100+ datasets found
  1. d

    Data from: Climate Change Vulnerability Index Release 4.0: Excel Workbook

    • catalog.data.gov
    • data.usgs.gov
    Updated Nov 20, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Climate Change Vulnerability Index Release 4.0: Excel Workbook [Dataset]. https://catalog.data.gov/dataset/climate-change-vulnerability-index-release-4-0-excel-workbook
    Explore at:
    Dataset updated
    Nov 20, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Climate Change Vulnerability Index (CCVI) uses a scoring system that integrates a species’ exposure to projected climate change within an assessment area, including sea level rise, and three sets of factors associated with climate change sensitivity, each supported by published studies: 1) species-specific sensitivity and adaptive capacity factors, 2) threat multipliers such as barriers to dispersal and anthropogenic threats, and 3) documented and modeled responses to climate change. Assessing species with the CCVI facilitates grouping unrelated taxa by their relative risk to climate change as well as identifying patterns of climate stressors that affect multiple taxa.

  2. Coffee Sales Excel Project

    • kaggle.com
    Updated Nov 13, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nuha Zahidi (2024). Coffee Sales Excel Project [Dataset]. https://www.kaggle.com/datasets/nuhazahidi/coffee-sales-excel-project
    Explore at:
    CroissantCroissant is a format for machine-learning datasets. Learn more about this at mlcommons.org/croissant.
    Dataset updated
    Nov 13, 2024
    Dataset provided by
    Kagglehttp://kaggle.com/
    Authors
    Nuha Zahidi
    Description

    Tool: Microsoft Excel

    Dataset: Coffee Sales

    Process: 1. Data Cleaning: • Remove duplicates and blanks. • Standardize date and currency formats.

    1. Data Manipulation: • Sorting and filtering function to work
      with interest subsets of data. • Use XLOOKUP, INDEX-MATCH and IF
      formula for efficient data manipulation, such as retrieving, matching and organising information in spreadsheets

    2. Data Analysis: • Create Pivot Tables and Pivot Charts with the formatting to visualize trends.

    3. Dashboard Development: • Insert Slicers with the formatting for easy filtering and dynamic updates.

    Highlights: This project aims to understand coffee sales trends by country, roast type, and year, which could help identify marketing opportunities and customer segments.

  3. Excel spreadsheet of data used in Figure 3

    • catalog.data.gov
    • data.wu.ac.at
    Updated Nov 12, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. EPA Office of Research and Development (ORD) (2020). Excel spreadsheet of data used in Figure 3 [Dataset]. https://catalog.data.gov/dataset/excel-spreadsheet-of-data-used-in-figure-3
    Explore at:
    Dataset updated
    Nov 12, 2020
    Dataset provided by
    United States Environmental Protection Agencyhttp://www.epa.gov/
    Description

    Distribution of doses of a volatile organic compound from inhalation of one consumer product, other near -field sources, far-field sources, and aggregate (total) exposure. In this instance, far-field scenarios account for several orders of magnitude of less of the predicted dose compared to near-field scenarios. This dataset is associated with the following publication: Vallero, D. Air Pollution Monitoring Changes to Accompany the Transition from a Control to a Systems Focus. Sustainability. MDPI AG, Basel, SWITZERLAND, 8(12): 1216, (2016).

  4. Data Excel sheet for study on diabetes

    • figshare.com
    • datasetcatalog.nlm.nih.gov
    xlsx
    Updated Jun 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakshatha Nayak; Arshad Khan (2024). Data Excel sheet for study on diabetes [Dataset]. http://doi.org/10.6084/m9.figshare.25764996.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 10, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Rakshatha Nayak; Arshad Khan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Excel sheet with data of the original research 'Evaluation of simple and cost-effective hematological inflammatory biomarkers in type 2 diabetes and their correlation with glycemic control'

  5. u

    Oechel Manipulation Soil Temperature Data (Excel) [Oechel, W.]

