100+ datasets found
  1. a

    Fundamentals of Mapping and Visualization

    • hub.arcgis.com
    Updated May 3, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of Delaware (2019). Fundamentals of Mapping and Visualization [Dataset]. https://hub.arcgis.com/documents/d083dd3edc1b4b9d9d3ee95c75717f60
    Explore at:
    Dataset updated
    May 3, 2019
    Dataset authored and provided by
    State of Delaware
    Description

    Using ArcGIS, anyone can quickly make and share a map-but creating an effective map requires knowing a few design fundamentals. Enroll in this plan to learn techniques to appropriately symbolize and label map features, apply settings that enhance user interaction with your maps, and create impactful data visualizations that resonate with your intended audience.Goals Choose appropriate map symbols to represent your data. Create attractive labels to provide information about map features. Visualize data in 2D and 3D.

  2. Multibeam Sonar Data Visualization Map

    • noaa.hub.arcgis.com
    Updated Mar 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NOAA GeoPlatform (2022). Multibeam Sonar Data Visualization Map [Dataset]. https://noaa.hub.arcgis.com/maps/6795496737cf451d8fa4d5306b60889e
    Explore at:
    Dataset updated
    Mar 15, 2022
    Dataset provided by
    National Oceanic and Atmospheric Administrationhttp://www.noaa.gov/
    Authors
    NOAA GeoPlatform
    Area covered
    Description

    This map contains multibeam sonar survey data collected during the 2021 field project. This file supports the New Technology and the Search for Historic Shipwrecks StoryMap created by the National Oceanic and Atmospheric Administration (NOAA) National Centers for Coastal Ocean Science (NCCOS) and Office of National Marine Sanctuaries (ONMS). The StoryMap can be viewed here. The StoryMap was funded through NOAA's Office of Ocean Exploration and Research. More information on the project can be found here. All project files are stored in the NOAA National Centers for Environmental Information.

  3. Geospatial Data Pack for Visualization

    • kaggle.com
    zip
    Updated Oct 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Vega Datasets (2025). Geospatial Data Pack for Visualization [Dataset]. https://www.kaggle.com/datasets/vega-datasets/geospatial-data-pack
    Explore at:
    zip(1422109 bytes)Available download formats
    Dataset updated
    Oct 21, 2025
    Dataset authored and provided by
    Vega Datasets
    Description

    Geospatial Data Pack for Visualization 🗺️

    Learn Geographic Mapping with Altair, Vega-Lite and Vega using Curated Datasets

    Complete geographic and geophysical data collection for mapping and visualization. This consolidation includes 18 complementary datasets used by 31+ Vega, Vega-Lite, and Altair examples 📊. Perfect for learning geographic visualization techniques including projections, choropleths, point maps, vector fields, and interactive displays.

    Source data lives on GitHub and can also be accessed via CDN. The vega-datasets project serves as a common repository for example datasets used across these visualization libraries and related projects.

    Why Use This Dataset? 🤔

    • Comprehensive Geospatial Types: Explore a variety of core geospatial data models:
      • Vector Data: Includes points (like airports.csv), lines (like londonTubeLines.json), and polygons (like us-10m.json).
      • Raster-like Data: Work with gridded datasets (like windvectors.csv, annual-precip.json).
    • Diverse Formats: Gain experience with standard and efficient geospatial formats like GeoJSON (see Table 1, 2, 4), compressed TopoJSON (see Table 1), and plain CSV/TSV (see Table 2, 3, 4) for point data and attribute tables ready for joining.
    • Multi-Scale Coverage: Practice visualization across different geographic scales, from global and national (Table 1, 4) down to the city level (Table 1).
    • Rich Thematic Mapping: Includes multiple datasets (Table 3) specifically designed for joining attributes to geographic boundaries (like states or counties from Table 1) to create insightful choropleth maps.
    • Ready-to-Use & Example-Driven: Cleaned datasets tightly integrated with 31+ official examples (see Appendix) from Altair, Vega-Lite, and Vega, allowing you to immediately practice techniques like projections, point maps, network maps, and interactive displays.
    • Python Friendly: Works seamlessly with essential Python libraries like Altair (which can directly read TopoJSON/GeoJSON), Pandas, and GeoPandas, fitting perfectly into the Kaggle notebook environment.

