96 datasets found
  1. o

    Getting Started with Excel

    • explore.openaire.eu
    Updated Jul 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dr Jianzhou Zhao (2021). Getting Started with Excel [Dataset]. http://doi.org/10.5281/zenodo.6423544
    Explore at:
    Dataset updated
    Jul 1, 2021
    Authors
    Dr Jianzhou Zhao
    Description

    About this webinar We rarely receive the research data in an appropriate form. Often data is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors. This webinar targets beginners and presents a quick demonstration of using the most widespread data wrangling tool, Microsoft Excel, to sort, filter, copy, protect, transform, aggregate, summarise, and visualise research data. Webinar Topics Introduction to Microsoft Excel user interface Interpret data using sorting, filtering, and conditional formatting Summarise data using functions Analyse data using pivot tables Manipulate and visualise data Handy tips to speed up your work Licence Copyright © 2021 Intersect Australia Ltd. All rights reserved.

  2. d

    Documentation of R scripts to create boxplots of change factors by NOAA...

    • datasets.ai
    • data.usgs.gov
    • +1more
    55
    Updated Sep 10, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2024). Documentation of R scripts to create boxplots of change factors by NOAA Atlas 14 station, or for all stations in a Florida HUC-8 basin or county (Documentation_R_script_create_boxplot.docx) [Dataset]. https://datasets.ai/datasets/documentation-of-r-scripts-to-create-boxplots-of-change-factors-by-noaa-atlas-14-station-o-fa3c6
    Explore at:
    55Available download formats
    Dataset updated
    Sep 10, 2024
    Dataset authored and provided by
    Department of the Interior
    Area covered
    Florida
    Description

    The Florida Flood Hub for Applied Research and Innovation and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 242 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in Florida. The change factors were computed as the ratio of projected future to historical extreme-precipitation depths fitted to extreme-precipitation data from downscaled climate datasets using a constrained maximum likelihood (CML) approach as described in https://doi.org/10.3133/sir20225093. The change factors correspond to the periods 2020-59 (centered in the year 2040) and 2050-89 (centered in the year 2070) as compared to the 1966-2005 historical period.
    An R script (create_boxplot.R) is provided which generates boxplots of change factors by NOAA Atlas 14 station, or for all NOAA Atlas 14 stations in a Florida HUC-8 basin or county. In addition, the R script basin_boxplot.R is provided as an example on how to create a wrapper function that will automate the generation of boxplots of change factors for all Florida HUC-8 basins. This Microsoft Word file (Documentation_R_script_create_boxplot.docx) serves as documentation on the code usage and available options for running the scripts. As described in the documentation, the R scripts rely on some of the Microsoft Excel spreadsheets published as part of this data release. The script uses basins defined in the "Florida Hydrologic Unit Code (HUC) Basins (areas)" from the Florida Department of Environmental Protection (FDEP; https://geodata.dep.state.fl.us/datasets/FDEP::florida-hydrologic-unit-code-huc-basins-areas/explore) and their names are listed in the file basins_list.txt provided with the script. County names are listed in the file counties_list.txt provided with the script. NOAA Atlas 14 stations located in each Florida HUC-8 basin or county are defined in the Microsoft Excel spreadsheet Datasets_station_information.xlsx which is part of this data release. Instructions are provided in code documentation (see highlighted text on page 7 of Documentation_R_script_create_boxplot.docx) so that users can modify the script to generate boxplots for basins different from the FDEP "Florida Hydrologic Unit Code (HUC) Basins (areas)."

  3. Data Excel sheet for study on diabetes

    • figshare.com
    xlsx
    Updated Jun 10, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Rakshatha Nayak; Arshad Khan (2024). Data Excel sheet for study on diabetes [Dataset]. http://doi.org/10.6084/m9.figshare.25764996.v2
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jun 10, 2024
    Dataset provided by
    figshare
    Figsharehttp://figshare.com/
    Authors
    Rakshatha Nayak; Arshad Khan
    License

    CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
    License information was derived automatically

    Description

    Excel sheet with data of the original research 'Evaluation of simple and cost-effective hematological inflammatory biomarkers in type 2 diabetes and their correlation with glycemic control'

  4. d

    Spreadsheet of best models for each downscaled climate dataset and for all...

