In 2023, the worldwide number of malware attacks reached 6.06 billion, an increase of 10 percent compared to the preceding year. In recent years, the highest number of malware attacks was detected in 2018, when 10.5 billion such attacks were reported across the globe. Malware attacks worldwide In 2022, worm malware was blocked over 205 million times. Another common malware type during that period, Emotet, primarily targeted the Asia-Pacific region. Overall, websites are the most common vector for malware attacks and recent industry data found that malware attacks were frequently received via exe files. Most targeted industries In 2022, the education sector was heavily targeted by malware, encountering 2,314 weekly attacks on average. Government and military organizations ranked second, followed by the healthcare units. Overall, in 2022, the education sector saw over five million malware attacks in the examined year.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
While every industry is affected by ransomware attacks, the truth is that some industries are more susceptible than others. This is the full breakdown of the top 15 sectors most targeted by malware.
In 2022, organizations in the United States saw around 2.68 billion malware attacks, ranking first among selected countries worldwide. The United Kingdom (UK) ranked second, detecting nearly 433 million malware attacks, followed by India, with 335 million attacks.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These latest ransomware statistics show how much damage is caused by attacks and the emerging trends you need to be aware of.
As of the first quarter of 2024, AdWare was the most commonly detected mobile malware worldwide, accounting for 46.16 percent of mobile malware detected worldwide, down from 46.46 percent in the previous quarter. Meanwhile, Risktool ranked second with more than 21 percent share.
A 2024 survey of cybersecurity professionals of organizations worldwide revealed that 32 percent of the organizations suffered ransomware attacks because of exploited vulnerabilities. Credential compromise was the second-most common cause of successful ransomware attacks, while malicious e-mail ranked third.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here are the most important ransomware statistics you need to know about the attacks, demands, payments and consequences that can occur.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Different types of ransomware are more common than others and more likely to affect your cybersecurity. The top 5 most common types of ransomware strains are...
As of 2023, over 72 percent of businesses worldwide were affected by ransomware attacks. This figure represents an increase on the previous five years and was by far the highest figure reported. Overall, since 2018, more than half of the total survey respondents each year stated that their organizations had been victimized by ransomware.
Most targeted industries
In 2023, the healthcare industry in the United States was once again most targeted by ransomware attacks. This industry also suffers most data breaches as a consequence of cyberattacks. The critical manufacturing industry ranked second by the number of ransomware attacks, followed by the government facilities industry.
Ransomware in the manufacturing industry
The manufacturing industry, along with its subindustries, is constantly targeted by ransomware attacks, causing data loss, business disruptions, and reputational damage. Often, such cyberattacks are international and have a political intent. In 2023, compromised credentials were the leading cause of ransomware attacks in the manufacturing industry.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is part of my PhD research on malware detection and classification using Deep Learning. It contains static analysis data: Top-1000 imported functions extracted from the 'pe_imports' elements of Cuckoo Sandbox reports. PE malware examples were downloaded from virusshare.com. PE goodware examples were downloaded from portableapps.com and from Windows 7 x86 directories.
https://www.sci-tech-today.com/privacy-policyhttps://www.sci-tech-today.com/privacy-policy
Notable Ransomware Statistics: Even in the year 2024, ransomware is ranked among the most disruptive and expensive types of cybercrime. This is software that keeps people from accessing their gadgets until they pay an amount, and it keeps getting better with time, while looking for people to pay or companies.
Data as of 2024 indicated that there was an upward trend in the prevalence and economic losses caused by ransomware attacks throughout the world. Emerged are some notable ransomware statistics to consider in the year 2024.
During the third quarter of 2023, over 438 thousand mobile malware installation packages were detected, up by around 19 percent compared to the second quarter of 2023. The number of detected malicious packages on mobile devices has decreased since the first quarter of 2021.