    Table of Contents

    Dataset Inventory 🗂️

    This pack includes 18 datasets covering base maps, reference points, statistical data for choropleths, and geophysical data.

    1. BASE MAP BOUNDARIES (Topological Data)

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Map (1:10m)us-10m.json627 KBTopoJSONCC-BY-4.0US state and county boundaries. Contains states and counties objects. Ideal for choropleths.id (FIPS code) property on geometries
    World Map (1:110m)world-110m.json117 KBTopoJSONCC-BY-4.0World country boundaries. Contains countries object. Suitable for world-scale viz.id property on geometries
    London BoroughslondonBoroughs.json14 KBTopoJSONCC-BY-4.0London borough boundaries.properties.BOROUGHN (name)
    London CentroidslondonCentroids.json2 KBGeoJSONCC-BY-4.0Center points for London boroughs.properties.id, properties.name
    London Tube LineslondonTubeLines.json78 KBGeoJSONCC-BY-4.0London Underground network lines.properties.name, properties.color

    2. GEOGRAPHIC REFERENCE POINTS (Point Data) 📍

    DatasetFileSizeFormatLicenseDescriptionKey Fields / Join Info
    US Airportsairports.csv205 KBCSVPublic DomainUS airports with codes and coordinates.iata, state, `l...
  4. h

    ARCHITRAVE [map visualization : data & software]

    • heidata.uni-heidelberg.de
    application/gzip, pdf
    Updated Oct 22, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Hendrik Ziegler; Hendrik Ziegler; Alexandra Pioch; Alexandra Pioch (2021). ARCHITRAVE [map visualization : data & software] [Dataset]. http://doi.org/10.11588/DATA/AT1QUR
    Explore at:
    pdf(241144), application/gzip(914689)Available download formats
    Dataset updated
    Oct 22, 2021
    Dataset provided by
    heiDATA
    Authors
    Hendrik Ziegler; Hendrik Ziegler; Alexandra Pioch; Alexandra Pioch
    License

    https://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/AT1QURhttps://heidata.uni-heidelberg.de/api/datasets/:persistentId/versions/2.0/customlicense?persistentId=doi:10.11588/DATA/AT1QUR

    Time period covered
    1685 - 1723
    Area covered
    Versailles, France, Spain, Germany, Italy, Belgium, Poland, Netherlands, Paris, France, France
    Dataset funded by
    DFG-ANR
    Description

    The dataset includes cartographic visualization data and software designed, implemented, and published for the ARCHITRAVE research project website. The research focused on the edition, executed in German and French, of six travelogues by German travelers of the Baroque period who visited Paris and Versailles. The edited texts are published in the Textgrid repository. For all further information on the content and objectives of the research, please refer to the website (https://architrave.eu/) and given literature. Three visualizations were created for the website: the travel stops of five of the travelers on their way to Paris and Versailles the sites in Europe mentioned in the six travelogues the sites in Paris described by the six travelers The visualizations were implemented with Leaflet.js. The dataset contains scripts for data crunching processed geodata scripts for leaflet.js License README

  5. I

    Interactive Map Creation Tools Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Jun 28, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Interactive Map Creation Tools Report [Dataset]. https://www.datainsightsmarket.com/reports/interactive-map-creation-tools-1418201
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Jun 28, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The interactive map creation tools market is experiencing robust growth, driven by increasing demand for visually engaging data representation across diverse sectors. The market, estimated at $2.5 billion in 2025, is projected to witness a Compound Annual Growth Rate (CAGR) of 15% from 2025 to 2033, reaching approximately $7.8 billion by 2033. This expansion is fueled by several key factors. The rising adoption of location-based services (LBS) and geographic information systems (GIS) across industries like real estate, tourism, logistics, and urban planning is a major catalyst. Businesses are increasingly leveraging interactive maps to enhance customer engagement, improve operational efficiency, and gain valuable insights from geospatial data. Furthermore, advancements in mapping technologies, including the integration of AI and machine learning for improved data analysis and visualization, are contributing to market growth. The accessibility of user-friendly tools, coupled with the decreasing cost of cloud-based solutions, is also making interactive map creation more accessible to a wider range of users, from individuals to large corporations. However, the market also faces certain challenges. Data security and privacy concerns surrounding the use of location data are paramount. The need for specialized skills and expertise to effectively utilize advanced mapping technologies may also hinder broader adoption, particularly among smaller businesses. Competition among established players like Mapbox, ArcGIS StoryMaps, and Google, alongside emerging innovative solutions, necessitates constant innovation and differentiation. Nevertheless, the overall market outlook remains positive, with continued technological advancements and rising demand for data visualization expected to propel growth in the coming years. Specific market segmentation data, while unavailable, can be reasonably inferred from existing market trends, suggesting a strong dominance of enterprise-grade solutions, but with substantial growth expected from simpler, more user-friendly tools designed for individuals and small businesses.

