This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.
To access parcel information:Enter an address or zoom in by using the +/- tools or your mouse scroll wheel. Parcels will draw when zoomed in.Click on a parcel to display a popup with information about that parcel.Click the "Basemap" button to display background aerial imagery.From the "Layers" button you can turn map features on and off.Complete Help (PDF)Parcel Legend:Full Map LegendAbout this ViewerThis viewer displays land property boundaries from assessor parcel maps across Massachusetts. Each parcel is linked to selected descriptive information from assessor databases. Data for all 351 cities and towns are the standardized "Level 3" tax parcels served by MassGIS. More details ...Read about and download parcel dataUpdatesV 1.1: Added 'Layers' tab. (2018)V 1.2: Reformatted popup to use HTML table for columns and made address larger. (Jan 2019)V 1.3: Added 'Download Parcel Data by City/Town' option to list of layers. This box is checked off by default but when activated a user can identify anywhere and download data for that entire city/town, except Boston. (March 14, 2019)V 1.4: Data for Boston is included in the "Level 3" standardized parcels layer. (August 10, 2020)V 1.4 MassGIS, EOTSS 2021
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Open spaces of conservation and recreation interest in Boston, Massachusetts, USA, regardless of ownership.
About the App This app hosts data from Heat Resilience Solutions for Boston (the Heat Plan). It features maps that include daytime and nighttime air temperature, urban heat island index, and extreme heat duration. About the DataA citywide urban canopy model was developed to produce modeled air temperature maps for the City of Boston Heat Resilience Study in 2021. Sasaki Associates served as the lead consultant working with the City of Boston. The technical methodology for the urban canopy model was produced by Klimaat Consulting & Innovation Inc. A weeklong analysis period during July 18th-24th, 2019 was selected to produce heat characteristics maps for the study (one of the hottest weeks in Boston that year). The data array represents the modelled, average hourly urban meteorological condition at 100 meter spatial resolution. This dataset was processed into urban heat indices and delivered as georeferenced image layers. The data layers have been resampled to 10 meter resolution for visualization purposes. For the detailed methodology of the urban canopy model, visit the Heat Resilience Study project website.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This layer represents all the public and many of the private roadways in Massachusetts, including designations for Interstate, U.S. and State routes.
Formerly known as the Massachusetts Highway Department (MHD) Roads, then the Executive Office of Transportation - Office of Transportation Planning (EOT-OTP) Roads, the MassDOT roads layer includes linework from the 1:5,000 road and rail centerlines data that were interpreted as part of the 1990s Black and White Digital Orthophoto project. The Massachusetts Department of Transportation - Office of Transportation Planning, which maintains this layer, continues to add linework from municipal and other sources and update existing linework using the most recent color ortho imagery as a base. The attribute table includes many "road inventory" items maintained in MassDOT's linear referencing system.
The data layer published in November 2018 is based on the MassDOT 2017 year-end Road Inventory layer and results of a 2014-2015 MassDOT-Central Transportation Planning Staff project to conflate street names and other attributes from MassGIS' "base streets" to the MassDOT Road Inventory linework. The base streets are continually maintained by MassGIS as part of the NextGen 911 and Master Address Database projects. MassGIS staff reviewed the conflated layer and added many base street arcs digitized after the completion of the conflation work. MassGIS added several fields to support legacy symbology and labeling. Other edits included modifying some linework in areas of recent construction and roadway reconfiguration to align to 2017-2018 Google ortho imagery, and making minor fixes to attributes and linework.
In ArcSDE this layer is named EOTROADS_ARC.
From this data layer MassGIS extracted the Major Roads and Major Highway Routes layers.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Boston Main Street districts are a network of 20 Main Street Organizations that use a comprehensive revitalization approach to create, build, and sustain healthy commercial districts.
This dataset consists of summer temperature metrics for Boston, MA. These heat metrics summarize six CAPA Urban Heat Watch program temperature and heat index datasets using geographical boundaries from the Census Tract (CT) layer. Heat datasets were created by Museum of Science, Boston, and the Helmuth Lab at Northeastern University. Heat metrics are presented in the attribute table as mean values of each Heat Watch program dataset for all hexagon features. The six heat values included in this table are July 2019 temperature and heat index in degrees Fahrenheit for each of 3 1-hour periods -- 6 a.m., 3 p.m., and 7 p.m. EDT. The geographic boundaries used to summarize the heat metrics are current as of 2019.