    • catalog.data.gov
    • data.usgs.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Spreadsheet of best models for each downscaled climate dataset and for all downscaled climate datasets considered together (Best_model_lists.xlsx) [Dataset]. https://catalog.data.gov/dataset/spreadsheet-of-best-models-for-each-downscaled-climate-dataset-and-for-all-downscaled-clim
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The South Florida Water Management District (SFWMD) and the U.S. Geological Survey have developed projected future change factors for precipitation depth-duration-frequency (DDF) curves at 174 National Oceanic and Atmospheric Administration (NOAA) Atlas 14 stations in central and south Florida. The change factors were computed as the ratio of projected future to historical extreme precipitation depths fitted to extreme precipitation data from various downscaled climate datasets using a constrained maximum likelihood (CML) approach. The change factors correspond to the period 2050-2089 (centered in the year 2070) as compared to the 1966-2005 historical period. A Microsoft Excel workbook is provided that tabulates best models for each downscaled climate dataset and for all downscaled climate datasets considered together. Best models were identified based on how well the models capture the climatology and interannual variability of four climate extreme indices using the Model Climatology Index (MCI) and the Model Variability Index (MVI) of Srivastava and others (2020). The four indices consist of annual maxima consecutive precipitation for durations of 1, 3, 5, and 7 days compared against the same indices computed based on the PRISM and SFWMD gridded precipitation datasets for two climate regions: climate region 4 in South Central Florida, and climate region 5 in South Florida. The PRISM dataset is based on the Parameter-elevation Relationships on Independent Slopes Model interpolation method of Daly and others (2008). The South Florida Water Management District’s (SFWMD) precipitation super-grid is a gridded precipitation dataset developed by modelers at the agency for use in hydrologic modeling (SFWMD, 2005). This dataset is considered by the SFWMD as the best available gridded rainfall dataset for south Florida. Best models were selected based on MCI and MVI evaluated within each individual downscaled dataset. In addition, best models were selected by comparison across datasets and referred to as "ALL DATASETS" hereafter. Due to the small sample size, all models in the using the Weather Research and Forecasting Model (JupiterWRF) dataset were considered as best models.

  5. Individuals and Households Program - Valid Registrations

    • catalog.data.gov
    Updated Jun 7, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    FEMA/Response and Recovery/Recovery Directorate (2025). Individuals and Households Program - Valid Registrations [Dataset]. https://catalog.data.gov/dataset/individuals-and-households-program-valid-registrations-nemis
    Explore at:
    Dataset updated
    Jun 7, 2025
    Dataset provided by
    Federal Emergency Management Agencyhttp://www.fema.gov/
    Description

    This dataset contains FEMA applicant-level data for the Individuals and Households Program (IHP). All PII information has been removed. The location is represented by county, city, and zip code. This dataset contains Individual Assistance (IA) applications from DR1439 (declared in 2002) to those declared over 30 days ago. The full data set is refreshed on an annual basis and refreshed weekly to update disasters declared in the last 18 months. This dataset includes all major disasters and includes only valid registrants (applied in a declared county, within the registration period, having damage due to the incident and damage within the incident period). Information about individual data elements and descriptions are listed in the metadata information within the dataset.rnValid registrants may be eligible for IA assistance, which is intended to meet basic needs and supplement disaster recovery efforts. IA assistance is not intended to return disaster-damaged property to its pre-disaster condition. Disaster damage to secondary or vacation homes does not qualify for IHP assistance.rnData comes from FEMA's National Emergency Management Information System (NEMIS) with raw, unedited, self-reported content and subject to a small percentage of human error.rnAny financial information is derived from NEMIS and not FEMA's official financial systems. Due to differences in reporting periods, status of obligations and application of business rules, this financial information may differ slightly from official publication on public websites such as usaspending.gov. This dataset is not intended to be used for any official federal reporting. rnCitation: The Agency’s preferred citation for datasets (API usage or file downloads) can be found on the OpenFEMA Terms and Conditions page, Citing Data section: https://www.fema.gov/about/openfema/terms-conditions.rnDue to the size of this file, tools other than a spreadsheet may be required to analyze, visualize, and manipulate the data. MS Excel will not be able to process files this large without data loss. It is recommended that a database (e.g., MS Access, MySQL, PostgreSQL, etc.) be used to store and manipulate data. Other programming tools such as R, Apache Spark, and Python can also be used to analyze and visualize data. Further, basic Linux/Unix tools can be used to manipulate, search, and modify large files.rnIf you have media inquiries about this dataset, please email the FEMA News Desk at FEMA-News-Desk@fema.dhs.gov or call (202) 646-3272. For inquiries about FEMA's data and Open Government program, please email the OpenFEMA team at OpenFEMA@fema.dhs.gov.rnThis dataset is scheduled to be superceded by Valid Registrations Version 2 by early CY 2024.

  6. d

    Oechel Manipulation Soil Temperature Data (Excel) [Oechel, W.]

    • search.dataone.org
    • arcticdata.io
    • +1more
    Updated Oct 22, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Walter C. Oechel (2016). Oechel Manipulation Soil Temperature Data (Excel) [Oechel, W.] [Dataset]. http://doi.org/10.5065/D6571957
    Explore at:
    Dataset updated
    Oct 22, 2016
    Dataset provided by
    Arctic Data Center
    Authors
    Walter C. Oechel
    Time period covered
    Jun 1, 1999 - Sep 30, 2001
    Area covered
    Description

    The tundra elevated soil temperature and water table manipulation site was located near Barrow, Alaska (70 19 18.36N, 156 37 6.35 W). Eighteen 60 cm diameter polycarbonate cylinders were installed into the ground at the end of the 1998 growing season when thaw depth was at its seasonal maximum to isolate plots of tundra and was organized into three blocks of six for three replicates of the six treatments to be tested. The six factors that are being tested include: control, elevated water table, lowered water table, elevated soil temperature, elevated soil temperature and elevated water table, and elevated soil temperature and lowered water table. Temperature data was collected from June, 1999 until September 2001, and is in Excel format.