    • data.ucar.edu
    • search.dataone.org
    • +2more
    excel
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walter C. Oechel (2025). Oechel Manipulation Soil Temperature Data (Excel) [Oechel, W.] [Dataset]. http://doi.org/10.5065/D6571957
    Explore at:
    excelAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Walter C. Oechel
    Time period covered
    Jun 1, 1999 - Sep 30, 2001
    Area covered
    Description

    The tundra elevated soil temperature and water table manipulation site was located near Barrow, Alaska (70 19 18.36N, 156 37 6.35 W). Eighteen 60 cm diameter polycarbonate cylinders were installed into the ground at the end of the 1998 growing season when thaw depth was at its seasonal maximum to isolate plots of tundra and was organized into three blocks of six for three replicates of the six treatments to be tested. The six factors that are being tested include: control, elevated water table, lowered water table, elevated soil temperature, elevated soil temperature and elevated water table, and elevated soil temperature and lowered water table. Temperature data was collected from June, 1999 until September 2001, and is in Excel format.

  6. b

    All Uttar Pradesh Pest Control Database – Verified & Updated Contact...

    • bulkdataprovider.com
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bulk Data Provider (2025). All Uttar Pradesh Pest Control Database – Verified & Updated Contact Directory in Excel [Dataset]. https://www.bulkdataprovider.com/items/all-uttar-pradesh-pest-control-database-verified-updated-contact-directory-in-excel/2043
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Bulk Data Provider
    Area covered
    Uttar Pradesh
    Variables measured
    Record count
    Description

    🧾 All Uttar Pradesh Pest Control Database – Verified & Updated Contact Directory in ExcelThe All Uttar Pradesh Pest Control Database is a comprehensive, verified, and regularly updated Excel directory of licensed pest control professionals and service agencies operating throughout Uttar Pradesh...

  7. THESIS EXCEL DATA ENTRY.xlsx

    • figshare.com
    xlsx
    Updated Dec 1, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr JITHIN SURENDRAN (2023). THESIS EXCEL DATA ENTRY.xlsx [Dataset]. http://doi.org/10.6084/m9.figshare.24709566.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Dec 1, 2023
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Dr JITHIN SURENDRAN
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Excel sheet of the data

  8. Data from: US Federal LCA Commons Life Cycle Inventory Unit Process Template...

    • catalog.data.gov
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). US Federal LCA Commons Life Cycle Inventory Unit Process Template [Dataset]. https://catalog.data.gov/dataset/us-federal-lca-commons-life-cycle-inventory-unit-process-template-3cc7d
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Servicehttps://www.ars.usda.gov/
    Area covered
    United States
    Description

    An excel template with data elements and conventions corresponding to the openLCA unit process data model. Includes LCA Commons data and metadata guidelines and definitions Resources in this dataset:Resource Title: READ ME - data dictionary. File Name: lcaCommonsSubmissionGuidelines_FINAL_2014-09-22.pdfResource Title: US Federal LCA Commons Life Cycle Inventory Unit Process Template. File Name: FedLCA_LCI_template_blank EK 7-30-2015.xlsxResource Description: Instructions: This template should be used for life cycle inventory (LCI) unit process development and is associated with an openLCA plugin to import these data into an openLCA database. See www.openLCA.org to download the latest release of openLCA for free, and to access available plugins.

  9. b

    All West Bengal Pest Control Database – Verified & Updated Contact Directory...

    • bulkdataprovider.com
    Updated May 26, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Bulk Data Provider (2025). All West Bengal Pest Control Database – Verified & Updated Contact Directory in Excel [Dataset]. https://bulkdataprovider.com/items/all-west-bengal-pest-control-database-verified-updated-contact-directory-in-excel/2045
    Explore at:
    Dataset updated
    May 26, 2025
    Dataset authored and provided by
    Bulk Data Provider
    Area covered
    West Bengal
    Variables measured
    Record count
    Description

    🧾 All West Bengal Pest Control Database – Verified & Updated Contact Directory in ExcelThe All West Bengal Pest Control Database is a comprehensive, verified, and regularly updated Excel directory of professional pest control service providers and technicians across West Bengal. This database f...

