https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Health [source]
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In order to use this dataset, start by selecting a particular set of variables to investigate. You can choose from Measure Names (e.g., Death Rates or Life Expectancy), Race (e.g., All Races), Sex (Male/Female) and Year (2011-2013). Once you have selected your desired variables, you can begin analyzing the data by looking at mortality rates and life expectancy averages amongst different populations in the United States over time.
You may also wish to perform more detailed analyses such as identifying trends or examining correlations between features, regional disparities in mortality rates or changes in average life expectancies over time. If so, you can do so by creating line graphs plotted against one or more independent variables such as Race and Sex to see how demographics impact these statistics overall and on a yearly basis using the Year variable computed from July 1st 2010 estimates
- Analyzing mortality and life expectancy trends among certain races and sexes over time.
- Examining the effects of different socioeconomic factors on death rates and life expectancies.
- Making predictions about future mortality rates and average life expectancies with machine learning algorithms
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: rows.csv | Column name | Description | |:----------------------------|:----------------------------------------------------------------------| | Measure Names | The type of measure being reported. (String) | | Race | The race of the population being reported. (String) | | Sex | The gender of the population being reported. (String) | | Year | The year the data was collected. (Integer) | | Average Life Expectancy | The average life expectancy of the population being reported. (Float) | | Mortality | The mortality rate of the population being reported. (Float) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Health.
https://dataful.in/terms-and-conditionshttps://dataful.in/terms-and-conditions
This dataset contains the Infant Mortality Rates (IMR) across various years, states, genders such as male and female, and regions such as urban and rural. Data for some smaller states prior to 2004 is not available due to inadequacy of samples. For some states like Kerala and Delhi, there are instances when no deaths were reported. This has been highlighted in the notes column.
Number of deaths and mortality rates, by age group, sex, and place of residence, 1991 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data was reported at 4.700 Ratio in 2023. This stayed constant from the previous number of 4.700 Ratio for 2022. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data is updated yearly, averaging 7.000 Ratio from Dec 1960 (Median) to 2023, with 64 observations. The data reached an all-time high of 28.600 Ratio in 1960 and a record low of 4.700 Ratio in 2023. Canada CA: Mortality Rate: Under-5: Female: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Canada – Table CA.World Bank.WDI: Social: Health Statistics. Under-five mortality rate, female is the probability per 1,000 that a newborn female baby will die before reaching age five, if subject to female age-specific mortality rates of the specified year.;Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.;Weighted average;Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys. Aggregate data for LIC, UMC, LMC, HIC are computed based on the groupings for the World Bank fiscal year in which the data was released by the UN Inter-agency Group for Child Mortality Estimation. This is a sex-disaggregated indicator for Sustainable Development Goal 3.2.1 [https://unstats.un.org/sdgs/metadata/].
This dataset documents rates and trends in local hypertension-related cardiovascular disease (CVD) death rates. Specifically, this report presents county (or county equivalent) estimates of hypertension-related CVD death rates in 2000-2019 and trends during two intervals (2000-2010, 2010-2019) by age group (ages 35–64 years, ages 65 years and older), race/ethnicity (non-Hispanic American Indian/Alaska Native, non-Hispanic Asian/Pacific Islander, non-Hispanic Black, Hispanic, non-Hispanic White), and sex (female, male). The rates and trends were estimated using a Bayesian spatiotemporal model and a smoothed over space, time, and demographic group. Rates are age-standardized in 10-year age groups using the 2010 US population. Data source: National Vital Statistics System.
The Health Inequality Project uses big data to measure differences in life expectancy by income across areas and identify strategies to improve health outcomes for low-income Americans.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution. Both race-adjusted and unadjusted estimates are reported.
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each percentile of the national income distribution separately by year. Both race-adjusted and unadjusted estimates are reported.
This dataset was created on 2020-01-10 18:53:00.508
by merging multiple datasets together. The source datasets for this version were:
Commuting Zone Life Expectancy Estimates by year: CZ-level by-year life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy: Commuting zone (CZ)-level life expectancy estimates for men and women, by income quartile
Commuting Zone Life Expectancy Trends: CZ-level estimates of trends in life expectancy for men and women, by income quartile
Commuting Zone Characteristics: CZ-level characteristics
Commuting Zone Life Expectancy for larger populations: CZ-level life expectancy estimates for men and women, by income ventile
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by state of residence and year. Both race-adjusted and unadjusted estimates are reported.