  7. c

    ckanext-excelforms

    • catalog.civicdataecosystem.org
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). ckanext-excelforms [Dataset]. https://catalog.civicdataecosystem.org/dataset/ckanext-excelforms
    Explore at:
    Dataset updated
    Jun 4, 2025
    Description

    The excelforms extension for CKAN provides a mechanism for users to input data into Table Designer tables using Excel-based forms, enhancing data entry efficiency. This extension focuses on streamlining the process of adding data rows to tables within CKAN's Table Designer. A key component of the functionality is the ability to import multiple rows in a single operation, which significant reduces overhead associated with entering multiple data points. Key Features: Excel-Based Forms: Users can enter data using familiar Excel spreadsheets, leveraging their existing skills and software. Table Designer Integration: Designed to work seamlessly with CKAN's Table Designer, extending its functionality to include Excel-based data entry. Multiple Row Import: Supports importing multiple rows of data at once, improving data entry efficiency, especially when dealing with large datasets. Data mapping: Simplifies the process of aligning excel column headers to their corresponding data fields in tables. Improved Data Entry Speed: Provides an alternative to manual data entry, resulting in faster population and easier updates. Technical Integration: The excelforms extension integrates with CKAN by introducing new functionalities and workflows around the Table Designer plugin. The installation instructions specify that this plugin to be added before the tabledesigner plugin. Benefits & Impact: By enabling Excel-based data entry, the excelforms extension improves the user experience for those familiar with spreadsheet software. The ability to import multiple rows simultaneously significantly reduces the time and effort required to populate tables, particularly when dealing with large amounts of data. The impact is better data accessibility through the streamlining of data population workflows.

  8. U

    Climate Change Vulnerability Index Release 4.0: Excel Workbook

    • data.usgs.gov
    Updated Feb 13, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lindsey Thurman; Marta Lyons; Bruce Young; John Stevenson (2025). Climate Change Vulnerability Index Release 4.0: Excel Workbook [Dataset]. http://doi.org/10.5066/P14GCXUU
    Explore at:
    Dataset updated
    Feb 13, 2025
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Authors
    Lindsey Thurman; Marta Lyons; Bruce Young; John Stevenson
    License

    U.S. Government Workshttps://www.usa.gov/government-works
    License information was derived automatically

    Time period covered
    2025
    Description

    The Climate Change Vulnerability Index (CCVI) uses a scoring system that integrates a species’ exposure to projected climate change within an assessment area, including sea level rise, and three sets of factors associated with climate change sensitivity, each supported by published studies: 1) species-specific sensitivity and adaptive capacity factors, 2) threat multipliers such as barriers to dispersal and anthropogenic threats, and 3) documented and modeled responses to climate change. Assessing species with the CCVI facilitates grouping unrelated taxa by their relative risk to climate change as well as identifying patterns of climate stressors that affect multiple taxa.

  9. N

    Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A...

    • neilsberg.com
    csv, json
    Updated Jul 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel Township, Minnesota Annual Population and Growth Analysis Dataset: A Comprehensive Overview of Population Changes and Yearly Growth Rates in Excel township from 2000 to 2023 // 2024 Edition [Dataset]. https://www.neilsberg.com/insights/excel-township-mn-population-by-year/
    Explore at:
    csv, jsonAvailable download formats
    Dataset updated
    Jul 30, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Minnesota, Excel Township
    Variables measured
    Annual Population Growth Rate, Population Between 2000 and 2023, Annual Population Growth Rate Percent
    Measurement technique
    The data presented in this dataset is derived from the 20 years data of U.S. Census Bureau Population Estimates Program (PEP) 2000 - 2023. To measure the variables, namely (a) population and (b) population change in ( absolute and as a percentage ), we initially analyzed and tabulated the data for each of the years between 2000 and 2023. For further information regarding these estimates, please feel free to reach out to us via email at research@neilsberg.com.
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset tabulates the Excel township population over the last 20 plus years. It lists the population for each year, along with the year on year change in population, as well as the change in percentage terms for each year. The dataset can be utilized to understand the population change of Excel township across the last two decades. For example, using this dataset, we can identify if the population is declining or increasing. If there is a change, when the population peaked, or if it is still growing and has not reached its peak. We can also compare the trend with the overall trend of United States population over the same period of time.

    Key observations

    In 2023, the population of Excel township was 300, a 0.99% decrease year-by-year from 2022. Previously, in 2022, Excel township population was 303, a decline of 0.98% compared to a population of 306 in 2021. Over the last 20 plus years, between 2000 and 2023, population of Excel township increased by 17. In this period, the peak population was 308 in the year 2020. The numbers suggest that the population has already reached its peak and is showing a trend of decline. Source: U.S. Census Bureau Population Estimates Program (PEP).

    Content

    When available, the data consists of estimates from the U.S. Census Bureau Population Estimates Program (PEP).

    Data Coverage:

    • From 2000 to 2023

    Variables / Data Columns

    • Year: This column displays the data year (Measured annually and for years 2000 to 2023)
    • Population: The population for the specific year for the Excel township is shown in this column.
    • Year on Year Change: This column displays the change in Excel township population for each year compared to the previous year.
    • Change in Percent: This column displays the year on year change as a percentage. Please note that the sum of all percentages may not equal one due to rounding of values.