  10. SPORTS_DATA_ANALYSIS_ON_EXCEL

    • kaggle.com
    zip
    Updated Dec 12, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Nil kamal Saha (2024). SPORTS_DATA_ANALYSIS_ON_EXCEL [Dataset]. https://www.kaggle.com/datasets/nilkamalsaha/sports-data-analysis-on-excel
    Explore at:
    zip(1203633 bytes)Available download formats
    Dataset updated
    Dec 12, 2024
    Authors
    Nil kamal Saha
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Description

    PROJECT OBJECTIVE

    We are a part of XYZ Co Pvt Ltd company who is in the business of organizing the sports events at international level. Countries nominate sportsmen from different departments and our team has been given the responsibility to systematize the membership roster and generate different reports as per business requirements.

    Questions (KPIs)

    TASK 1: STANDARDIZING THE DATASET

    • Populate the FULLNAME consisting of the following fields ONLY, in the prescribed format: PREFIX FIRSTNAME LASTNAME.{Note: All UPPERCASE)
    • Get the COUNTRY NAME to which these sportsmen belong to. Make use of LOCATION sheet to get the required data
    • Populate the LANGUAGE_!poken by the sportsmen. Make use of LOCTION sheet to get the required data
    • Generate the EMAIL ADDRESS for those members, who speak English, in the prescribed format :lastname.firstnamel@xyz .org {Note: All lowercase) and for all other members, format should be lastname.firstname@xyz.com (Note: All lowercase)
    • Populate the SPORT LOCATION of the sport played by each player. Make use of SPORT sheet to get the required data

    TASK 2: DATA FORMATING

    • Display MEMBER IDas always 3 digit number {Note: 001,002 ...,D2D,..etc)
    • Format the BIRTHDATE as dd mmm'yyyy (Prescribed format example: 09 May' 1986)
    • Display the units for the WEIGHT column (Prescribed format example: 80 kg)
    • Format the SALARY to show the data In thousands. If SALARY is less than 100,000 then display data with 2 decimal places else display data with one decimal place. In both cases units should be thousands (k) e.g. 87670 -> 87.67 k and 12 250 -> 123.2 k

    TASK 3: SUMMARIZE DATA - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1) • Create a PIVOT table in the worksheet ANALYSIS, starting at cell B3,with the following details:

    • In COLUMNS; Group : GENDER.
    • In ROWS; Group : COUNTRY (Note: use COUNTRY NAMES).
    • In VALUES; calculate the count of candidates from each COUNTRY and GENDER type, Remove GRAND TOTALs.

    TASK 4: SUMMARIZE DATA - EXCEL FUNCTIONS (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a SUMMARY table in the worksheet ANALYSIS,starting at cell G4, with the following details:

    • Starting from range RANGE H4; get the distinct GENDER. Use remove duplicates option and transpose the data.
    • Starting from range RANGE GS; get the distinct COUNTRY (Note: use COUNTRY NAMES).
    • In the cross table,get the count of candidates from each COUNTRY and GENDER type.

    TASK 5: GENERATE REPORT - PIVOT TABLE (Use SPORTSMEN worksheet after attempting TASK 1)

    • Create a PIVOT table report in the worksheet REPORT, starting at cell A3, with the following information:

    • Change the report layout to TABULAR form.
    • Remove expand and collapse buttons.
    • Remove GRAND TOTALs.
    • Allow user to filter the data by SPORT LOCATION.

    Process

    • Verify data for any missing values and anomalies, and sort out the same.
    • Made sure data is consistent and clean with respect to data type, data format and values used.
    • Created pivot tables according to the questions asked.
  11. o