This table reports US mortality rates by gender, age, year and household income percentile. Household incomes are measured two years prior to the mortality rate for mortality rates at ages 40-63, and at age 61 for mortality rates at ages 64-76. The “lag” variable indicates the number of years between measurement of income and mortality.
Observations with 1 or 2 deaths have been masked: all mortality rates that reflect only 1 or 2 deaths have been recoded to reflect 3 deaths
This table reports coefficients and standard errors from regressions of life expectancy estimates for men and women at age 40 for each quartile of the national income distribution on calendar year by commuting zone of residence. Only the slope coefficient, representing the average increase or decrease in life expectancy per year, is reported. Trend estimates for both race-adjusted and unadjusted life expectancies are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports life expectancy estimates at age 40 for Males and Females for all countries. Source: World Health Organization, accessed at: http://apps.who.int/gho/athena/
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by county of residence. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for counties with populations larger than 25,000 only
This table reports life expectancy point estimates and standard errors for men and women at age 40 for each quartile of the national income distribution by commuting zone of residence and year. Both race-adjusted and unadjusted estimates are reported. Estimates are reported for the 100 largest CZs (populations greater than 590,000) only.
This table reports US population and death counts by age, year, and sex from various sources. Counts labelled “dm1” are derived from the Social Security Administration Data Master 1 file. Counts labelled “irs” are derived from tax data. Counts labelled “cdc” are derived from NCHS life tables.
This table reports numerous county characteristics, compiled from various sources. These characteristics are described in the county life expectancy table.
Two variables constructed by the Cen
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
Mortality rates (qx) values from the national life tables release, presented in time series format. These statistics are for males and females for England, Wales, Scotland, Northern Ireland and the UK.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data was reported at 7.200 Ratio in 2017. This records a decrease from the previous number of 7.400 Ratio for 2015. United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data is updated yearly, averaging 8.000 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 12.500 Ratio in 1990 and a record low of 7.200 Ratio in 2017. United States US: Mortality Rate: Under-5: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s USA – Table US.World Bank: Health Statistics. Under-five mortality rate, male is the probability per 1,000 that a newborn male baby will die before reaching age five, if subject to male age-specific mortality rates of the specified year.; ; Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
The directly age and sex standardised mortality rate per 100,000 population, from all causes at all ages. Deaths include all causes classified by underlying cause of death (ICD-10 A00-Y99, equivalent to ICD-9 001-999), registered in the respective calendar year(s). Neonatal deaths are included in the age groups that contain those aged less than 1 year. 2001 Census based mid-year population estimates for the respective calendar years.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset compromises all country data included in the UN Inter-agency Group for Child Mortality Estimation (IGME) database (https://childmortality.org/data, downloaded June 2019).
It includes:
Reference area: name of the country
Indicator: child mortality indicator (neonatal mortality, infant mortality, under-5 mortality and mortality rate age 5 to 14)
Sex: sex of the child (male, female and total)
Series name: name of survey/census/VR [note: UN IGME estimates, i.e. not source data, are identified as "UN IGME estimate" in this field]
Series year: year of survey/census/VR series
Observation value: value of indicator from survey/census/VR
Observation status: indicates whether the data point is included or excluded for estimation [status of "normal" indicates UN IGME estimate, i.e. not source data]
Series Category: category of survey/census/VR, and can be:
Series type: the type of calculation method used to derive the indicator value (direct, indirect, household deaths, life table and vital records)
Standard error: sampling standard error of the observation value
Series method: data collection method, and can be:
Lower and upper bound: the lower and upper bounds of 90% uncertainty interval of UN IGME estimates (for estimates only, i.e., not source data).