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel township Population by Year. You can refer the same here

  10. f

    UC_vs_US Statistic Analysis.xlsx

    • figshare.com
    xlsx
    Updated Jul 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    F. (Fabiano) Dalpiaz (2020). UC_vs_US Statistic Analysis.xlsx [Dataset]. http://doi.org/10.23644/uu.12631628.v1
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Jul 9, 2020
    Dataset provided by
    Utrecht University
    Authors
    F. (Fabiano) Dalpiaz
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Sheet 1 (Raw-Data): The raw data of the study is provided, presenting the tagging results for the used measures described in the paper. For each subject, it includes multiple columns: A. a sequential student ID B an ID that defines a random group label and the notation C. the used notation: user Story or use Cases D. the case they were assigned to: IFA, Sim, or Hos E. the subject's exam grade (total points out of 100). Empty cells mean that the subject did not take the first exam F. a categorical representation of the grade L/M/H, where H is greater or equal to 80, M is between 65 included and 80 excluded, L otherwise G. the total number of classes in the student's conceptual model H. the total number of relationships in the student's conceptual model I. the total number of classes in the expert's conceptual model J. the total number of relationships in the expert's conceptual model K-O. the total number of encountered situations of alignment, wrong representation, system-oriented, omitted, missing (see tagging scheme below) P. the researchers' judgement on how well the derivation process explanation was explained by the student: well explained (a systematic mapping that can be easily reproduced), partially explained (vague indication of the mapping ), or not present.

    Tagging scheme:
    Aligned (AL) - A concept is represented as a class in both models, either
    

    with the same name or using synonyms or clearly linkable names; Wrongly represented (WR) - A class in the domain expert model is incorrectly represented in the student model, either (i) via an attribute, method, or relationship rather than class, or (ii) using a generic term (e.g., user'' instead ofurban planner''); System-oriented (SO) - A class in CM-Stud that denotes a technical implementation aspect, e.g., access control. Classes that represent legacy system or the system under design (portal, simulator) are legitimate; Omitted (OM) - A class in CM-Expert that does not appear in any way in CM-Stud; Missing (MI) - A class in CM-Stud that does not appear in any way in CM-Expert.

    All the calculations and information provided in the following sheets
    

    originate from that raw data.

    Sheet 2 (Descriptive-Stats): Shows a summary of statistics from the data collection,
    

    including the number of subjects per case, per notation, per process derivation rigor category, and per exam grade category.

    Sheet 3 (Size-Ratio):
    

    The number of classes within the student model divided by the number of classes within the expert model is calculated (describing the size ratio). We provide box plots to allow a visual comparison of the shape of the distribution, its central value, and its variability for each group (by case, notation, process, and exam grade) . The primary focus in this study is on the number of classes. However, we also provided the size ratio for the number of relationships between student and expert model.

    Sheet 4 (Overall):
    

    Provides an overview of all subjects regarding the encountered situations, completeness, and correctness, respectively. Correctness is defined as the ratio of classes in a student model that is fully aligned with the classes in the corresponding expert model. It is calculated by dividing the number of aligned concepts (AL) by the sum of the number of aligned concepts (AL), omitted concepts (OM), system-oriented concepts (SO), and wrong representations (WR). Completeness on the other hand, is defined as the ratio of classes in a student model that are correctly or incorrectly represented over the number of classes in the expert model. Completeness is calculated by dividing the sum of aligned concepts (AL) and wrong representations (WR) by the sum of the number of aligned concepts (AL), wrong representations (WR) and omitted concepts (OM). The overview is complemented with general diverging stacked bar charts that illustrate correctness and completeness.

    For sheet 4 as well as for the following four sheets, diverging stacked bar
    

    charts are provided to visualize the effect of each of the independent and mediated variables. The charts are based on the relative numbers of encountered situations for each student. In addition, a "Buffer" is calculated witch solely serves the purpose of constructing the diverging stacked bar charts in Excel. Finally, at the bottom of each sheet, the significance (T-test) and effect size (Hedges' g) for both completeness and correctness are provided. Hedges' g was calculated with an online tool: https://www.psychometrica.de/effect_size.html. The independent and moderating variables can be found as follows:

    Sheet 5 (By-Notation):
    

    Model correctness and model completeness is compared by notation - UC, US.

    Sheet 6 (By-Case):
    

    Model correctness and model completeness is compared by case - SIM, HOS, IFA.

    Sheet 7 (By-Process):
    

    Model correctness and model completeness is compared by how well the derivation process is explained - well explained, partially explained, not present.

    Sheet 8 (By-Grade):
    

    Model correctness and model completeness is compared by the exam grades, converted to categorical values High, Low , and Medium.