  6. I

    Interactive Map Creation Tools Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 15, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Interactive Map Creation Tools Report [Dataset]. https://www.marketresearchforecast.com/reports/interactive-map-creation-tools-35432
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 15, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming interactive map creation tools market! This in-depth analysis reveals a $2.5 billion market in 2025, projected to reach $8 billion by 2033, driven by cloud-based solutions and growing data visualization needs. Learn about key players, market segmentation, and regional trends shaping this exciting sector.

  7. World Countries (shapefile/raster): Natural Earth

    • kaggle.com
    zip
    Updated Nov 30, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeorgeAM (2021). World Countries (shapefile/raster): Natural Earth [Dataset]. https://www.kaggle.com/datasets/georgeam/world-countries-shapefile-natural-earth-data/code
    Explore at:
    zip(777833 bytes)Available download formats
    Dataset updated
    Nov 30, 2021
    Authors
    GeorgeAM
    License

    https://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/

    Area covered
    World
    Description

    Context

    When I started exploring how to create interactive maps (using the leaflet() package in R) I come across this free data set (shapefile format) that contains the geographical coordinates (polygons) for all the countries in the world. I thought it would be nice to share this with the Kaggle community.

    Content

    The .zip folder contains all the necessary files needed for the shapefile data to work properly on your computer. If you are new to using the shapefile format, please see the information provided below:

    https://en.wikipedia.org/wiki/Shapefile "The shapefile format stores the data as primitive geometric shapes like points, lines, and polygons. These shapes, together with data attributes that are linked to each shape, create the representation of the geographic data. The term "shapefile" is quite common, but the format consists of a collection of files with a common filename prefix, stored in the same directory. The three mandatory files have filename extensions .shp, .shx, and .dbf. The actual shapefile relates specifically to the .shp file, but alone is incomplete for distribution as the other supporting files are required. "

    Acknowledgements

    Made with Natural Earth. Free vector and raster map data @ naturalearthdata.com.

  8. D

    Data Visualization Industry Report

    • datainsightsmarket.com
    doc, pdf, ppt
    Updated Mar 3, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Insights Market (2025). Data Visualization Industry Report [Dataset]. https://www.datainsightsmarket.com/reports/data-visualization-industry-14160
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Mar 3, 2025
    Dataset authored and provided by
    Data Insights Market
    License

