Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Retrieved from Official Github account of Malaysia's Ministry of Health on 04-Aug-2023.
Imported database : - cases_state.csv: Daily recorded COVID-19 cases at state level. - deaths_state.csv: Daily deaths due to COVID-19 at state level. - hospital.csv: Flow of patients to/out of hospitals, with capacity and utilisation. - icu.csv: Capacity and utilisation of intensive care unit (ICU) beds. - vax_state.csv: Vaccinations (daily and cumulative, by dose type and brand) at state level. - vax_malaysia.csv: Vaccinations (daily and cumulative, by dose type and brand) at country level. - population.csv Malaysia's population by state (last updated from DOSM 2020 census, as published in 2022).
*Database mainly focused on state-level analysis only.*
Full available datasets from MOH (including country-level data) please refer to link above.
Facebook
TwitterOn March 11, 2023, Malaysia had approximately five million confirmed cases of COVID-19. Over the past week, Malaysia has seen a decrease in the number of new cases each day, but still expects an increase due to the highly-contagious Omicron variant.
Malaysia is currently one out of more than 200 countries and territories battling with the novel coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterOn March 11, 2023, Malaysia recorded 223 new confirmed cases of COVID-19, reflecting an increase from more than 160 cases on March 5, 2023. Malaysia is still expecting a rise due to the highly contagious variant of Omicron.
Malaysia is currently one out of more than 200 countries and territories battling with the novel coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Malaysia recorded 5079436 Coronavirus Cases since the epidemic began, according to the World Health Organization (WHO). In addition, Malaysia reported 37028 Coronavirus Deaths. This dataset includes a chart with historical data for Malaysia Coronavirus Cases.
Facebook
TwitterAs of November 4, 2023, Malaysian states of Putrajaya and Kuala Lumpur had respectively around 36.1 and 30.6 coronavirus (COVID-19) confirmed cases per 100,000 people, the highest in the country. Malaysia is experiencing a decrease in cases, although the country still expecting a rise due to the highly contagious variant of Omicron.
Malaysia is currently one out of more than 200 countries and territories battling with the novel coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
Twitterhttps://github.com/disease-sh/API/blob/master/LICENSEhttps://github.com/disease-sh/API/blob/master/LICENSE
In past 24 hours, Malaysia, Asia had N/A new cases, N/A deaths and N/A recoveries.
Facebook
TwitterThis dataset was created by Maisarah Mohamed Pauzi
Facebook
Twitterhttp://www.gnu.org/licenses/lgpl-3.0.htmlhttp://www.gnu.org/licenses/lgpl-3.0.html
The dataset consists of COVID-19 cases in Malaysia from 27 March 2020 to 15 April 2021. This dataset is collected for the purpose of creating better visualizations for the COVID-19 cases in Malaysia. All of the data is web scraped from https://kpkesihatan.com/ by using BeautifulSoup library.
The data is also available in GitHub, along with the scripts made to scrape the data. There is also a Web Application made to show the visualizations.
Originally I planned to update the data daily but I find that it seems too tedious for me to do this alone without some sort of automated scripts or schedulers. I have been wondering how to do this efficiently with automation or schedulers, if someone knows how to do this efficiently, please reach out to me by emailing or message in LinkedIn, the links can be found in my GitHub, thank you very much.
There are three CSV files and one GeoJSON file:
- all_2020-03-27_2021-04-15.csv: all daily cases excluding state data
- state_all.csv: all daily cases for each state
- state_cumu.csv: all daily cumulative cases for each state
- malaysia_state_province_boundary.geojson: Malaysia's GeoJSON map file
The columns consist of: 1. Date 2. Recovered 3. Cumulative Recovered 4. Imported Case (many NaN values till the end of 2020) 5. Local Case (many NaN values) 6. Active Case (many NaN values but can be inferred) 7. New Case 8. Cumulative Case 9. ICU - Number of patients admitted into Intensive Care Unit 10. Ventilator - Number of patients who need ventilator in ICU 11. Death 12. Cumulative Death 13. URL - link to the original webpage
Thanks to Info GIS MAP.com that provides Malaysia's GeoJSON file to create Choropleth maps.