  11. o

    Data from: Climate Change and Educational Attainment in the Global Tropics

    • openicpsr.org
    Updated Mar 31, 2019
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Heather Randell; Clark Gray (2019). Climate Change and Educational Attainment in the Global Tropics [Dataset]. http://doi.org/10.3886/E109141V2
    Explore at:
    Dataset updated
    Mar 31, 2019
    Dataset provided by
    University of North Carolina-Chapel Hill
    University of Maryland, College Park
    Authors
    Heather Randell; Clark Gray
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This project contains the Stata code as well as additional information used for the following paper:Randell, H & C Gray (Forthcoming). Climate Change and Educational Attainment in the Global Tropics. Proceedings of the National Academy of Sciences.The data are publicly available and can be accessed freely. The census data were obtained from IPUMS-International (https://international.ipums.org/international/) and the climate data were obtained from the CRU-Time Series Version 4.00 (http://data.ceda.ac.uk//badc/cru/data/cru_ts/cru_ts_4.00/).We include three do-files in this project:"Climate_-1_to_5.do" -- this file was used to convert the climate data into z-scores of climatic conditions experienced during ages -1 to 5 years among children in the sample. "ClimEducation_PNAS_FINAL.do" -- this file was used to process the census data downloaded from IPUMS-International, link it to the climate data, and perform all of the analyses in the study."Climate_6-10_and_11-current.do" -- this file was used to convert the climate data into z-scores of climatic conditions experienced during ages 6-10 and 11-current age among children in the sample.In addition, we include a shapefile (as well as related GIS files) for the final sample of analysis countries. The attribute "birthplace" is used to link the climate data to the census data. We include Python scripts for extracting monthly climate data for each 10-year temperature and precipitation file downloaded from CRU. "py0_60" extracts data for years one through five, and "py61_120" extracts data for years six through ten.Lastly, we include an excel file with inclusion/exclusion criteria for the countries and censuses available from IPUMS.

  12. f

    GHS Safety Fingerprints

    • figshare.com
    xlsx
    Updated Oct 25, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Brian Murphy (2018). GHS Safety Fingerprints [Dataset]. http://doi.org/10.6084/m9.figshare.7210019.v3
    Explore at:
    xlsxAvailable download formats
    Dataset updated
    Oct 25, 2018
    Dataset provided by
    figshare
    Authors
    Brian Murphy
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Spreadsheets targeted at the analysis of GHS safety fingerprints.AbstractOver a 20-year period, the UN developed the Globally Harmonized System (GHS) to address international variation in chemical safety information standards. By 2014, the GHS became widely accepted internationally and has become the cornerstone of OSHA’s Hazard Communication Standard. Despite this progress, today we observe that there are inconsistent results when different sources apply the GHS to specific chemicals, in terms of the GHS pictograms, hazard statements, precautionary statements, and signal words assigned to those chemicals. In order to assess the magnitude of this problem, this research uses an extension of the “chemical fingerprints” used in 2D chemical structure similarity analysis to GHS classifications. By generating a chemical safety fingerprint, the consistency of the GHS information for specific chemicals can be assessed. The problem is the sources for GHS information can differ. For example, the SDS for sodium hydroxide pellets found on Fisher Scientific’s website displays two pictograms, while the GHS information for sodium hydroxide pellets on Sigma Aldrich’s website has only one pictogram. A chemical information tool, which identifies such discrepancies within a specific chemical inventory, can assist in maintaining the quality of the safety information needed to support safe work in the laboratory. The tools for this analysis will be scaled to the size of a moderate large research lab or small chemistry department as a whole (between 1000 and 3000 chemical entities) so that labelling expectations within these universes can be established as consistently as possible.Most chemists are familiar with programs such as excel and google sheets which are spreadsheet programs that are used by many chemists daily. Though a monadal programming approach with these tools, the analysis of GHS information can be made possible for non-programmers. This monadal approach employs single spreadsheet functions to analyze the data collected rather than long programs, which can be difficult to debug and maintain. Another advantage of this approach is that the single monadal functions can be mixed and matched to meet new goals as information needs about the chemical inventory evolve over time. These monadal functions will be used to converts GHS information into binary strings of data called “bitstrings”. This approach is also used when comparing chemical structures. The binary approach make data analysis more manageable, as GHS information comes in a variety of formats such as pictures or alphanumeric strings which are difficult to compare on their face. Bitstrings generated using the GHS information can be compared using an operator such as the tanimoto coefficent to yield values from 0 for strings that have no similarity to 1 for strings that are the same. Once a particular set of information is analyzed the hope is the same techniques could be extended to more information. For example, if GHS hazard statements are analyzed through a spreadsheet approach the same techniques with minor modifications could be used to tackle more GHS information such as pictograms.Intellectual Merit. This research indicates that the use of the cheminformatic technique of structural fingerprints can be used to create safety fingerprints. Structural fingerprints are binary bit strings that are obtained from the non-numeric entity of 2D structure. This structural fingerprint allows comparison of 2D structure through the use of the tanimoto coefficient. The use of this structural fingerprint can be extended to safety fingerprints, which can be created by converting a non-numeric entity such as GHS information into a binary bit string and comparing data through the use of the tanimoto coefficient.Broader Impact. Extension of this research can be applied to many aspects of GHS information. This research focused on comparing GHS hazard statements, but could be further applied to other bits of GHS information such as pictograms and GHS precautionary statements. Another facet of this research is allowing the chemist who uses the data to be able to compare large dataset using spreadsheet programs such as excel and not need a large programming background. Development of this technique will also benefit the Chemical Health and Safety community and Chemical Information communities by better defining the quality of GHS information available and providing a scalable and transferable tool to manipulate this information to meet a variety of other organizational needs.

  13. o

    Quality Assurance and Quality Control (QA/QC) of Meteorological Time Series...