    https://www.datainsightsmarket.com/privacy-policyhttps://www.datainsightsmarket.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global data visualization market, valued at $9.84 billion in 2025, is experiencing robust growth, projected to expand at a Compound Annual Growth Rate (CAGR) of 10.95% from 2025 to 2033. This expansion is fueled by several key drivers. The increasing volume and complexity of data generated across various industries necessitates effective visualization tools for insightful analysis and decision-making. Furthermore, the rising adoption of cloud-based solutions offers scalability, accessibility, and cost-effectiveness, driving market growth. Advances in artificial intelligence (AI) and machine learning (ML) are integrating seamlessly with data visualization platforms, enhancing automation and predictive capabilities, further stimulating market demand. The BFSI (Banking, Financial Services, and Insurance) sector, along with IT and Telecommunications, are major adopters, leveraging data visualization for risk management, fraud detection, customer relationship management, and network optimization. However, challenges remain, including the need for skilled professionals to effectively utilize these tools and concerns regarding data security and privacy. The market segmentation reveals a strong presence of executive management and marketing departments across organizations, highlighting the strategic importance of data visualization in business operations. The market's competitive landscape is characterized by established players like SAS Institute, IBM, Microsoft, and Salesforce (Tableau), along with emerging innovative companies. This competition fosters innovation and drives down costs, making data visualization solutions more accessible to a broader range of businesses and organizations. Regional variations in market penetration are expected, with North America and Europe currently holding significant shares, but Asia Pacific is poised for substantial growth, driven by rapid digitalization and technological advancements in the region. The on-premise deployment mode still holds a considerable market share, though the cloud/on-demand segment is experiencing faster growth due to its inherent advantages. The ongoing trend towards self-service business intelligence (BI) tools is empowering end-users to access and analyze data independently, increasing the overall market demand for user-friendly and intuitive data visualization platforms. Future growth will depend on continued technological advancements, expanding applications across diverse industries, and addressing the existing challenges related to data skills gaps and security concerns. This report provides a comprehensive analysis of the Data Visualization Market, projecting robust growth from $XX Billion in 2025 to $YY Billion by 2033. It covers the period from 2019 to 2033, with a focus on the forecast period 2025-2033 and a base year of 2025. This in-depth study examines key market segments, competitive landscapes, and emerging trends influencing this rapidly evolving industry. The report is designed for executives, investors, and market analysts seeking actionable insights into the future of data visualization. Recent developments include: September 2022: KPI 360, an AI-driven solution that uses real-time data monitoring and prediction to assist manufacturing organizations in seeing various operational data sources through a single, comprehensive industrial intelligence dashboard that sets up in hours, was recently unveiled by SymphonyAI Industrial., January 2022: The most recent version of the IVAAP platform for ubiquitous subsurface visualization and analytics applications was released by INT, a top supplier of data visualization software. IVAAP allows exploring, visualizing, and computing energy data by providing full OSDU Data Platform compatibility. With the new edition, IVAAP's map-based search, data discovery, and data selection are expanded to include 3D seismic volume intersection, 2D seismic overlays, reservoir, and base map widgets for cloud-based visualization of all forms of energy data.. Key drivers for this market are: Cloud Deployment of Data Visualization Solutions, Increasing Need for Quick Decision Making. Potential restraints include: Lack of Tech Savvy and Skilled Workforce/Inability. Notable trends are: Retail Segment to Witness Significant Growth.

  9. COVID-19 INDIA

    • kaggle.com
    zip
    Updated Apr 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data_explorer (2020). COVID-19 INDIA [Dataset]. https://www.kaggle.com/dataexplorer26/covid-apr16
    Explore at:
    zip(1039 bytes)Available download formats
    Dataset updated
    Apr 16, 2020
    Authors
    data_explorer
    Area covered
    India
    Description

    Context

    COVID-19, India This tutorial help in understanding basics of data visualization and mapping using Python.

    Content

    Data sets contain State wise confirmed cases, death toll, and cured cases till date.

    Acknowledgements

    I owe my thanks to the data sets provider.

    Inspiration

    Data visualization helps in creating trends, patterns, interactive graphs and maps. This will help policy and decision makers to understand,discuss and visualize the data.

  10. d

    Rose Swanson Mountain Data Collation and Citizen Science

    • search.dataone.org
    • borealisdata.ca
    Updated Dec 28, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sun, Xiaoqing (Sunny) (2023). Rose Swanson Mountain Data Collation and Citizen Science [Dataset]. http://doi.org/10.5683/SP3/FSTOUQ
    Explore at:
    Dataset updated
    Dec 28, 2023
    Dataset provided by
    Borealis
    Authors
    Sun, Xiaoqing (Sunny)
    Description

    This study focuses on the use of citizen science and GIS tools for collecting and analyzing data on Rose Swanson Mountain in British Columbia, Canada. While several organizations collect data on wildlife habitats, trail mapping, and fire documentation on the mountain, there are few studies conducted on the area and citizen science is not being addressed. The study aims to aggregate various data sources and involve citizens in the data collection process using ArcGIS Dashboard and ArcGIS Survey 123. These GIS tools allow for the integration and analysis of different kinds of data, as well as the creation of interactive maps and surveys that can facilitate citizen engagement and data collection. The data used in the dashboard was sourced from BC Data Catalogue, Explore the Map, and iNaturalist. Results show effective citizen participation, with 1073 wildlife observations and 3043 plant observations. The dashboard provides a user-friendly interface for citizens to tailor their map extent and layers, access surveys, and obtain information on each attribute included in the pop-up by clicking. Analysis on classification of fuel types, ecological communities, endangered wildlife species presence and critical habitat, and scope of human activities can be conducted based on the distribution of data. The dashboard can provide direction for researchers to develop research or contribute to other projects in progress, as well as advocate for natural resource managers to use citizen science data. The study demonstrates the potential for GIS and citizen science to contribute to meaningful discoveries and advancements in areas.