    Data from: Climate Change and Educational Attainment in the Global Tropics

    • openicpsr.org
    Updated Mar 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heather Randell; Clark Gray (2019). Climate Change and Educational Attainment in the Global Tropics [Dataset]. http://doi.org/10.3886/E109141V2
    Explore at:
    Dataset updated
    Mar 31, 2019
    Dataset provided by
    University of North Carolina-Chapel Hill
    University of Maryland, College Park
    Authors
    Heather Randell; Clark Gray
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This project contains the Stata code as well as additional information used for the following paper:Randell, H & C Gray (Forthcoming). Climate Change and Educational Attainment in the Global Tropics. Proceedings of the National Academy of Sciences.The data are publicly available and can be accessed freely. The census data were obtained from IPUMS-International (https://international.ipums.org/international/) and the climate data were obtained from the CRU-Time Series Version 4.00 (http://data.ceda.ac.uk//badc/cru/data/cru_ts/cru_ts_4.00/).We include three do-files in this project:"Climate_-1_to_5.do" -- this file was used to convert the climate data into z-scores of climatic conditions experienced during ages -1 to 5 years among children in the sample. "ClimEducation_PNAS_FINAL.do" -- this file was used to process the census data downloaded from IPUMS-International, link it to the climate data, and perform all of the analyses in the study."Climate_6-10_and_11-current.do" -- this file was used to convert the climate data into z-scores of climatic conditions experienced during ages 6-10 and 11-current age among children in the sample.In addition, we include a shapefile (as well as related GIS files) for the final sample of analysis countries. The attribute "birthplace" is used to link the climate data to the census data. We include Python scripts for extracting monthly climate data for each 10-year temperature and precipitation file downloaded from CRU. "py0_60" extracts data for years one through five, and "py61_120" extracts data for years six through ten.Lastly, we include an excel file with inclusion/exclusion criteria for the countries and censuses available from IPUMS.

  12. w

    Attitudes and behaviour towards climate change (ATT02)

    • gov.uk
    Updated Nov 10, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department for Transport (2012). Attitudes and behaviour towards climate change (ATT02) [Dataset]. https://www.gov.uk/government/statistical-data-sets/att02-attitudes-and-behaviour-towards-climate-change-and-public-private-transport
    Explore at:
    Dataset updated
    Nov 10, 2012
    Dataset provided by
    GOV.UK
    Authors
    Department for Transport
    Description

    Table ATT0201

    https://assets.publishing.service.gov.uk/media/5a78a874ed915d0422064559/att0201.xls">Levels of belief in climate change (MS Excel Spreadsheet, 46 KB)

    Table ATT0202

    https://assets.publishing.service.gov.uk/media/5a79cde3ed915d042206b278/att0202.xls">Levels of concern about climate change (MS Excel Spreadsheet, 47.5 KB)

    Table ATT0203

    https://assets.publishing.service.gov.uk/media/5a799eaaed915d0422069cef/att0203.xls">Perceived personal influence with regards to limiting climate change (MS Excel Spreadsheet, 49.5 KB)

    Table ATT0204

    https://assets.publishing.service.gov.uk/media/5a78aa12ed915d07d35b1765/att0204.xls">Willingness to change behaviour to limit climate change (MS Excel Spreadsheet, 51.5 KB)

    Table ATT0205

    https://assets.publishing.service.gov.uk/media/5a7951c4ed915d07d35b4778/att0205.xls">Perceived contributors to climate change (MS Excel Spreadsheet, 26.5 KB)

    Table ATT0206

    https://assets.publishing.service.gov.uk/media/5a79725640f0b63d72fc5e38/att0206.xls">Which forms of transport are perceived as contributing to climate change (MS Excel Spreadsheet, 27.5 KB)

    Table ATT0207

    https://assets.publishing.service.gov.uk/media/5a78ad73ed915d04220647c5/att0207.xls">Frequency of car travel (MS Excel Spreadsheet, 47 KB)

    Table ATT0208

    https://assets.publishing.service.gov.uk/media/5a7969ae40f0b642860d7e32/att0208.xls">Change in level of car use over the last 12 months (MS Excel Spreadsheet, 47 KB)

    Table ATT0209

    https://assets.publishing.service.gov.uk/media/5a79703640f0b63d72fc5cfe/att0209.xls">Willingness to reduce car use (MS Excel Spreadsheet, 48 KB)

    Table ATT0210

    https://assets.publishing.service.gov.uk/media/5a798ca0ed915d07d35b65f2/att0210.xls">Proportion of adults willing to reduce their car use, broken down by opinions on achievability (MS Excel Spreadsheet, 41.5 KB)