In 2023, organizations all around the world detected 317.59 million ransomware attempts. Overall, this number decreased significantly between the third and fourth quarters of 2022, going from around 102 million to nearly 155 million cases, respectively. Ransomware attacks usually target organizations that collect large amounts of data and are critically important. In case of an attack, these organizations prefer paying the ransom to restore stolen data rather than to report the attack immediately. The incidents of data loss also damage companies’ reputation, which is one of the reasons why ransomware attacks are not reported. Most targeted industries and regions As a part of critical infrastructure, the manufacturing industry is usually targeted by ransomware attacks. In 2022, manufacturing organizations worldwide saw 437 such attacks. The food and beverage industry ranked second, with over 50 ransomware attacks. By the share of ransomware attacks on critical infrastructure, North America ranked first among other worldwide regions, followed by Europe. Healthcare and public health sector organizations filed the highest number of complaints to the U.S. law enforcement in 2022 about ransomware attacks. Ransomware as a service (RaaS) The Ransomware as a Service (RaaS) business model has existed for over a decade. The model involves hackers and affiliates. Hackers develop ransomware attack models and sell them to affiliates. The latter then use them independently to attack targets. According to the business model, the hacker who created the RaaS receives a service fee per collected ransom. In the first quarter of 2022, there were 31 Ransomware as a Service (RaaS) extortion groups worldwide, compared to the 19 such groups in the same quarter of 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
On average, 37% of organisations globally were victims of a ransomware attack between January and February 2021. The top 15 countries that were affected the most were...
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India Cyber Security Incidents: Website Intrusion and Malware Propagation data was reported at 563.000 Unit in 2017. This records a decrease from the previous number of 1,483.000 Unit for 2016. India Cyber Security Incidents: Website Intrusion and Malware Propagation data is updated yearly, averaging 4,492.500 Unit from Dec 2008 (Median) to 2017, with 10 observations. The data reached an all-time high of 7,286.000 Unit in 2014 and a record low of 563.000 Unit in 2017. India Cyber Security Incidents: Website Intrusion and Malware Propagation data remains active status in CEIC and is reported by Indian Computer Emergency Response Team. The data is categorized under India Premium Database’s Transportation, Post and Telecom Sector – Table IN.TF010: Information Technology Statistics: Cyber Security Incidents.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Description
The datasets demonstrate the malware economy and the value chain published in our paper, Malware Finances and Operations: a Data-Driven Study of the Value Chain for Infections and Compromised Access, at the 12th International Workshop on Cyber Crime (IWCC 2023), part of the ARES Conference, published by the International Conference Proceedings Series of the ACM ICPS.
Using the well-documented scripts, it is straightforward to reproduce our findings. It takes an estimated 1 hour of human time and 3 hours of computing time to duplicate our key findings from MalwareInfectionSet; around one hour with VictimAccessSet; and minutes to replicate the price calculations using AccountAccessSet. See the included README.md files and Python scripts.
We choose to represent each victim by a single JavaScript Object Notation (JSON) data file. Data sources provide sets of victim JSON data files from which we've extracted the essential information and omitted Personally Identifiable Information (PII). We collected, curated, and modelled three datasets, which we publish under the Creative Commons Attribution 4.0 International License.
MalwareInfectionSet We discover (and, to the best of our knowledge, document scientifically for the first time) that malware networks appear to dump their data collections online. We collected these infostealer malware logs available for free. We utilise 245 malware log dumps from 2019 and 2020 originating from 14 malware networks. The dataset contains 1.8 million victim files, with a dataset size of 15 GB.
VictimAccessSet We demonstrate how Infostealer malware networks sell access to infected victims. Genesis Market focuses on user-friendliness and continuous supply of compromised data. Marketplace listings include everything necessary to gain access to the victim's online accounts, including passwords and usernames, but also detailed collection of information which provides a clone of the victim's browser session. Indeed, Genesis Market simplifies the import of compromised victim authentication data into a web browser session. We measure the prices on Genesis Market and how compromised device prices are determined. We crawled the website between April 2019 and May 2022, collecting the web pages offering the resources for sale. The dataset contains 0.5 million victim files, with a dataset size of 3.5 GB.
