons on Samoylov Island. The application of high-resolution UAV imaging to construct soil-geomorphological maps is the most relevant method for analyzing soils formed in cryogenic, watershed, and mountainous landscapes. Based on SOC distribution, it was found that the highest SOC content corresponds to Holocene terrace (Cryosol and Histosol soil types), in areas that are not subject to the flooding process. According to the analysis of the chemical composition of soils, it was found that the main elements accumulating in the soil are SiO2, Al2O3, CaO, and K2O, which have a river origin. The soil-geomorphological maps can be used to analyze the reserves and contents of organic and inorganic components with high accuracy.

  19. Agricultural land use (raster) : National-scale crop type maps for Germany...

    • zenodo.org
    • openagrar.de
    Updated Apr 30, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gideon Tetteh; Gideon Tetteh; Marcel Schwieder; Marcel Schwieder; Lukas Blickensdörfer; Lukas Blickensdörfer; Alexander Gocht; Alexander Gocht; Stefan Erasmi; Stefan Erasmi (2025). Agricultural land use (raster) : National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2023) [Dataset]. http://doi.org/10.5281/zenodo.15055561
    Explore at:
    Dataset updated
    Apr 30, 2025
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Gideon Tetteh; Gideon Tetteh; Marcel Schwieder; Marcel Schwieder; Lukas Blickensdörfer; Lukas Blickensdörfer; Alexander Gocht; Alexander Gocht; Stefan Erasmi; Stefan Erasmi
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Germany
    Description

    The dataset contains a map of the main classes of agricultural land use (dominant crop types and other land use types) in Germany for the year 2023. It complements a series of maps that are produced annually at the Thünen Institute beginning with the year 2017 on the basis of satellite data. The maps cover the entire open landscape, i.e., the agriculturally used area (UAA) and e.g., uncultivated areas. The map was derived from time series of Sentinel-1, Sentinel-2, Landsat 8 and additional environmental data. Map production is based on the methods described in Blickensdörfer et al. (2022).

    All optical satellite data were managed, pre-processed and structured in an analysis-ready data (ARD) cube using the open-source software FORCE - Framework for Operational Radiometric Correction for Environmental monitoring (Frantz, D., 2019), in which SAR and environmental data were integrated.

    The map extent covers all areas in Germany that are defined as agricultural land, grassland, small woody features, heathland, peatland or unvegetated areas according to ATKIS Basis-DLM (Geobasisdaten: © GeoBasis-DE / BKG, 2020).

    Version v201:
    Post-processing of the maps included a sieve filter as well as a ruleset for the reduction of non-plausible areas using the Basis-DLM and the digital terrain model of Germany (Geobasisdaten: © GeoBasis-DE / BKG, 2015).

    The maps are available as cloud optimized GeoTiffs, which makes downloading the full dataset optional. All data can directly be accessed in QGIS, R, Python or any supported software of your choice using the URL that will be provided on request. By doing so the entire map area or only the regions of interest can be accessed. QGIS legend files for data visualization can be downloaded separately.

    Class-specific accuracies for each year are proveded in the respective tables. We provide this dataset "as is" without any warranty regarding the accuracy or completeness and exclude all liability.

    _

    Mailing list

    If you do not want to miss the latest updates, please enroll to our mailing list.

    _

    References:

    Blickensdörfer, L., Schwieder, M., Pflugmacher, D., Nendel, C., Erasmi, S., & Hostert, P. (2022). Mapping of crop types and crop sequences with combined time series of Sentinel-1, Sentinel-2 and Landsat 8 data for Germany. Remote Sensing of Environment, 269, 112831.

    BKG, Bundesamt für Kartographie und Geodäsie (2015). Digitales Geländemodell Gitterweite 10 m. DGM10. https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/dgm10.pdf (last accessed: 28. April 2022).

    BKG, Bundesamt für Kartographie und Geodäsie (2020). Digitales Basis-Landschaftsmodell.
    https://sg.geodatenzentrum.de/web_public/gdz/dokumentation/deu/basis-dlm.pdf (last accessed: 28. April 2022).

    Frantz, D. (2019). FORCE—Landsat + Sentinel-2 Analysis Ready Data and Beyond. Remote Sensing, 11, 1124.

    Statistisches Bundesamt, Deutschland (2024). Ökosystematlas Deutschland
    https://oekosystematlas-ugr.destatis.de/ (last accessed: 08.02.2024).