    • osti.gov
    • knb.ecoinformatics.org
    Updated Jan 1, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States) (2021). Quality Assurance and Quality Control (QA/QC) of Meteorological Time Series Data for Billy Barr, East River, Colorado USA [Dataset]. http://doi.org/10.15485/1823516
    Explore at:
    Dataset updated
    Jan 1, 2021
    Dataset provided by
    Environmental System Science Data Infrastructure for a Virtual Ecosystem (ESS-DIVE) (United States)
    U.S. DOE > Office of Science > Biological and Environmental Research (BER)
    Area covered
    Colorado, East River, United States
    Description

    A comprehensive Quality Assurance (QA) and Quality Control (QC) statistical framework consists of three major phases: Phase 1—Preliminary raw data sets exploration, including time formatting and combining datasets of different lengths and different time intervals; Phase 2—QA of the datasets, including detecting and flagging of duplicates, outliers, and extreme values; and Phase 3—the development of time series of a desired frequency, imputation of missing values, visualization and a final statistical summary. The time series data collected at the Billy Barr meteorological station (East River Watershed, Colorado) were analyzed. The developed statistical framework is suitable for both real-time and post-data-collection QA/QC analysis of meteorological datasets.The files that are in this data package include one excel file, converted to CSV format (Billy_Barr_raw_qaqc.csv) that contains the raw meteorological data, i.e., input data used for the QA/QC analysis. The second CSV file (Billy_Barr_1hr.csv) is the QA/QC and flagged meteorological data, i.e., output data from the QA/QC analysis. The last file (QAQC_Billy_Barr_2021-03-22.R) is a script written in R that implements the QA/QC and flagging process. The purpose of the CSV data files included in this package is to provide input and output files implemented in the R script.

  14. a

    LAND USE - historical land use change NBEP 2017 (excel)

    • narragansett-bay-estuary-program-nbep.hub.arcgis.com
    • hub.arcgis.com
    Updated Apr 8, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NBEP_GIS (2020). LAND USE - historical land use change NBEP 2017 (excel) [Dataset]. https://narragansett-bay-estuary-program-nbep.hub.arcgis.com/datasets/86a61e60db614368b37356ed0a59b944
    Explore at:
    Dataset updated
    Apr 8, 2020
    Dataset authored and provided by
    NBEP_GIS
    Description

    This excel contains data for Chapter 4 “Land Use” of the 2017 State of Narragansett Bay & Its Watershed Technical Report (nbep.org). It includes the raw data behind Figure 4, “Historical changes in percentage of Narragansett Bay Watershed classified as forest or urban,” (page 121). For more information, please reference the Technical Report or contact info@nbep.org. Original figures are available at http://nbep.org/the-state-of-our-watershed/figures/.

  15. m

    Data for: Rapid Pleistocene Desiccation and the Future of Africa's Lake...

    • data.mendeley.com
    Updated Mar 31, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Emily Beverly (2020). Data for: Rapid Pleistocene Desiccation and the Future of Africa's Lake Victoria [Dataset]. http://doi.org/10.17632/hzbbwvstbk.1
    Explore at:
    Dataset updated
    Mar 31, 2020
    Authors
    Emily Beverly
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Lake Victoria, Africa
    Description

    Supplementary Material: Dataset S1: Excel spreadsheet with bathymetric analysis of Lake Victoria and model for present Lake Victoria using Sutcliffe and Parks (1999) and Howell et al. (1988) datasets. Dataset S2: Excel spreadsheet with water budget model to drain paleo-Lake Victoria. Dataset S3: Excel spreadsheet used to develop model to fill Lake Victoria during the late Pleistocene. Dataset S4: Excel spreadsheet used to develop model to predict future of Lake Victoria.

  16. N

    Excel, AL Median Household Income Trends (2010-2021, in 2022...

    • neilsberg.com
    csv, json
    Updated Jan 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Neilsberg Research (2024). Excel, AL Median Household Income Trends (2010-2021, in 2022 inflation-adjusted dollars) [Dataset]. https://www.neilsberg.com/research/datasets/cd99ed47-b041-11ee-aaca-3860777c1fe6/
    Explore at:
    json, csvAvailable download formats
    Dataset updated
    Jan 11, 2024
    Dataset authored and provided by
    Neilsberg Research
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Excel
    Variables measured
    Median Household Income, Median Household Income Year on Year Change, Median Household Income Year on Year Percent Change
    Measurement technique
    The data presented in this dataset is derived from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. It presents the median household income from the years 2010 to 2021 following an initial analysis and categorization of the census data. Subsequently, we adjusted these figures for inflation using the Consumer Price Index retroactive series via current methods (R-CPI-U-RS). For additional information about these estimations, please contact us via email at research@neilsberg.com
    Dataset funded by
    Neilsberg Research
    Description
    About this dataset

    Context

    The dataset illustrates the median household income in Excel, spanning the years from 2010 to 2021, with all figures adjusted to 2022 inflation-adjusted dollars. Based on the latest 2017-2021 5-Year Estimates from the American Community Survey, it displays how income varied over the last decade. The dataset can be utilized to gain insights into median household income trends and explore income variations.

    Key observations:

    From 2010 to 2021, the median household income for Excel increased by $13,784 (25.63%), as per the American Community Survey estimates. In comparison, median household income for the United States increased by $4,559 (6.51%) between 2010 and 2021.