This map displays data from chapters 1 through 4 of the PLAN South Boston Dorchester Avenue report, which contains the history, current conditions, outreach initiatives, goals, and objectives of a proposed plan to create a new mixed-use urban district in Boston, Massachusetts. The map contains four layers:Study AreaFuture DevelopmentsParcelsZoningThis map is intended for use in the Storify a planning report tutorial, which details the process of creating a story in ArcGIS StoryMaps for the plan. The story includes maps and a scene that showcase the proposed district. The plan itself was created by the Boston Planning & Development Agency (BPDA).
In spring 2013 and 2014, the U.S. Geological Survey contracted for true-color imagery covering three urban areas in Massachusetts as defined by the USGS. Those areas are the metropolitan Boston area (and beyond), the greater Worcester area, and the greater Springfield area. Image type for all of the areas is 24 bit, 4-band (red, green, blue, and near-infrared RGBN) portions of the spectrum. Each band has pixel values ranging 0-255. Pixel resolution is 0.3 meters (30 centimeters), or approximately one foot.This digital orthoimagery can serve a variety of purposes, from general planning, to field reference for spatial analysis, to a tool for data development and revision of vector maps. It can also serve as a reference layer or basemap for myriad applications inside geographic information system (GIS) software.It was created to provide easily accessible geospatial data which is readily available to enhance the capability of Federal, State, and local emergency responders, as well as plan for homeland security efforts. These data also support The National Map.This image service was created using JPEG 2000 versions of the imagery that MassGIS converted from GeoTiffs and distributes online.For more information see the imagery's MassGIS metadata page.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Boston MA city boundary including water features.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The precincts displayed on this map were developed based on the 2020 U.S Census blocks and revised by the City of Boston Election Commission to conform to the voting precinct guidelines. These precincts were adopted in 2022 by the Board of Election Commission and by the MA State Legislature. Sources: U.S. Census, voter Registration database, and Massachusetts Secretary of the Commonwealth. This map is intended for planning and visualization purposes only.
The Digital Bedrock Geologic-GIS Map of Minuteman National Historical Site and Vicinity, Massachusetts is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (mima_bedrock_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (mima_bedrock_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (mima_geology.gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (mima_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (mima_bedrock_geology_metadata_faq.pdf). Please read the mima_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: http://www.google.com/earth/index.html. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Boston College and U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (mima_bedrock_geology_metadata.txt or mima_bedrock_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 25.4 meters or 83.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Noise pollution in cities has major negative effects on the health of both humans and wildlife. Using iPhones, we collected sound-level data at hundreds of locations in four areas of Boston, Massachusetts (USA) before, during, and after the fall 2020 pandemic lockdown, during which most people were required to remain at home. These spatially dispersed measurements allowed us to make detailed maps of noise pollution that are not possible when using standard fixed sound equipment. The four sites were: the Boston University campus (which sits between two highways), the Fenway/Longwood area (which includes an urban park and several hospitals), Harvard Square (home of Harvard University), and East Boston (a residential area near Logan Airport). Across all four sites, sound levels averaged 6.4 dB lower during the pandemic lockdown than after. Fewer high noise measurements occurred during lockdown as well. The resulting sound maps highlight noisy locations such as traffic intersections and qui..., We collected sound measurements within four different urban sites in Boston, Massachusetts. Working in small teams of 2-4 people, we used the mobile app SPLnFFT to collect sound level data in A-weighted decibel readings using smartphones. We exclusively used iPhones for data collection for consistency in hardware and software. Before each collection, we calibrated each iPhone to the same standard, which was used for every collection outing. We recorded the L50 value (the median sound level) for each recording because the L50 value is less affected by short bursts of loud sound than the mean reading. Recordings ran for approximately 20 seconds each. We recorded all sound measurements between 9 am and 5 pm on workdays to avoid the influence of rush-hour traffic, and only collected data on days without rain, snow, or strong wind to prevent inaccuracies due to weather. Within these conditions, we collected sound measurements over multiple days and at different times to ensure representative..., , # Data from: Maps made with smartphones highlight lower noise pollution during COVID-19 pandemic lockdown at four locations in Boston
https://doi.org/10.5061/dryad.ncjsxkt35
Dataset contents include csv files of all data (each file describes collection year and site of data), R script used to create noise maps, and kml files needed to run the map creation code.