The dataset is used in the following paper:
Ezbakhe, F. and Pérez-Foguet, A. (2019) Levels and trends in child mortality: a compositional approach. Demographic Research (Under Review)
2020 - 2022, county-level U.S. stroke death rates. Dataset developed by the Centers for Disease Control and Prevention, Division for Heart Disease and Stroke Prevention.Create maps of U.S. stroke death rates by county. Data can be stratified by age, race/ethnicity, and sex.Visit the CDC Atlas of Heart Disease and Stroke for additional data and maps. Atlas of Heart Disease and StrokeData SourceMortality data were obtained from the National Vital Statistics System. Bridged-Race Postcensal Population Estimates were obtained from the National Center for Health Statistics. International Classification of Diseases, 10th Revision (ICD-10) codes: I60-I69; underlying cause of death.Data DictionaryData for counties with small populations are not displayed when a reliable rate could not be generated. These counties are represented in the data with values of '-1.' CDC excludes these values when classifying the data on a map, indicating those counties as 'Insufficient Data.'Data field names and descriptionsstcty_fips: state FIPS code + county FIPS codeOther fields use the following format: RRR_S_aaaa (e.g., API_M_35UP) RRR: 3 digits represent race/ethnicity All - Overall AIA - American Indian and Alaska Native, non-Hispanic ASN - Asian, non-Hispanic BLK - Black, non-Hispanic HIS - Hispanic NHP – Native Hawaiian or Other Pacific Islander, non-Hispanic MOR – More than one race, non-Hispanic WHT - White, non-Hispanic S: 1 digit represents sex A - All F - Female M - Male aaaa: 4 digits represent age. The first 2 digits are the lower bound for age and the last 2 digits are the upper bound for age. 'UP' indicates the data includes the maximum age available and 'LT' indicates ages less than the upper bound. Example: The column 'BLK_M_65UP' displays rates per 100,000 black men aged 65 years and older.MethodologyRates are calculated using a 3-year average and are age-standardized in 10-year age groups using the 2000 U.S. Standard Population. Rates are calculated and displayed per 100,000 population. Rates were spatially smoothed using a Local Empirical Bayes algorithm to stabilize risk by borrowing information from neighboring geographic areas, making estimates more statistically robust and stable for counties with small populations. Data for counties with small populations are coded as '-1' when a reliable rate could not be generated. County-level rates were generated when the following criteria were met over a 3-year time period within each of the filters (e.g., age, race, and sex).At least one of the following 3 criteria:At least 20 events occurred within the county and its adjacent neighbors.ORAt least 16 events occurred within the county.ORAt least 5,000 population years within the county.AND all 3 of the following criteria:At least 6 population years for each age group used for age adjustment if that age group had 1 or more event.The number of population years in an age group was greater than the number of events.At least 100 population years within the county.More Questions?Interactive Atlas of Heart Disease and StrokeData SourcesStatistical Methods
Infant mortality rate (deaths per 1000 live births)
Dataset Description
This dataset provides information on 'Infant mortality rate' for countries in the WHO African Region. The data is disaggregated by the 'Sex' dimension, allowing for analysis of health inequalities across different population subgroups. Units: deaths per 1000 live births
Dimensions and Subgroups
Dimension: Sex Available Subgroups: Female, Male
Data Structure
The dataset is in a… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/infant-mortality-rateby-sex-for-african-countries.
This dataset includes estimates for age-standardized adult mortality rate and 95% uncertainty interval estimates by location, male, female and both sexes combined in 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2016. This age-specific mortality dataset is used to enable health systems to target interventions for the adult populations.
Rank, number of deaths, percentage of deaths, and age-specific mortality rates for the leading causes of death, by age group and sex, 2000 to most recent year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Trinidad and Tobago TT: Mortality Rate: Under-5: Male: per 1000 Live Births data was reported at 20.300 Ratio in 2016. This records a decrease from the previous number of 21.000 Ratio for 2015. Trinidad and Tobago TT: Mortality Rate: Under-5: Male: per 1000 Live Births data is updated yearly, averaging 24.500 Ratio from Dec 1990 (Median) to 2016, with 5 observations. The data reached an all-time high of 32.700 Ratio in 1990 and a record low of 20.300 Ratio in 2016. Trinidad and Tobago TT: Mortality Rate: Under-5: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s Trinidad and Tobago – Table TT.World Bank: Health Statistics. Under-five mortality rate, male is the probability per 1,000 that a newborn male baby will die before reaching age five, if subject to male age-specific mortality rates of the specified year.; ; Estimates Developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted Average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
This dataset includes estimates for under-5 mortality rates and 95% uncertainty interval estimates by location and gender, male, female and both sexes combined in 1970, 1975, 1980, 1985, 1990, 1995, 2000, 2005, 2010, 2016. This age-specific mortality dataset is used to enable health systems to target interventions to the under 5 years of age population.