    Analyzing the trend in median household income between the years 2010 and 2021, spanning 11 annual cycles, we observed that median household income, when adjusted for 2022 inflation using the Consumer Price Index retroactive series (R-CPI-U-RS), experienced growth year by year for 7 years and declined for 4 years.

    https://i.neilsberg.com/ch/excel-al-median-household-income-trend.jpeg" alt="Excel, AL median household income trend (2010-2021, in 2022 inflation-adjusted dollars)">

    Content

    When available, the data consists of estimates from the U.S. Census Bureau American Community Survey (ACS) 2017-2021 5-Year Estimates. All incomes have been adjusting for inflation and are presented in 2022-inflation-adjusted dollars.

    Years for which data is available:

    • 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019, 2020, 2021

    Variables / Data Columns

    • Year: This column presents the data year from 2010 to 2021
    • Median Household Income: Median household income, in 2022 inflation-adjusted dollars for the specific year
    • YOY Change($): Change in median household income between the current and the previous year, in 2022 inflation-adjusted dollars
    • YOY Change(%): Percent change in median household income between current and the previous year

    Good to know

    Margin of Error

    Data in the dataset are based on the estimates and are subject to sampling variability and thus a margin of error. Neilsberg Research recommends using caution when presening these estimates in your research.

    Custom data

    If you do need custom data for any of your research project, report or presentation, you can contact our research staff at research@neilsberg.com for a feasibility of a custom tabulation on a fee-for-service basis.

    Inspiration

    Neilsberg Research Team curates, analyze and publishes demographics and economic data from a variety of public and proprietary sources, each of which often includes multiple surveys and programs. The large majority of Neilsberg Research aggregated datasets and insights is made available for free download at https://www.neilsberg.com/research/.

    Recommended for further research

    This dataset is a part of the main dataset for Excel median household income. You can refer the same here

  17. m

    Dataset of development of business during the COVID-19 crisis

    • data.mendeley.com
    • narcis.nl
    Updated Nov 9, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tatiana N. Litvinova (2020). Dataset of development of business during the COVID-19 crisis [Dataset]. http://doi.org/10.17632/9vvrd34f8t.1
    Explore at:
    Dataset updated
    Nov 9, 2020
    Authors
    Tatiana N. Litvinova
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    To create the dataset, the top 10 countries leading in the incidence of COVID-19 in the world were selected as of October 22, 2020 (on the eve of the second full of pandemics), which are presented in the Global 500 ranking for 2020: USA, India, Brazil, Russia, Spain, France and Mexico. For each of these countries, no more than 10 of the largest transnational corporations included in the Global 500 rating for 2020 and 2019 were selected separately. The arithmetic averages were calculated and the change (increase) in indicators such as profitability and profitability of enterprises, their ranking position (competitiveness), asset value and number of employees. The arithmetic mean values of these indicators for all countries of the sample were found, characterizing the situation in international entrepreneurship as a whole in the context of the COVID-19 crisis in 2020 on the eve of the second wave of the pandemic. The data is collected in a general Microsoft Excel table. Dataset is a unique database that combines COVID-19 statistics and entrepreneurship statistics. The dataset is flexible data that can be supplemented with data from other countries and newer statistics on the COVID-19 pandemic. Due to the fact that the data in the dataset are not ready-made numbers, but formulas, when adding and / or changing the values in the original table at the beginning of the dataset, most of the subsequent tables will be automatically recalculated and the graphs will be updated. This allows the dataset to be used not just as an array of data, but as an analytical tool for automating scientific research on the impact of the COVID-19 pandemic and crisis on international entrepreneurship. The dataset includes not only tabular data, but also charts that provide data visualization. The dataset contains not only actual, but also forecast data on morbidity and mortality from COVID-19 for the period of the second wave of the pandemic in 2020. The forecasts are presented in the form of a normal distribution of predicted values and the probability of their occurrence in practice. This allows for a broad scenario analysis of the impact of the COVID-19 pandemic and crisis on international entrepreneurship, substituting various predicted morbidity and mortality rates in risk assessment tables and obtaining automatically calculated consequences (changes) on the characteristics of international entrepreneurship. It is also possible to substitute the actual values identified in the process and following the results of the second wave of the pandemic to check the reliability of pre-made forecasts and conduct a plan-fact analysis. The dataset contains not only the numerical values of the initial and predicted values of the set of studied indicators, but also their qualitative interpretation, reflecting the presence and level of risks of a pandemic and COVID-19 crisis for international entrepreneurship.

  18. Ten-year data tables by province, industry and substance – releases

    • open.canada.ca
    • ouvert.canada.ca
    csv, html
    Updated Dec 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Environment and Climate Change Canada (2024). Ten-year data tables by province, industry and substance – releases [Dataset]. https://open.canada.ca/data/en/dataset/ea0dc8ae-d93c-4e24-9f61-946f1736a26f
    Explore at:
    html, csvAvailable download formats
    Dataset updated
    Dec 5, 2024
    Dataset provided by
    Environment And Climate Change Canadahttps://www.canada.ca/en/environment-climate-change.html
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Time period covered
    Jan 1, 2014 - Dec 31, 2023
    Description