AccountAccessSet The Database marketplace operates inside the anonymous Tor network. Vendors offer their goods for sale, and customers can purchase them with Bitcoins. The marketplace sells online accounts, such as PayPal and Spotify, as well as private datasets, such as driver's licence photographs and tax forms. We then collect data from Database Market, where vendors sell online credentials, and investigate similarly. To build our dataset, we crawled the website between November 2021 and June 2022, collecting the web pages offering the credentials for sale. The dataset contains 33,896 victim files, with a dataset size of 400 MB.
Credits Authors
Billy Bob Brumley (Tampere University, Tampere, Finland)
Juha Nurmi (Tampere University, Tampere, Finland)
Mikko Niemelä (Cyber Intelligence House, Singapore)
Funding
This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme under project numbers 804476 (SCARE) and 952622 (SPIRS).
Alternative links to download: AccountAccessSet, MalwareInfectionSet, and VictimAccessSet.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The following ransomware statistics detail which industries get attacked the most and which countries are most likely to be targeted.
Android is one of the most used mobile operating systems worldwide. Due to its technological impact, its open-source code and the possibility of installing applications from third parties without any central control, Android has recently become a malware target. Even if it includes security mechanisms, the last news about malicious activities and Android´s vulnerabilities point to the importance of continuing the development of methods and frameworks to improve its security.
To prevent malware attacks, researches and developers have proposed different security solutions, applying static analysis, dynamic analysis, and artificial intelligence. Indeed, data science has become a promising area in cybersecurity, since analytical models based on data allow for the discovery of insights that can help to predict malicious activities.
In this work, we propose to consider some network layer features as the basis for machine learning models that can successfully detect malware applications, using open datasets from the research community.
This dataset is based on another dataset (DroidCollector) where you can get all the network traffic in pcap files, in our research we preprocessed the files in order to get network features that are illustrated in the next article:
López, C. C. U., Villarreal, J. S. D., Belalcazar, A. F. P., Cadavid, A. N., & Cely, J. G. D. (2018, May). Features to Detect Android Malware. In 2018 IEEE Colombian Conference on Communications and Computing (COLCOM) (pp. 1-6). IEEE.
Cao, D., Wang, S., Li, Q., Cheny, Z., Yan, Q., Peng, L., & Yang, B. (2016, August). DroidCollector: A High Performance Framework for High Quality Android Traffic Collection. In Trustcom/BigDataSE/I SPA, 2016 IEEE (pp. 1753-1758). IEEE
https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
Description Welcome to the Drone-Based Malware Detection dataset! This dataset is designed to aid researchers and practitioners in exploring innovative cybersecurity solutions using drone-collected data. The dataset contains detailed information on network traffic, drone sensor readings, malware detection indicators, and environmental conditions. It offers a unique perspective by integrating data from drones with traditional network security metrics to enhance malware detection capabilities.