Under-five mortality rate (SDG 3.2.1) (per 1000 live births)
Dataset Description
This dataset provides information on 'Under-five mortality rate' for countries in the WHO African Region. The data is disaggregated by the 'Sex' dimension, allowing for analysis of health inequalities across different population subgroups. Units: SDG 3.2.1
Dimensions and Subgroups
Dimension: Sex Available Subgroups: Female, Male
Data Structure
The dataset is in a wide… See the full description on the dataset page: https://huggingface.co/datasets/electricsheepafrica/under-five-mortality-rateby-sex-for-african-countries.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Global Child Mortality Rate’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/drateendrajha/global-child-mortality-rate on 30 September 2021.
--- Dataset description provided by original source is as follows ---
This dataset contains data of 197 countries from 1967 to 2020.
Country - Name of country Year - Year in numeric form Gender -Male ; Female Child Mortality - Mortality of child Total Population - Population of respective country in respective year Mortality Rate - Child Mortality / Total Population
Thankful to UNICEF for the data.
drateendrajha.com in case of any query feel free to reach ajha@phaf.in
--- Original source retains full ownership of the source dataset ---
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
United States US: Mortality Rate: Infant: Male: per 1000 Live Births data was reported at 6.000 Ratio in 2017. This records a decrease from the previous number of 6.200 Ratio for 2015. United States US: Mortality Rate: Infant: Male: per 1000 Live Births data is updated yearly, averaging 6.800 Ratio from Dec 1990 (Median) to 2017, with 5 observations. The data reached an all-time high of 10.400 Ratio in 1990 and a record low of 6.000 Ratio in 2017. United States US: Mortality Rate: Infant: Male: per 1000 Live Births data remains active status in CEIC and is reported by World Bank. The data is categorized under Global Database’s United States – Table US.World Bank.WDI: Health Statistics. Infant mortality rate, male is the number of male infants dying before reaching one year of age, per 1,000 male live births in a given year.; ; Estimates developed by the UN Inter-agency Group for Child Mortality Estimation (UNICEF, WHO, World Bank, UN DESA Population Division) at www.childmortality.org.; Weighted average; Given that data on the incidence and prevalence of diseases are frequently unavailable, mortality rates are often used to identify vulnerable populations. Moreover, they are among the indicators most frequently used to compare socioeconomic development across countries. Under-five mortality rates are higher for boys than for girls in countries in which parental gender preferences are insignificant. Under-five mortality captures the effect of gender discrimination better than infant mortality does, as malnutrition and medical interventions have more significant impacts to this age group. Where female under-five mortality is higher, girls are likely to have less access to resources than boys.
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
By Health [source]
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
In order to use this dataset, start by selecting a particular set of variables to investigate. You can choose from Measure Names (e.g., Death Rates or Life Expectancy), Race (e.g., All Races), Sex (Male/Female) and Year (2011-2013). Once you have selected your desired variables, you can begin analyzing the data by looking at mortality rates and life expectancy averages amongst different populations in the United States over time.
You may also wish to perform more detailed analyses such as identifying trends or examining correlations between features, regional disparities in mortality rates or changes in average life expectancies over time. If so, you can do so by creating line graphs plotted against one or more independent variables such as Race and Sex to see how demographics impact these statistics overall and on a yearly basis using the Year variable computed from July 1st 2010 estimates
- Analyzing mortality and life expectancy trends among certain races and sexes over time.
- Examining the effects of different socioeconomic factors on death rates and life expectancies.
- Making predictions about future mortality rates and average life expectancies with machine learning algorithms
If you use this dataset in your research, please credit the original authors. Data Source
License: Open Database License (ODbL) v1.0 - You are free to: - Share - copy and redistribute the material in any medium or format. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices. - No Derivatives - If you remix, transform, or build upon the material, you may not distribute the modified material. - No additional restrictions - You may not apply legal terms or technological measures that legally restrict others from doing anything the license permits.
File: rows.csv | Column name | Description | |:----------------------------|:----------------------------------------------------------------------| | Measure Names | The type of measure being reported. (String) | | Race | The race of the population being reported. (String) | | Sex | The gender of the population being reported. (String) | | Year | The year the data was collected. (Integer) | | Average Life Expectancy | The average life expectancy of the population being reported. (Float) | | Mortality | The mortality rate of the population being reported. (Float) |
If you use this dataset in your research, please credit the original authors. If you use this dataset in your research, please credit Health.