    The National Pollutant Release Inventory (NPRI) is Canada's public inventory of pollutant releases (to air, water and land), disposals and transfers for recycling. Each file contains annual total releases for the past ten years by media (air, water or land), broken-down by province, industry or substance. Files are in .CSV format. The results can be further broken down using the pre-defined search available at the bottom of the NPRI Data Search webpage. The results returned by the NPRI search engine may differ from the numbers contained in the downloadable files. The online search engine’s results will display releases, disposals and transfers reported by facilities, but does not distinguish between media type (i.e. air, water, land). It also displays facilities reporting only under Ontario Regulation 127/01 and facilities submitting “did not meet criteria” reports. Please consult the following resources to enhance your analysis: - Guide on using and Interpreting NPRI Data: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/using-interpreting-data.html - Access additional data from the NPRI, including datasets and mapping products: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/exploredata.html Supplemental Information More NPRI datasets and mapping products are available here: https://www.canada.ca/en/environment-climate-change/services/national-pollutant-release-inventory/tools-resources-data/access.html Supporting Projects: National Pollutant Release Inventory (NPRI)

  19. Audkuluheidi Site Excel Data

    • data.ucar.edu
    excel
    Updated Dec 26, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Borgthor Magnusson (2024). Audkuluheidi Site Excel Data [Dataset]. http://doi.org/10.5065/D6XW4H00
    Explore at:
    excelAvailable download formats
    Dataset updated
    Dec 26, 2024
    Dataset provided by
    University Corporation for Atmospheric Research
    Authors
    Borgthor Magnusson
    Time period covered
    Aug 6, 1996 - Jul 27, 2000
    Area covered
    Description

    The ITEX experiment at Audkuluheidi was started in 1996 when control and OTC plots 1-5 were set up. In 1997 Control and OTC plots 6-10 were set up in the protected area (No Graze). Also in 1997, 10 control plots were set up in the adjacent grazed area (Graze). In 2000, all plots were sampled again. This dataset is in excel format. For more information, please see the readme file.

  20. d

    Data from: Topical application of synthetic hormones terminated reproductive...

    • catalog.data.gov
    • datasets.ai
    • +1more
    Updated Apr 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Agricultural Research Service (2025). Data from: Topical application of synthetic hormones terminated reproductive diapause to facilitate rearing of a univoltine weevil for weed biological control agent [Dataset]. https://catalog.data.gov/dataset/data-from-topical-application-of-synthetic-hormones-terminated-reproductive-diapause-to-fa-c42ee
    Explore at:
    Dataset updated
    Apr 21, 2025
    Dataset provided by
    Agricultural Research Service
    Description

    These are results of a series of laboratory experiments to determine if topical application of methoprene and 20-ecdysone can terminate reproductive diapause of the weevil, Ceratapion basicorne, which is a recently permitted biological control agent of yellow starthistle (Centaurea solstitialis). Adult weevils feed on leaves, creating pin holes, and lay eggs inside leaves. Diapausing weevils were treated with various doses of methoprene (0, 0.01, 0.1, 1.0 micrograms) dissolved in acetone in experiments 1 and 2. They were treated sequentially first with acetone or 20-ecdysone (1.0 microgram) and then with methoprene (1.0 microgram) in experiment 3 and were treated with 20-ecdysone followed by methoprene in experiment 4. Resources in this dataset:Resource Title: data dictionary. File Name: JH Data Dictionary.csvResource Description: description of data fieldsResource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 1. File Name: JH expt1 data.csvResource Description: Methoprene dissolved in acetone was applied topically at doses of 0.0, 0.01 and 0.1 and 1.0 μg per female weevil, and the number of feeding holes and eggs were recorded daily on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 2. File Name: JH expt2 data.csvResource Description: Methoprene dissolved in acetone was applied topically at doses of 0.0 and 1.0 μg to female weevils that did not produce eggs in experiment 1. The number of feeding holes and eggs were recorded daily on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 3. File Name: JH expt3 data.csvResource Description: Three types of treatments were applied with sequential applications 2 days apart: 1) acetone + acetone [AA: control], 2) acetone + methoprene [AM], and 20-ecdysone + methoprene 174 [2M]. All doses were 1.0 μg. The number of feeding holes and eggs were recorded every 2 days on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel Resource Title: experiment 4. File Name: JH expt4 data.csvResource Description: Females from experiment 3 that did not oviposit consistently were treated with 1.0 μg of 20-ecdysone followed 2 days later by 1.0 μg of methoprene. The treatments AA, AM, 2M refer to experiment 3. The number of feeding holes and eggs were recorded every 2 days on cut leaves of yellow starthistle at room temperature (12 h photoperiod, temperature range 17 to 21°C).Resource Software Recommended: Microsoft Excel,url: https://www.microsoft.com/microsoft-365/excel

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Dr Jianzhou Zhao (2021). Getting Started with Excel [Dataset]. http://doi.org/10.5281/zenodo.6423544

Getting Started with Excel

Explore at:
58 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Jul 1, 2021
Authors
Dr Jianzhou Zhao
Description

About this webinar We rarely receive the research data in an appropriate form. Often data is messy. Sometimes it is incomplete. And sometimes there’s too much of it. Frequently, it has errors. This webinar targets beginners and presents a quick demonstration of using the most widespread data wrangling tool, Microsoft Excel, to sort, filter, copy, protect, transform, aggregate, summarise, and visualise research data. Webinar Topics Introduction to Microsoft Excel user interface Interpret data using sorting, filtering, and conditional formatting Summarise data using functions Analyse data using pivot tables Manipulate and visualise data Handy tips to speed up your work Licence Copyright © 2021 Intersect Australia Ltd. All rights reserved.

Search
Clear search
Close search
Google apps
Main menu