Hopefully, there will be people utilizing the scripts or the data to create better visualizations.
Facebook
TwitterOfficial data on the COVID-19 epidemic in Malaysia.
What's inside is more than just rows and columns. Make it easy for others to get started by describing how you acquired the data and what time period it represents, too.
Powered by CPRC, CPRC Hospital System, MKAK, and MySejahtera.
Your data will be in front of the world's largest data science community. What questions do you want to see answered?
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
New case New case (7 day rolling average) Recovered Active case Local cases Imported case ICU Death Cumulative deaths
People tested Cumulative people tested Positivity rate Positivity rate (7 day rolling average)
Column 1 to 22 are Twitter data, which the Tweets are retrieved from Health DG @DGHisham timeline with Twitter API. A typical covid situation update Tweet is written in a relatively fixed format. Data wrangling are done in Python/Pandas, numerical values extracted with Regular Expression (RegEx). Missing data are added manually from Desk of DG (kpkesihatan).
Column 23 ['remark'] is my own written remark regarding the Tweet status/content.
Column 24 ['Cumulative people tested'] data is transcribed from an image on MOH COVID-19 website. Specifically, the first image under TABURAN KES section in each Situasi Terkini daily webpage of http://covid-19.moh.gov.my/terkini. If missing, the image from CPRC KKM Telegram or KKM Facebook Live video is used. Data in this column, dated from 1 March 2020 to 11 Feb 2021, are from Our World in Data, their data collection method as stated here.
MOH does not publish any covid data in csv/excel format as of today, they provide the data as is, along with infographics that are hardly informative. In an undisclosed email, MOH doesn't seem to understand my request for them to release the covid public health data for anyone to download and do their analysis if they do wish.
A simple visualization dashboard is now published on Tableau Public. It's is updated daily. Do check it out! More charts to be added in the near future
Create better visualizations to help fellow Malaysians understand the Covid-19 situation. Empower the data science community.
Facebook
TwitterAs of November 4, 2023, Malaysia recorded over 5.1 million confirmed cases of COVID-19 and around 37.1 thousand deaths from the virus. Currently, Malaysia has successfully vaccinated over 80 percent of its population and is experiencing a decrease in cases, although the country still expecting a rise due to the highly contagious variant of Omicron.
Malaysia is currently one out of more than 200 countries and territories battling with the novel coronavirus. For further information about the coronavirus (COVID-19) pandemic, please visit our dedicated Facts and Figures page.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
MAP estimates and associated credible intervals for Malaysia.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Summary results for Malaysia (with redistributed cases).
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Monthly reported COVID-19 cases and estimated COVID-19 cases between March 2020 and December 2021 in Malaysia
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Project Tycho datasets contain case counts for reported disease conditions for countries around the world. The Project Tycho data curation team extracts these case counts from various reputable sources, typically from national or international health authorities, such as the US Centers for Disease Control or the World Health Organization. These original data sources include both open- and restricted-access sources. For restricted-access sources, the Project Tycho team has obtained permission for redistribution from data contributors. All datasets contain case count data that are identical to counts published in the original source and no counts have been modified in any way by the Project Tycho team, except for aggregation of individual case count data into daily counts when that was the best data available for a disease and location. The Project Tycho team has pre-processed datasets by adding new variables, such as standard disease and location identifiers, that improve data interpretability. We also formatted the data into a standard data format. All geographic locations at the country and admin1 level have been represented at the same geographic level as in the data source, provided an ISO code or codes could be identified, unless the data source specifies that the location is listed at an inaccurate geographical level. For more information about decisions made by the curation team, recommended data processing steps, and the data sources used, please see the README that is included in the dataset download ZIP file.