  11. z

    Classification of web-based Digital Humanities projects leveraging...

    • zenodo.org
    • data-staging.niaid.nih.gov
    csv, tsv
    Updated Nov 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Tommaso Battisti; Tommaso Battisti (2025). Classification of web-based Digital Humanities projects leveraging information visualisation techniques [Dataset]. http://doi.org/10.5281/zenodo.14192758
    Explore at:
    tsv, csvAvailable download formats
    Dataset updated
    Nov 10, 2025
    Dataset provided by
    Zenodo
    Authors
    Tommaso Battisti; Tommaso Battisti
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Description

    This dataset contains a list of 186 Digital Humanities projects leveraging information visualisation techniques. Each project has been classified according to visualisation and interaction methods, narrativity and narrative solutions, domain, methods for the representation of uncertainty and interpretation, and the employment of critical and custom approaches to visually represent humanities data.

    Classification schema: categories and columns

    The project_id column contains unique internal identifiers assigned to each project. Meanwhile, the last_access column records the most recent date (in DD/MM/YYYY format) on which each project was reviewed based on the web address specified in the url column.
    The remaining columns can be grouped into descriptive categories aimed at characterising projects according to different aspects:

    Narrativity. It reports the presence of information visualisation techniques employed within narrative structures. Here, the term narrative encompasses both author-driven linear data stories and more user-directed experiences where the narrative sequence is determined by user exploration [1]. We define 2 columns to identify projects using visualisation techniques in narrative, or non-narrative sections. Both conditions can be true for projects employing visualisations in both contexts. Columns:

    • non_narrative (boolean)

    • narrative (boolean)

    Domain. The humanities domain to which the project is related. We rely on [2] and the chapters of the first part of [3] to abstract a set of general domains. Column:

    • domain (categorical):

      • History and archaeology

      • Art and art history

      • Language and literature

      • Music and musicology

      • Multimedia and performing arts

      • Philosophy and religion

      • Other: both extra-list domains and cases of collections without a unique or specific thematic focus.

    Visualisation of uncertainty and interpretation. Buiding upon the frameworks proposed by [4] and [5], a set of categories was identified, highlighting a distinction between precise and impressional communication of uncertainty. Precise methods explicitly represent quantifiable uncertainty such as missing, unknown, or uncertain data, precisely locating and categorising it using visual variables and positioning. Two sub-categories are interactive distinction, when uncertain data is not visually distinguishable from the rest of the data but can be dynamically isolated or included/excluded categorically through interaction techniques (usually filters); and visual distinction, when uncertainty visually “emerges” from the representation by means of dedicated glyphs and spatial or visual cues and variables. On the other hand, impressional methods communicate the constructed and situated nature of data [6], exposing the interpretative layer of the visualisation and indicating more abstract and unquantifiable uncertainty using graphical aids or interpretative metrics. Two sub-categories are: ambiguation, when the use of graphical expedients—like permeable glyph boundaries or broken lines—visually convey the ambiguity of a phenomenon; and interpretative metrics, when expressive, non-scientific, or non-punctual metrics are used to build a visualisation. Column:

    • uncertainty_interpretation (categorical):

      • Interactive distinction

      • Visual distinction

      • Ambiguation

      • Interpretative metrics

    Critical adaptation. We identify projects in which, with regards to at least a visualisation, the following criteria are fulfilled: 1) avoid repurposing of prepackaged, generic-use, or ready-made solutions; 2) being tailored and unique to reflect the peculiarities of the phenomena at hand; 3) avoid simplifications to embrace and depict complexity, promoting time-consuming visualisation-based inquiry. Column:

    • critical_adaptation (boolean)

    Non-temporal visualisation techniques. We adopt and partially adapt the terminology and definitions from [7]. A column is defined for each type of visualisation and accounts for its presence within a project, also including stacked layouts and more complex variations. Columns and inclusion criteria:

    • plot (boolean): visual representations that map data points onto a two-dimensional coordinate system.

    • cluster_or_set (boolean): sets or cluster-based visualisations used to unveil possible inter-object similarities.