    _
    National-scale crop type maps for Germany from combined time series of Sentinel-1, Sentinel-2 and Landsat data (2017 to 2021) © 2024 by Schwieder, Marcel; Tetteh, Gideon Okpoti; Blickensdörfer, Lukas; Gocht, Alexander; Erasmi, Stefan; licensed under CC BY 4.0.

    Funding was provided by the German Federal Ministry of Food and Agriculture as part of the joint project “Monitoring der biologischen Vielfalt in Agrarlandschaften” (MonViA, Monitoring of biodiversity in agricultural landscapes).

  20. s

    Syracuse Tree Canopy - All Layers (Vector Tile Map)

    • data.syr.gov
    • hub.arcgis.com
    Updated Apr 21, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    jscharf_syr (2022). Syracuse Tree Canopy - All Layers (Vector Tile Map) [Dataset]. https://data.syr.gov/maps/0360b905a2754b0ca894f580564ae38e
    Explore at:
    Dataset updated
    Apr 21, 2022
    Dataset authored and provided by
    jscharf_syr
    License

    https://data.syrgov.net/pages/termsofusehttps://data.syrgov.net/pages/termsofuse

    Area covered
    Description

    Urban Tree Canopy Assessment. This was created using the Urban Tree Canopy Syracuse 2010 (All Layers) file HERE.The data for this map was created using LIDAR and other spatial analysis tools to identify and measure tree canopy in the landscape. This was a collaboration between the US Forest Service Northern Research Station (USFS), the University of Vermont Spatial Laboratory, and SUNY ESF. Because the full map is too large to be viewed in ArcGIS Online, this has been reduced to a vector tile layer to allow it to be viewed online. To download and view the shapefiles and all of the layers, you can download the data HERE and view this in either ArcGIS Pro or QGIS.Data DictionaryDescription source  USDA Forest ServiceList of values  Value 1 Description Tree CanopyValue 2 Description Grass/ShrubValue 3 Description Bare SoilValue 4 Description WaterValue 5 Description BuildingsValue 6 Description Roads/RailroadsValue 7 Description Other PavedField Class Alias Class Data type String Width 20Geometric objects  Feature class name landcover_2010_syracusecity Object type  complex Object count 7ArcGIS Feature Class Properties Feature class name landcover_2010_syracusecity Feature type  Simple Geometry type Polygon Has topology FALSE Feature count 7 Spatial index TRUE Linear referencing  FALSEDistributionAvailable format  Name ShapefileTransfer options  Transfer size 163.805Description Downloadable DataFieldsDetails for object landcover_2010_syracusecityType Feature Class Row count  7 Definition  UTCField FIDAlias FID Data type OID Width  4 Precision 0 Scale 0Field descriptionInternal feature number.Description source ESRIDescription of valueSequential unique whole numbers that are automatically generated.Field ShapeAlias Shape Data type Geometry Width 0 Precision 0 Scale 0Field description Feature geometry.Description source  ESRIDescription of values Coordinates defining the features.Field CodeAlias Code Data type Number Width 4Overview Description  Metadata DetailsMetadata language  English Metadata character set utf8 - 8 bit UCS Transfer FormatScope of the data described by the metadata  dataset Scope name  datasetLast update 2011-06-02ArcGIS metadata properties Metadata format ArcGIS 1.0 Metadata style North American Profile of ISO19115 2003Created in ArcGIS for the item 2011-06-02 16:48:35 Last modified in ArcGIS for the item 2011-06-02 16:44:43Automatic updates Have been performed Yes Last update 2011-06-02 16:44:43Item location history  Item copied or moved 2011-06-02 16:48:35 From T:\TestSites\NY\Syracuse\Temp\landcover_2010_syracusecity To \T7500\F$\Export\LandCover_2010_SyracuseCity\landcover_2010_syracusecity

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
(2019). QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems [Dataset]. https://catalogue.arctic-sdi.org/geonetwork/srv/search?format=MOV

QGIS Training Tutorials: Using Spatial Data in Geographic Information Systems

Explore at:
Dataset updated
Oct 28, 2019
Description

Have you ever wanted to create your own maps, or integrate and visualize spatial datasets to examine changes in trends between locations and over time? Follow along with these training tutorials on QGIS, an open source geographic information system (GIS) and learn key concepts, procedures and skills for performing common GIS tasks – such as creating maps, as well as joining, overlaying and visualizing spatial datasets. These tutorials are geared towards new GIS users. We’ll start with foundational concepts, and build towards more advanced topics throughout – demonstrating how with a few relatively easy steps you can get quite a lot out of GIS. You can then extend these skills to datasets of thematic relevance to you in addressing tasks faced in your day-to-day work.

Search
Clear search
Close search
Google apps
Main menu