    Table ATT0211

    https://assets.publishing.service.gov.uk/media/5a798f24ed915d042206960a/att0211.xls">Willingness to share car journeys more often instead of driving alone - full license holders only (MS Excel Spreadsheet, 47 KB)

    Table ATT0212

    https://assets.publishing.service.gov.uk/media/5a7c76cce5274a559005a0b6/att0212.xls">Proportion of drivers willing to share car journeys more often rather than driving alone, broken down by opinions on achievability - full licence holders only (MS Excel Spreadsheet, <span class="gem-c-attachment-link_attribute

  13. Survey on Interest Rate Controls 2019 - Albania, Algeria, Anguilla...and 103...

    • microdata.worldbank.org
    • catalog.ihsn.org
    • +1more
    Updated Oct 26, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    World Bank Group - Finance, Competitiveness and Innovation Global Practice (2023). Survey on Interest Rate Controls 2019 - Albania, Algeria, Anguilla...and 103 more [Dataset]. https://microdata.worldbank.org/index.php/catalog/3812
    Explore at:
    Dataset updated
    Oct 26, 2023
    Dataset provided by
    World Bank Grouphttp://www.worldbank.org/
    Authors
    World Bank Group - Finance, Competitiveness and Innovation Global Practice
    Time period covered
    2019
    Area covered
    Algeria, Anguilla...and 103 more, Albania
    Description

    Abstract

    The Survey on Interest Rate Controls 2020 was conducted as a World Bank Group study on interest rate controls (IRCs) in lending and deposit markets around the world. The study aims to identify the different types of formal (or de jure) controls, the countries that apply then, how they implement them, and the reasons for doing so. The objective of the study is to advance knowledge on this topic by providing an evidence base for investigating the impact of IRCs on economic outcomes.

    The survey investigates present IRCs in each surveyed country, the reasons why they have been applied, the framework and resources associated with their application and the details as to their level and functioning. The focus is on legal forms of control (i.e. codified into law) as opposed to de facto controls. The new database on interest rate controls, a popular form of financial repression is based on a survey of 108 countries, representing 88 percent of global gross domestic product. The interest rate controls presented in this dataset were in effect in 2019.

    Geographic coverage

    Global Survey, covering 108 countries, representing 88 percent of global GDP.

    Analysis unit

    Regulation at the national level.

    Universe

    Banking supervisors and Local Banking Associations.

    Kind of data

    Sample survey data [ssd]

    Mode of data collection

    Mail Questionnaire [mail]

    Research instrument

    Bank supervisors and banking associations were provided with a standard excel file with five parts. The survey was structured in five parts, each placed in a different excel sheet. Part A: Introduction. Countries with no IRCs in place were asked to only answer this sheet and leave the rest blank. Part B: Presented the definitions of controls, institutions, products and additional aspects that will be covered in the survey. Part C: Introduced a set of qualitative questions to describe the IRCs in place. Part D: Displayed a set of tables to quantitatively describe the IRCs in place. Part E: Laid out the final set of questions, covering sanctions and control mechanisms that support the IRCs' enforcement. The questionnaire is provided in the Documentation section in pdf and excel.

  14. u

    Data from: Topical application of synthetic hormones terminated reproductive...