    • map (boolean): geographical maps used to show spatial insights. While we do not specify the variants of maps (e.g., pin maps, dot density maps, flow maps, etc.), we make an exception for maps where each data point is represented by another visualisation (e.g., a map where each data point is a pie chart) by accounting for the presence of both in their respective columns.

    • network (boolean): visual representations highlighting relational aspects through nodes connected by links or edges.

    • hierarchical_diagram (boolean): tree-like structures such as tree diagrams, radial trees, but also dendrograms. They differ from networks for their strictly hierarchical structure and absence of closed connection loops.

    • treemap (boolean): still hierarchical, but highlighting quantities expressed by means of area size. It also includes circle packing variants.

    • word_cloud (boolean): clouds of words, where each instance’s size is proportional to its frequency in a related context

    • bars (boolean): includes bar charts, histograms, and variants. It coincides with “bar charts” in [7] but with a more generic term to refer to all bar-based visualisations.

    • line_chart (boolean): the display of information as sequential data points connected by straight-line segments.

    • area_chart (boolean): similar to a line chart but with a filled area below the segments. It also includes density plots.

    • pie_chart (boolean): circular graphs divided into slices which can also use multi-level solutions.

    • plot_3d (boolean): plots that use a third dimension to encode an additional variable.

    • proportional_area (boolean): representations used to compare values through area size. Typically, using circle- or square-like shapes.

    • other (boolean): it includes all other types of non-temporal visualisations that do not fall into the aforementioned categories.

    Temporal visualisations and encodings. In addition to non-temporal visualisations, a group of techniques to encode temporality is considered in order to enable comparisons with [7]. Columns:

    • timeline (boolean): the display of a list of data points or spans in chronological order. They include timelines working either with a scale or simply displaying events in sequence. As in [7], we also include structured solutions resembling Gantt chart layouts.

    • temporal_dimension (boolean): to report when time is mapped to any dimension of a visualisation, with the exclusion of timelines. We use the term “dimension” and not “axis” as in [7] as more appropriate for radial layouts or more complex representational choices.

    • animation (boolean): temporality is perceived through an animation changing the visualisation according to time flow.

    • visual_variable (boolean): another visual encoding strategy is used to represent any temporality-related variable (e.g., colour).

    Interactions. A set of categories to assess affordable interactions based on the concept of user intent [8] and user-allowed perceptualisation data actions [9]. The following categories roughly match the manipulative subset of methods of the “how” an interaction is performed in the conception of [10]. Only interactions that affect the aspect of the visualisation or the visual representation of its data points, symbols, and glyphs are taken into consideration. Columns:

    • basic_selection (boolean): the demarcation of an element either for the duration of the interaction or more permanently until the occurrence of another selection.

    • advanced_selection (boolean): the demarcation involves both the selected element and connected elements within the visualisation or leads to brush and link effects across views. Basic selection is tacitly implied.

    • navigation (boolean): interactions that allow moving, zooming, panning, rotating, and scrolling the view but only when applied to the visualisation and not to the web page. It also includes “drill” interactions (to navigate through different levels or portions of data detail, often generating a new view that replaces or accompanies the original) and “expand” interactions generating new perspectives on data by expanding and collapsing nodes.

    • arrangement (boolean): the organisation of visualisation elements (symbols, glyphs, etc.) or multi-visualisation layouts spatially through drag and drop or

  12. MOESM1 of GrapHi-C: graph-based visualization of Hi-C datasets

    • springernature.figshare.com
    text/x-perl
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kimberly MacKay; Anthony Kusalik; Christopher Eskiw (2023). MOESM1 of GrapHi-C: graph-based visualization of Hi-C datasets [Dataset]. http://doi.org/10.6084/m9.figshare.6726713.v1
    Explore at:
    text/x-perlAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Figsharehttp://figshare.com/
    figshare
    Authors
    Kimberly MacKay; Anthony Kusalik; Christopher Eskiw
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Additional file 1. Perl script used for converting a contact map into an adjacency matrix based on the graphrepresentation in Fig. 1a.

  13. d

    Tutorial: How to use Google Data Studio and ArcGIS Online to create an...

    • search.dataone.org
    • hydroshare.org
    • +1more
    Updated Apr 15, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sarah Beganskas (2022). Tutorial: How to use Google Data Studio and ArcGIS Online to create an interactive data portal [Dataset]. http://doi.org/10.4211/hs.9edae0ef99224e0b85303c6d45797d56
    Explore at:
    Dataset updated
    Apr 15, 2022
    Dataset provided by
    Hydroshare
    Authors
    Sarah Beganskas
    Description

    This tutorial will teach you how to take time-series data from many field sites and create a shareable online map, where clicking on a field location brings you to a page with interactive graph(s).