Each csv file contains the L50 values (median sound level) taken from hundreds of 20 second recordings over multiple collection days. The SPLnFFT application exports the latitude and longitude of where the recording was taken, which is also included in the csv files and is used to create the noise maps. The csv files are used as data frames for the R script to create noise maps for each collection site. The R script contains comments and instructions to clearly indicate each step of the map creation. The kml files are used to create bound...
Geospatial data about Boston, Massachusetts Police Districts. Export to CAD, GIS, PDF, CSV and access via API.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
City of Boston sidewalk inventory data. Completed by the Boston Public Works Department (PWD) in 2014.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Census Bureau does not recognize or release data for Boston neighborhoods. However, Census block groups can be aggregated to approximate Boston neighborhood boundaries to allow for reporting and visualization of Census data at the neighborhood level. Census block groups are created by the U.S. Census Bureau as statistical geographic subdivisions of a census tract defined for the tabulation and presentation of data from the decennial census and the American Community Survey. The 2020 Census block group boundary files for Boston can be found here. These block group-approximated neighborhood boundaries are used for work with Census data. Work that does not rely on Census data generally uses the Boston neighborhood boundaries found here.
This layer is a digital raster graphic of the historical 15-minute USGS topographic quadrangle maps of coastal towns in Massachusetts. These quadrangles were mosaicked together to create a single data layer of the coast of Massachusetts and a large portion of the southeastern area of the state. The Massachusetts Office of Coastal Zone Management (CZM) obtained the map images from the Harvard Map Collection. The maps were produced in the late 1890s and early 20th century at a scale of 1:62,500 or 1:63,360 and are commonly known as 15-minute quadrangle maps because each map covers a four-sided area of 15 minutes of latitude and 15 minutes of longitude. A digital raster graphic (DRG) is a scanned image of a U.S. Geological Survey (USGS) standard series topographic map. In ArcSDE the image is named IMG_USGS_HIST_COASTAL.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
City of Boston parking meters. Updated and maintained by Boston Transportation Department (BTD) Parking Clerk.
The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration's National Marine Sanctuary Program, has conducted seabed mapping and related research in the Stellwagen Bank National Marine Sanctuary region since 1993. The area is approximately 3,700 square kilometers (km2) and is subdivided into 18 quadrangles. Seven maps, at a scale of 1:25,000, of quadrangle 6 (211 km2) depict seabed topography, backscatter, ruggedness, geology, substrate mobility, mud content, and areas dominated by fine-grained or coarse-grained sand. Interpretations of bathymetric and seabed backscatter imagery, photographs, video, and grain-size analyses were used to create the geology-based maps. In all, data from 420 stations were analyzed, including sediment samples from 325 locations. The seabed geology map shows the distribution of 10 substrate types ranging from boulder ridges to immobile, muddy sand to mobile, rippled sand. Substrate types are defined on the basis of sediment grain-size composition, surficial morphology, sediment layering, and the mobility or immobility of substrate surfaces. This map series is intended to portray the major geological elements (substrates, features, processes) of environments within quadrangle 6. Additionally, these maps will be the basis for the study of the ecological requirements of invertebrate and vertebrate species that utilize these substrates and guide seabed management in the region.
The U.S. Geological Survey has conducted geologic mapping to characterize the sea floor offshore of Massachusetts. The mapping was carried out using a Simrad Subsea EM 1000 Multibeam Echo Sounder on the Frederick G. Creed on four cruises conducted between 1994 and 1998. The mapping was conducted in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and with support from the Canadian Hydrographic Service and the University of New Brunswick.
The long-term goal of this mapping effort is to produce high-resolution geologic maps and a Geographic Information System (GIS) project that presents images and grids of bathymetry, shaded relief bathymetry, and backscatter intensity data from these surveys that will serve the needs of research, management and the public.
The data presented here have been published on paper maps of Quadrangle 2 in western Massachusetts Bay at a scale of 1:25,000 (USGS Map I-2731A, B and C).
This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.