    • agdatacommons.nal.usda.gov
    • datasets.ai
    • +1more
    txt
    Updated Nov 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Ikju Park; Lincoln Smith (2025). Data from: Topical application of synthetic hormones terminated reproductive diapause to facilitate rearing of a univoltine weevil for weed biological control agent [Dataset]. http://doi.org/10.15482/USDA.ADC/1523115
    Explore at:
    txtAvailable download formats
    Dataset updated
    Nov 21, 2025
    Dataset provided by
    Ag Data Commons
    Authors
    Ikju Park; Lincoln Smith
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    These are results of a series of laboratory experiments to determine if topical application of methoprene and 20-ecdysone can terminate reproductive diapause of the weevil, Ceratapion basicorne, which is a recently permitted biological control agent of yellow starthistle (Centaurea solstitialis). Adult weevils feed on leaves, creating pin holes, and lay eggs inside leaves. Diapausing weevils were treated with various doses of methoprene (0, 0.01, 0.1, 1.0 micrograms) dissolved in acetone in experiments 1 and 2. They were treated sequentially first with acetone or 20-ecdysone (1.0 microgram) and then with methoprene (1.0 microgram) in experiment 3 and were treated with 20-ecdysone followed by methoprene in experiment 4. Resources in this dataset:Resource Title: data dictionary. File Name: JH Data Dictionary.csvResource Description: description of data fieldsResource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 1. File Name: JH expt1 data.csvResource Description: Methoprene dissolved in acetone was applied topically at doses of 0.0, 0.01 and 0.1 and 1.0 μg per female weevil, and the number of feeding holes and eggs were recorded daily on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 2. File Name: JH expt2 data.csvResource Description: Methoprene dissolved in acetone was applied topically at doses of 0.0 and 1.0 μg to female weevils that did not produce eggs in experiment 1. The number of feeding holes and eggs were recorded daily on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 3. File Name: JH expt3 data.csvResource Description: Three types of treatments were applied with sequential applications 2 days apart: 1) acetone + acetone [AA: control], 2) acetone + methoprene [AM], and 20-ecdysone + methoprene 174 [2M]. All doses were 1.0 μg. The number of feeding holes and eggs were recorded every 2 days on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 4. File Name: JH expt4 data.csvResource Description: Females from experiment 3 that did not oviposit consistently were treated with 1.0 μg of 20-ecdysone followed 2 days later by 1.0 μg of methoprene. The treatments AA, AM, 2M refer to experiment 3. The number of feeding holes and eggs were recorded every 2 days on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel

  15. u

    Audkuluheidi Site Excel Data

    • data.ucar.edu
    • ckanprod.data-commons.k8s.ucar.edu
    excel
    Updated Oct 7, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Borgthor Magnusson (2025). Audkuluheidi Site Excel Data [Dataset]. http://doi.org/10.5065/D6XW4H00
    Explore at:
    excelAvailable download formats
    Dataset updated
    Oct 7, 2025
    Authors
    Borgthor Magnusson
    Time period covered
    Aug 6, 1996 - Jul 27, 2000
    Area covered
    Description

    The ITEX experiment at Audkuluheidi was started in 1996 when control and OTC plots 1-5 were set up. In 1997 Control and OTC plots 6-10 were set up in the protected area (No Graze). Also in 1997, 10 control plots were set up in the adjacent grazed area (Graze). In 2000, all plots were sampled again. This dataset is in excel format. For more information, please see the readme file.

  16. N

    Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Excel Township
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Excel township is shown in this column.
    • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

  17. Google Certificate BellaBeats Capstone Project

    • kaggle.com
    zip
    Updated Jan 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Jason Porzelius (2023). Google Certificate BellaBeats Capstone Project [Dataset]. https://www.kaggle.com/datasets/jasonporzelius/google-certificate-bellabeats-capstone-project
    Explore at:
    zip(169161 bytes)Available download formats
    Dataset updated
    Jan 5, 2023
    Authors
    Jason Porzelius
    Description

    Introduction: I have chosen to complete a data analysis project for the second course option, Bellabeats, Inc., using a locally hosted database program, Excel for both my data analysis and visualizations. This choice was made primarily because I live in a remote area and have limited bandwidth and inconsistent internet access. Therefore, completing a capstone project using web-based programs such as R Studio, SQL Workbench, or Google Sheets was not a feasible choice. I was further limited in which option to choose as the datasets for the ride-share project option were larger than my version of Excel would accept. In the scenario provided, I will be acting as a Junior Data Analyst in support of the Bellabeats, Inc. executive team and data analytics team. This combined team has decided to use an existing public dataset in hopes that the findings from that dataset might reveal insights which will assist in Bellabeat's marketing strategies for future growth. My task is to provide data driven insights to business tasks provided by the Bellabeats, Inc.'s executive and data analysis team. In order to accomplish this task, I will complete all parts of the Data Analysis Process (Ask, Prepare, Process, Analyze, Share, Act). In addition, I will break each part of the Data Analysis Process down into three sections to provide clarity and accountability. Those three sections are: Guiding Questions, Key Tasks, and Deliverables. For the sake of space and to avoid repetition, I will record the deliverables for each Key Task directly under the numbered Key Task using an asterisk (*) as an identifier.