Facebook
TwitterApache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
This dataset contains COVID-19 specific information from Malaysia, which includes the number of cases across Malaysian states and vaccination information.
Taken directly from the Malaysian Ministry of Health's COVID-19 repository, which also includes data descriptions.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
IntroductionThe unprecedented COVID-19 pandemic has greatly affected human health and socioeconomic backgrounds. This study examined the spatiotemporal spread pattern of the COVID-19 pandemic in Malaysia from the index case to 291,774 cases in 13 months, emphasizing on the spatial autocorrelation of the high-risk cluster events and the spatial scan clustering pattern of transmission.MethodologyWe obtained the confirmed cases and deaths of COVID-19 in Malaysia from the official GitHub repository of Malaysia's Ministry of Health from January 25, 2020 to February 24, 2021, 1 day before the national vaccination program was initiated. All analyses were based on the daily cumulated cases, which are derived from the sum of retrospective 7 days and the current day for smoothing purposes. We examined the daily global, local spatial autocorrelation and scan statistics of COVID-19 cases at district level using Moran's I and SaTScan™.ResultsAt the initial stage of the outbreak, Moran's I index > 0.5 (p < 0.05) was observed. Local Moran's I depicted the high-high cluster risk expanded from west to east of Malaysia. The cases surged exponentially after September 2020, with the high-high cluster in Sabah, from Kinabatangan on September 1 (cumulative cases = 9,354; Moran's I = 0.34; p < 0.05), to 11 districts on October 19 (cumulative cases = 21,363, Moran's I = 0.52, p < 0.05). The most likely cluster identified from space-time scanning was centered in Jasin, Melaka (RR = 11.93; p < 0.001) which encompassed 36 districts with a radius of 178.8 km, from November 24, 2020 to February 24, 2021, followed by the Sabah cluster.Discussion and ConclusionBoth analyses complemented each other in depicting underlying spatiotemporal clustering risk, giving detailed space-time spread information at district level. This daily analysis could be valuable insight into real-time reporting of transmission intensity, and alert for the public to avoid visiting the high-risk areas during the pandemic. The spatiotemporal transmission risk pattern could be used to monitor the spread of the pandemic.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
BackgroundGlobally, the COVID-19 pandemic has affected the transmission dynamics and distribution of dengue. Therefore, this study aims to describe the impact of the COVID-19 pandemic on the geographic and demographic distribution of dengue incidence in Malaysia.MethodsThis study analyzed dengue cases from January 2014 to December 2021 and COVID-19 confirmed cases from January 2020 to December 2021 which was divided into the pre (2014 to 2019) and during COVID-19 pandemic (2020 to 2021) phases. The average annual dengue case incidence for geographical and demographic subgroups were calculated and compared between the pre and during the COVID-19 pandemic phases. In addition, Spearman rank correlation was performed to determine the correlation between weekly dengue and COVID-19 cases during the COVID-19 pandemic phase.ResultsDengue trends in Malaysia showed a 4-year cyclical trend with dengue case incidence peaking in 2015 and 2019 and subsequently decreasing in the following years. Reductions of 44.0% in average dengue cases during the COVID-19 pandemic compared to the pre-pandemic phase was observed at the national level. Higher dengue cases were reported among males, individuals aged 20–34 years, and Malaysians across both phases. Weekly dengue cases were significantly correlated (ρ = −0.901) with COVID-19 cases during the COVID-19 pandemic.ConclusionThere was a reduction in dengue incidence during the COVID-19 pandemic compared to the pre-pandemic phase. Significant reductions were observed across all demographic groups except for the older population (>75 years) across the two phases.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Countries around the world are gearing for the transition of the coronavirus disease 2019 (COVID-19) from pandemic to endemic phase but the emergence of new severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants could lead to a prolonged pandemic. SARS-CoV-2 has continued to evolve as it optimizes its adaptation to the human host and the successive waves of COVID-19 have been linked to the explosion of particular variant of concern. As the genetic diversity and epidemiological landscape of SARS-CoV-2 differ from country to country, this study aims to provide insights into the variants that are circulating in Malaysia. Whole genome sequencing was performed for 204 SARS-CoV-2 from COVID-19 cases and an additional 18,667 SARS-CoV-2 genome sequences were retrieved from the GISAID EpiCoV database for clade, lineage and genetic variation analyses. Complete genome sequences with high coverage were then used for phylogeny investigation and the resulting phylogenetic tree was constructed from 8,716 sequences. We found that the different waves of COVID-19 in Malaysia were dominated by different clades with the L and O clade for first and second wave, respectively, whereas the progressive replacement by G, GH, and GK of the GRA clade were observed in the subsequence waves. Continuous monitoring of the genetic diversity of SARS-CoV-2 is important to identify the emergence and dominance of new variant in different locality so that the appropriate countermeasures can be taken to effectively contain the spread of SARS-CoV-2.