Dataset Overview The dataset comprises four main categories:
Network Traffic Data: Captures network traffic attributes including IP addresses, ports, protocols, packet sizes, and various derived metrics. Drone Sensor Data: Includes GPS coordinates, altitude, speed, heading, battery level, and other sensor readings from drones. Malware Detection Data: Contains indicators and scores relevant to detecting malware, such as anomaly scores, suspicious IP counts, reputation scores, and attack types. Environmental Data: Provides context through environmental conditions like location type, noise level, weather conditions, and more. Files and Features The dataset is divided into four separate CSV files:
network_traffic_data.csv
timestamp: Date and time of the traffic event. source_ip: Source IP address. destination_ip: Destination IP address. source_port: Source port number. destination_port: Destination port number. protocol: Network protocol (TCP, UDP, ICMP). packet_length: Length of the network packet. payload_data: Content of the packet payload. flag: Network flag (SYN, ACK, FIN, RST). traffic_volume: Volume of traffic in bytes. flow_duration: Duration of the network flow. flow_bytes_per_s: Bytes per second for the flow. flow_packets_per_s: Packets per second for the flow. packet_count: Number of packets in the flow. average_packet_size: Average size of packets. min_packet_size: Minimum packet size. max_packet_size: Maximum packet size. packet_size_variance: Variance in packet sizes. header_length: Length of the packet header. payload_length: Length of the packet payload. ip_ttl: Time to live for the IP packet. tcp_window_size: TCP window size. icmp_type: ICMP type (echo_request, echo_reply, destination_unreachable). dns_query_count: Number of DNS queries. dns_response_count: Number of DNS responses. http_method: HTTP method (GET, POST, PUT, DELETE). http_status_code: HTTP status code (200, 404, 500, 301). content_type: Content type (text/html, application/json, image/png). ssl_tls_version: SSL/TLS version. ssl_tls_cipher_suite: SSL/TLS cipher suite. drone_data.csv
latitude: Latitude of the drone. longitude: Longitude of the drone. altitude: Altitude of the drone. speed: Speed of the drone. heading: Heading of the drone. battery_level: Battery level of the drone. drone_id: Unique identifier for the drone. flight_time: Total flight time. signal_strength: Strength of the drone's signal. temperature: Temperature at the drone's location. humidity: Humidity at the drone's location. pressure: Atmospheric pressure at the drone's location. wind_speed: Wind speed at the drone's location. wind_direction: Wind direction at the drone's location. gps_accuracy: Accuracy of the GPS signal. malware_detection_data.csv
anomaly_score: Score indicating the level of anomaly detected. suspicious_ip_count: Number of suspicious IP addresses detected. malicious_payload_indicator: Indicator for malicious payload (0 or 1). reputation_score: Reputation score for the network entity. behavioral_score: Behavioral score indicating potential malicious activity. attack_type: Type of attack (DDoS, phishing, malware). signature_match: Indicator for signature match (0 or 1). sandbox_result: Result from sandbox analysis (clean, infected). heuristic_score: Heuristic score for potential threats. traffic_pattern: Pattern of the traffic (burst, steady). environmental_data.csv
location_type: Type of location (urban, rural). nearby_devices: Number of nearby devices. signal_interference: Level of signal interference. noise_level: Noise level in the environment. time_of_day: Time of day (morning, afternoon, evening, night). day_of_week: Day of the week. weather_conditions: Weather conditions (sunny, rainy, cloudy, stormy). Usage and Applications This dataset can be used for:
Cybersecurity Research: Developing and testing algorithms for malware detection using drone data. Machine Learning: Training models to identify malicious activity based on network traffic and drone sensor readings. Data Analysis: Exploring the relationships between environmental conditions, drone sensor data, and network traffic anomalies. Educational Purposes: Teaching data science, machine learning, and cybersecurity concepts using a comprehensive and multi-faceted dataset.
Acknowledgements This dataset is based on real-world data collected from drone sensors and network traffic monitoring s...
On average, ** percent of organizations worldwide were victims of a ransomware attack between January and February 2024, according to a survey conducted among cybersecurity leaders of worldwide organizations. France ranked first by the ransomware rate in companies, with ** percent reporting having encountered such an attack in the last 12 months. Companies in South Africa, Italy, and Austria followed, with up to ** percent of the organizations experiencing ransomware attacks.
In 2023, the worldwide number of malware attacks reached 6.06 billion, an increase of 10 percent compared to the preceding year. In recent years, the highest number of malware attacks was detected in 2018, when 10.5 billion such attacks were reported across the globe. Malware attacks worldwide In 2022, worm malware was blocked over 205 million times. Another common malware type during that period, Emotet, primarily targeted the Asia-Pacific region. Overall, websites are the most common vector for malware attacks and recent industry data found that malware attacks were frequently received via exe files. Most targeted industries In 2022, the education sector was heavily targeted by malware, encountering 2,314 weekly attacks on average. Government and military organizations ranked second, followed by the healthcare units. Overall, in 2022, the education sector saw over five million malware attacks in the examined year.