    Section 1 - Ask:

    A. Guiding Questions:
    1. Who are the key stakeholders and what are their goals for the data analysis project? 2. What is the business task that this data analysis project is attempting to solve?

    B. Key Tasks: 1. Identify key stakeholders and their goals for the data analysis project *The key stakeholders for this project are as follows: -Urška Sršen and Sando Mur - co-founders of Bellabeats, Inc. -Bellabeats marketing analytics team. I am a member of this team.

    1. Identify the business task. *The business task is: -As provided by co-founder Urška Sršen, the business task for this project is to gain insight into how consumers are using their non-BellaBeats smart devices in order to guide upcoming marketing strategies for the company which will help drive future growth. Specifically, the researcher was tasked with applying insights driven by the data analysis process to 1 BellaBeats product and presenting those insights to BellaBeats stakeholders.

    Section 2 - Prepare:

    A. Guiding Questions: 1. Where is the data stored and organized? 2. Are there any problems with the data? 3. How does the data help answer the business question?

    B. Key Tasks:

    1. Research and communicate the source of the data, and how it is stored/organized to stakeholders. *The data source used for our case study is FitBit Fitness Tracker Data. This dataset is stored in Kaggle and was made available through user Mobius in an open-source format. Therefore, the data is public and available to be copied, modified, and distributed, all without asking the user for permission. These datasets were generated by respondents to a distributed survey via Amazon Mechanical Turk reportedly (see credibility section directly below) between 03/12/2016 thru 05/12/2016.
      *Reportedly (see credibility section directly below), thirty eligible Fitbit users consented to the submission of personal tracker data, including output related to steps taken, calories burned, time spent sleeping, heart rate, and distance traveled. This data was broken down into minute, hour, and day level totals. This data is stored in 18 CSV documents. I downloaded all 18 documents into my local laptop and decided to use 2 documents for the purposes of this project as they were files which had merged activity and sleep data from the other documents. All unused documents were permanently deleted from the laptop. The 2 files used were: -sleepDay_merged.csv -dailyActivity_merged.csv

    2. Identify and communicate to stakeholders any problems found with the data related to credibility and bias. *As will be more specifically presented in the Process section, the data seems to have credibility issues related to the reported time frame of the data collected. The metadata seems to indicate that the data collected covered roughly 2 months of FitBit tracking. However, upon my initial data processing, I found that only 1 month of data was reported. *As will be more specifically presented in the Process section, the data has credibility issues related to the number of individuals who reported FitBit data. Specifically, the metadata communicates that 30 individual users agreed to report their tracking data. My initial data processing uncovered 33 individual ...

  18. Quality Assurance and Quality Control (QA/QC) of Meteorological Time Series...

    • osti.gov
    • dataone.org
    • +1more
    Updated Dec 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (2020). Quality Assurance and Quality Control (QA/QC) of Meteorological Time Series Data for Billy Barr, East River, Colorado USA [Dataset]. http://doi.org/10.15485/1823516
    Explore at:
    Dataset updated
    Dec 31, 2020
    Dataset provided by
    Office of Sciencehttp://www.er.doe.gov/
    Environmental System Science Data Infrastructure for a Virtual Ecosystem
    Area covered
    Colorado, United States, East River
    Description

    A comprehensive Quality Assurance (QA) and Quality Control (QC) statistical framework consists of three major phases: Phase 1—Preliminary raw data sets exploration, including time formatting and combining datasets of different lengths and different time intervals; Phase 2—QA of the datasets, including detecting and flagging of duplicates, outliers, and extreme values; and Phase 3—the development of time series of a desired frequency, imputation of missing values, visualization and a final statistical summary. The time series data collected at the Billy Barr meteorological station (East River Watershed, Colorado) were analyzed. The developed statistical framework is suitable for both real-time and post-data-collection QA/QC analysis of meteorological datasets.The files that are in this data package include one excel file, converted to CSV format (Billy_Barr_raw_qaqc.csv) that contains the raw meteorological data, i.e., input data used for the QA/QC analysis. The second CSV file (Billy_Barr_1hr.csv) is the QA/QC and flagged meteorological data, i.e., output data from the QA/QC analysis. The last file (QAQC_Billy_Barr_2021-03-22.R) is a script written in R that implements the QA/QC and flagging process. The purpose of the CSV data files included in this package is to provide input and output files implemented in the R script.