Facebook
TwitterOn March 10, 2023, the Johns Hopkins Coronavirus Resource Center ceased its collecting and reporting of global COVID-19 data. For updated cases, deaths, and vaccine data please visit the following sources: World Health Organization (WHO)For more information, visit the Johns Hopkins Coronavirus Resource Center.-- Esri COVID-19 Trend Report for 3-9-2023 --0 Countries have Emergent trend with more than 10 days of cases: (name : # of active cases) 41 Countries have Spreading trend with over 21 days in new cases curve tail: (name : # of active cases)Monaco : 13, Andorra : 25, Marshall Islands : 52, Kyrgyzstan : 79, Cuba : 82, Saint Lucia : 127, Cote d'Ivoire : 148, Albania : 155, Bosnia and Herzegovina : 172, Iceland : 196, Mali : 198, Suriname : 246, Botswana : 247, Barbados : 274, Dominican Republic : 304, Malta : 306, Venezuela : 334, Micronesia : 346, Uzbekistan : 356, Afghanistan : 371, Jamaica : 390, Latvia : 402, Mozambique : 406, Kosovo : 412, Azerbaijan : 427, Tunisia : 528, Armenia : 594, Kuwait : 716, Thailand : 746, Norway : 768, Croatia : 847, Honduras : 1002, Zimbabwe : 1067, Saudi Arabia : 1098, Bulgaria : 1148, Zambia : 1166, Panama : 1300, Uruguay : 1483, Kazakhstan : 1671, Paraguay : 2080, Ecuador : 53320 Countries may have Spreading trend with under 21 days in new cases curve tail: (name : # of active cases)61 Countries have Epidemic trend with over 21 days in new cases curve tail: (name : # of active cases)Liechtenstein : 48, San Marino : 111, Mauritius : 742, Estonia : 761, Trinidad and Tobago : 1296, Montenegro : 1486, Luxembourg : 1540, Qatar : 1541, Philippines : 1915, Ireland : 1946, Brunei : 2010, United Arab Emirates : 2013, Denmark : 2111, Sweden : 2149, Finland : 2154, Hungary : 2169, Lebanon : 2208, Bolivia : 2838, Colombia : 3250, Switzerland : 3321, Peru : 3328, Slovakia : 3556, Malaysia : 3608, Indonesia : 3793, Portugal : 4049, Cyprus : 4279, Argentina : 5050, Iran : 5135, Lithuania : 5323, Guatemala : 5516, Slovenia : 5689, South Africa : 6604, Georgia : 7938, Moldova : 8082, Israel : 8746, Bahrain : 8932, Netherlands : 9710, Romania : 12375, Costa Rica : 12625, Singapore : 13816, Serbia : 14093, Czechia : 14897, Spain : 17399, Ukraine : 19568, Canada : 24913, New Zealand : 25136, Belgium : 30599, Poland : 38894, Chile : 41055, Australia : 50192, Mexico : 65453, United Kingdom : 65697, France : 68318, Italy : 70391, Austria : 90483, Brazil : 134279, Korea - South : 209145, Russia : 214935, Germany : 257248, Japan : 361884, US : 6440500 Countries may have Epidemic trend with under 21 days in new cases curve tail: (name : # of active cases) 54 Countries have Controlled trend: (name : # of active cases)Palau : 3, Saint Kitts and Nevis : 4, Guinea-Bissau : 7, Cabo Verde : 8, Mongolia : 8, Benin : 9, Maldives : 10, Comoros : 10, Gambia : 12, Bhutan : 14, Cambodia : 14, Syria : 14, Seychelles : 15, Senegal : 16, Libya : 16, Laos : 17, Sri Lanka : 19, Congo (Brazzaville) : 19, Tonga : 21, Liberia : 24, Chad : 25, Fiji : 26, Nepal : 27, Togo : 30, Nicaragua : 32, Madagascar : 37, Sudan : 38, Papua New Guinea : 38, Belize : 59, Egypt : 60, Algeria : 64, Burma : 65, Ghana : 72, Haiti : 74, Eswatini : 75, Guyana : 79, Rwanda : 83, Uganda : 88, Kenya : 92, Burundi : 94, Angola : 98, Congo (Kinshasa) : 125, Morocco : 125, Bangladesh : 127, Tanzania : 128, Nigeria : 135, Malawi : 148, Ethiopia : 248, Vietnam : 269, Namibia : 422, Cameroon : 462, Pakistan : 660, India : 4290 41 Countries have End Stage trend: (name : # of active cases)Sao Tome and Principe : 1, Saint Vincent and the Grenadines : 2, Somalia : 2, Timor-Leste : 2, Kiribati : 8, Mauritania : 12, Oman : 14, Equatorial Guinea : 20, Guinea : 28, Burkina Faso : 32, North Macedonia : 351, Nauru : 479, Samoa : 554, China : 2897, Taiwan* : 249634 -- SPIKING OF NEW CASE COUNTS --20 countries are currently experiencing spikes in new confirmed cases:Armenia, Barbados, Belgium, Brunei, Chile, Costa Rica, Georgia, India, Indonesia, Ireland, Israel, Kuwait, Luxembourg, Malaysia, Mauritius, Portugal, Sweden, Ukraine, United Kingdom, Uzbekistan 20 countries experienced a spike in new confirmed cases 3 to 5 days ago: Argentina, Bulgaria, Croatia, Czechia, Denmark, Estonia, France, Korea - South, Lithuania, Mozambique, New Zealand, Panama, Poland, Qatar, Romania, Slovakia, Slovenia, Switzerland, Trinidad and Tobago, United Arab Emirates 47 countries experienced a spike in new confirmed cases 5 to 14 days ago: Australia, Austria, Bahrain, Bolivia, Brazil, Canada, Colombia, Congo (Kinshasa), Cyprus, Dominican Republic, Ecuador, Finland, Germany, Guatemala, Honduras, Hungary, Iran, Italy, Jamaica, Japan, Kazakhstan, Lebanon, Malta, Mexico, Micronesia, Moldova, Montenegro, Netherlands, Nigeria, Pakistan, Paraguay, Peru, Philippines, Russia, Saint Lucia, Saudi Arabia, Serbia, Singapore, South Africa, Spain, Suriname, Thailand, Tunisia, US, Uruguay, Zambia, Zimbabwe 194 countries experienced a spike in new confirmed cases over 14 days ago: Afghanistan, Albania, Algeria, Andorra, Angola, Antigua and Barbuda, Argentina, Armenia, Australia, Austria, Azerbaijan, Bahamas, Bahrain, Bangladesh, Barbados, Belarus, Belgium, Belize, Benin, Bhutan, Bolivia, Bosnia and Herzegovina, Botswana, Brazil, Brunei, Bulgaria, Burkina Faso, Burma, Burundi, Cabo Verde, Cambodia, Cameroon, Canada, Central African Republic, Chad, Chile, China, Colombia, Comoros, Congo (Brazzaville), Congo (Kinshasa), Costa Rica, Cote d'Ivoire, Croatia, Cuba, Cyprus, Czechia, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, Egypt, El Salvador, Equatorial