    The tutorial can be completed with a sample dataset (provided via a Google Drive link within the document) or with your own time-series data from multiple field sites.

    Part 1 covers how to make interactive graphs in Google Data Studio and Part 2 covers how to link data pages to an interactive map with ArcGIS Online. The tutorial will take 1-2 hours to complete.

    An example interactive map and data portal can be found at: https://temple.maps.arcgis.com/apps/View/index.html?appid=a259e4ec88c94ddfbf3528dc8a5d77e8

  14. Data from: Drawing attention via diversity in thematic map design, as...

    • tandf.figshare.com
    docx
    Updated Jun 4, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Gertrud Schaab; Sybil Adams; Serena Coetzee (2023). Drawing attention via diversity in thematic map design, as demonstrated by student maps of Northern South Africa [Dataset]. http://doi.org/10.6084/m9.figshare.13795126.v1
    Explore at:
    docxAvailable download formats
    Dataset updated
    Jun 4, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Gertrud Schaab; Sybil Adams; Serena Coetzee
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    South Africa
    Description

    In today’s information age, thematic maps increasingly appear in all kinds of media and publications and many users control the map design process themselves. Due to wider prevalence of data, teaching the principles of thematic cartography is gaining interest. Students need to understand the power of thematic maps to reveal geographic patterns and relations, and should learn how to create convincing maps. In this paper, student maps featuring socio-economic themes for Northern South Africa show how attention can be drawn to information hidden in data. Seven students each prepared a black-and-white traditional thematic map and a coloured infographics-style map, which were later enhanced by a well-trained cartographer. Through these maps, we demonstrate that the power of thematic maps depends on the chosen cartographic representation and that diversity of visualization options matters when telling a story with a map. Discussion of the maps illustrates the relevance and challenge of thematic maps for society, the need to develop map literacy, and the possibility to accommodate new visualization trends, like narrative data visualization, in thematic cartography teaching. The emphasis should be on using multivariate data and allowing infographics characteristics, thus fostering creativity and preparing students for a role in interdisciplinary data journalism teams.

  15. Geospatial Data | Global Map data | Administrative boundaries | Global...

    • datarade.ai
    .json, .xml
    Updated Jul 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    GeoPostcodes (2024). Geospatial Data | Global Map data | Administrative boundaries | Global coverage | 245k Polygons [Dataset]. https://datarade.ai/data-products/geopostcodes-geospatial-data-global-map-data-administrati-geopostcodes-a4bf
    Explore at:
    .json, .xmlAvailable download formats
    Dataset updated
    Jul 4, 2024
    Dataset authored and provided by
    GeoPostcodes
    Area covered
    United Kingdom, United States, Germany
    Description

    Overview

    Empower your location data visualizations with our edge-matched polygons, even in difficult geographies.

    Our self-hosted geospatial data cover administrative and postal divisions with up to 5 precision levels. All levels follow a seamless hierarchical structure with no gaps or overlaps.

    The geospatial data shapes are offered in high-precision and visualization resolution and are easily customized on-premise.

    Use cases for the Global Administrative Boundaries Database (Geospatial data, Map data)

    • In-depth spatial analysis

    • Clustering

    • Geofencing

    • Reverse Geocoding

    • Reporting and Business Intelligence (BI)

    Product Features

    • Coherence and precision at every level

    • Edge-matched polygons

    • High-precision shapes for spatial analysis

    • Fast-loading polygons for reporting and BI

    • Multi-language support

    For additional insights, you can combine the map data with:

    • Population data: Historical and future trends

    • UNLOCODE and IATA codes

    • Time zones and Daylight Saving Time (DST)

    Data export methodology

    Our location data packages are offered in variable formats, including - .shp - .gpkg - .kml - .shp - .gpkg - .kml - .geojson

    All geospatial data are optimized for seamless integration with popular systems like Esri ArcGIS, Snowflake, QGIS, and more.

    Why companies choose our map data

    • Precision at every level

    • Coverage of difficult geographies

    • No gaps, nor overlaps

    Note: Custom geospatial data packages are available. Please submit a request via the above contact button for more details.