  19. a

    LAND USE - historical land use change NBEP 2017 (excel)

    • narragansett-bay-estuary-program-nbep.hub.arcgis.com
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBEP_GIS (2020). LAND USE - historical land use change NBEP 2017 (excel) [Dataset]. https://narragansett-bay-estuary-program-nbep.hub.arcgis.com/datasets/86a61e60db614368b37356ed0a59b944
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset authored and provided by
    NBEP_GIS
    Description

    This excel contains data for Chapter 4 “Land Use” of the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org). It includes the raw data behind Figure 4, “Historical changes in percentage of Narragansett Bay Watershed classified as forest or urban,” (page 121). For more information, please reference the Technical Report or contact info@nbep.org. Original figures are available at http://nbep.org/the-state-of-our-watershed/figures/.

  20. d

    Spreadsheet of best models for each downscaled climate dataset and for all...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Nov 19, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2025). Spreadsheet of best models for each downscaled climate dataset and for all downscaled climate datasets considered together (Best_model_lists.xlsx) [Dataset]. https://catalog.data.gov/dataset/spreadsheet-of-best-models-for-each-downscaled-climate-dataset-and-for-all-downscaled-clim
    Explore at:
    Dataset updated
    Nov 19, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the period 2020-59 (centered in 2040) or to the period 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided that tabulates best models for each downscaled climate dataset and for all downscaled climate datasets considered together. Best models were identified based on how well the models capture the climatology and interannual variability of four climate extreme indices using the Model Climatology Index (MCI) and the Model Variability Index (MVI) of Srivastava and others (2020). The four indices consist of annual maxima consecutive precipitation for durations of 1, 3, 5, and 7 days compared against the same indices computed based on the PRISM and SFWMD gridded precipitation datasets for five climate regions: climate region 1 in Northwest Florida, 2 in North Florida, 3 in North Central Florida, 4 in South Central Florida, and climate region 5 in South Florida. The PRISM dataset is based on the Parameter-elevation Relationships on Independent Slopes Model interpolation method of Daly and others (2008). The South Florida Water Management District’s (SFWMD) precipitation super-grid is a gridded precipitation dataset developed by modelers at the agency for use in hydrologic modeling (SFWMD, 2005). This dataset is considered by the SFWMD as the best available gridded rainfall dataset for south Florida and was used in addition to PRISM to identify best models in the South Central and South Florida climate regions. Best models were selected based on MCI and MVI evaluated within each individual downscaled dataset. In addition, best models were selected by comparison across datasets and referred to as "ALL DATASETS" hereafter. Due to the small sample size, all models in the using the Weather Research and Forecasting Model (JupiterWRF) dataset were considered as best models.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2025). Climate Change Vulnerability Index Release 4.0: Excel Workbook [Dataset]. https://catalog.data.gov/dataset/climate-change-vulnerability-index-release-4-0-excel-workbook

Data from: Climate Change Vulnerability Index Release 4.0: Excel Workbook

Related Article
Explore at:
Dataset updated
Nov 20, 2025
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Description

The Climate Change Vulnerability Index (CCVI) uses a scoring system that integrates a species’ exposure to projected climate change within an assessment area, including sea level rise, and three sets of factors associated with climate change sensitivity, each supported by published studies: 1) species-specific sensitivity and adaptive capacity factors, 2) threat multipliers such as barriers to dispersal and anthropogenic threats, and 3) documented and modeled responses to climate change. Assessing species with the CCVI facilitates grouping unrelated taxa by their relative risk to climate change as well as identifying patterns of climate stressors that affect multiple taxa.

Search
Clear search
Close search
Google apps
Main menu