Guinea, Eritrea, Estonia, Eswatini, Ethiopia, Fiji, Finland, France, Gabon, Gambia, Georgia, Germany, Ghana, Greece, Grenada, Guatemala, Guinea, Guinea-Bissau, Guyana, Haiti, Honduras, Hungary, Iceland, India, Indonesia, Iran, Iraq, Ireland, Israel, Italy, Jamaica, Japan, Jordan, Kazakhstan, Kenya, Kiribati, Korea - South, Kosovo, Kuwait, Kyrgyzstan, Laos, Latvia, Lebanon, Lesotho, Liberia, Libya, Liechtenstein, Lithuania, Luxembourg, Madagascar, Malawi, Malaysia, Maldives, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Micronesia, Moldova, Monaco, Mongolia, Montenegro, Morocco, Mozambique, Namibia, Nauru, Nepal, Netherlands, New Zealand, Nicaragua, Niger, Nigeria, North Macedonia, Norway, Oman, Pakistan, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines, Poland, Portugal, Qatar, Romania, Russia, Rwanda, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, Samoa, San Marino, Sao Tome and Principe, Saudi Arabia, Senegal, Serbia, Seychelles, Sierra Leone, Singapore, Slovakia, Slovenia, Solomon Islands, Somalia, South Africa, South Sudan, Spain, Sri Lanka, Sudan, Suriname, Sweden, Switzerland, Syria, Taiwan*, Tajikistan, Tanzania, Thailand, Timor-Leste, Togo, Tonga, Trinidad and Tobago, Tunisia, Turkey, Tuvalu, US, Uganda, Ukraine, United Arab Emirates, United Kingdom, Uruguay, Uzbekistan, Vanuatu, Venezuela, Vietnam, West Bank and Gaza, Yemen, Zambia, Zimbabwe Strongest spike in past two days was in US at 64,861 new cases.Strongest spike in past five days was in US at 64,861 new cases.Strongest spike in outbreak was 424 days ago in US at 1,354,505 new cases. Global Total Confirmed COVID-19 Case Rate of 8620.91 per 100,000Global Active Confirmed COVID-19 Case Rate of 37.24 per 100,000Global COVID-19 Mortality Rate of 87.69 per 100,000 21 countries with over 200 per 100,000 active cases.5 countries with over 500 per 100,000 active cases.3 countries with over 1,000 per 100,000 active cases.1 country with over 2,000 per 100,000 active cases.Nauru is worst at 4,354.54 per 100,000.
Facebook
Twitterhttp://opendatacommons.org/licenses/dbcl/1.0/http://opendatacommons.org/licenses/dbcl/1.0/
Retrieved from Official Github account of Malaysia's Ministry of Health on 04-Aug-2023.
Imported database : - cases_state.csv: Daily recorded COVID-19 cases at state level. - deaths_state.csv: Daily deaths due to COVID-19 at state level. - hospital.csv: Flow of patients to/out of hospitals, with capacity and utilisation. - icu.csv: Capacity and utilisation of intensive care unit (ICU) beds. - vax_state.csv: Vaccinations (daily and cumulative, by dose type and brand) at state level. - vax_malaysia.csv: Vaccinations (daily and cumulative, by dose type and brand) at country level. - population.csv Malaysia's population by state (last updated from DOSM 2020 census, as published in 2022).
*Database mainly focused on state-level analysis only.*
Full available datasets from MOH (including country-level data) please refer to link above.