  16. HERE Map Data - street maps for 200 countries worldwide provided by MBI...

    • datarade.ai
    .xml, .csv
    Updated Sep 21, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MBI Geodata (2020). HERE Map Data - street maps for 200 countries worldwide provided by MBI Geodata [Dataset]. https://datarade.ai/data-products/here-map-data
    Explore at:
    .xml, .csvAvailable download formats
    Dataset updated
    Sep 21, 2020
    Dataset provided by
    Michael Bauer International GmbH
    Authors
    MBI Geodata
    Area covered
    Germany, France, United States, Belgium
    Description

    MBI is one of the first distributors of HERE Technologies and provides detailed street maps from HERE for most of the countries or territories worldwide.

    HERE Maps are available as Essential or Advanced Map. Essential Map is a basic 2D canvas of the world that enables use cases such as basic map display, data visualization, search, localization tracking and tracing.

    Building on Essential Map, Advanced Map is the most complete and detailed map available. It includes detailed features for modeling road networks, such as navigable attributes, speed limits, sign text and the full set of Places (Point of Interest), and enables use cases such as point-to-point routing, turn-by-turn navigation, advanced navigation for cars and trucks, business intelligence, planning and optimization, and much more.

    The HERE Map product line can be further enriched with additional curated and specialized location content products that enable you to build differentiating location-enabled services and applications. Over 50 premium location content products seamlessly integrate with the HERE Map Data product line, such as Places, Point Addressing, Trucks, Road Infrastructure, and many more. Available in the following formats: GDF, RDF, NavStreets, FGDB,

  17. Data from: NDS: an interactive, web-based system to visualize urban...

    • tandf.figshare.com
    mp4
    Updated May 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Yu Lan; Elizabeth Delmelle; Eric Delmelle (2023). NDS: an interactive, web-based system to visualize urban neighborhood dynamics in United States [Dataset]. http://doi.org/10.6084/m9.figshare.14484512.v1
    Explore at:
    mp4Available download formats
    Dataset updated
    May 31, 2023
    Dataset provided by
    Taylor & Francishttps://taylorandfrancis.com/
    Authors
    Yu Lan; Elizabeth Delmelle; Eric Delmelle
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    United States
    Description

    NDS is an interactive, web-based system, for the visualization of multidimensional neighborhood dynamics across the 50 largest US Metropolitan Statistical Areas (MSAs) from 1980 to 2010 (http://neighborhooddynamics.dreamhosters.com). Four different visualization tools are developed: (1) an interactive time slider to show neighborhood classification changes for different years; (2) multiple interactive bar charts for each variables of each neighborhood; (3) an animated neighborhood’s trajectory and sequence cluster on a self-organizing map (SOM) output space; and (4) a synchronized visualization tool showing maps for four time stamps at once. The development of this interactive online platform for visualizing dynamics overcomes many of the challenges associated with communicating changes for multiple variables, across multiple time stamps, and for a large geographic area when relying upon static maps. The system enables users to select and dive into details on particular neighborhoods and explore their changes over time.

  18. Evanston map

    • kaggle.com
    zip
    Updated Dec 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mohammed Adel (2023). Evanston map [Dataset]. https://www.kaggle.com/datasets/mohammedadellma/evanston-map
    Explore at:
    zip(51673 bytes)Available download formats
    Dataset updated
    Dec 31, 2023
    Authors
    Mohammed Adel
    Area covered
    Evanston
    Description

    This dataset includes MULTIPOLYGON data that can helps you to draw the city of Evanston map.
    Evanston Open Data

  19. D

    Data Asset Map System Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Apr 3, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Data Asset Map System Report [Dataset]. https://www.marketreportanalytics.com/reports/data-asset-map-system-57042
    Explore at:
    ppt, pdf, docAvailable download formats
    Dataset updated
    Apr 3, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    Discover the booming Data Asset Map System market! This comprehensive analysis reveals key trends, drivers, restraints, and leading companies shaping this rapidly expanding sector, projected to reach [final year market size] by 2033. Explore regional market share, segmentation, and future growth opportunities.

  20. w

    Global Knowledge Area Mapping MAP Market Research Report: By Application...

    • wiseguyreports.com
    Updated Sep 15, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2025). Global Knowledge Area Mapping MAP Market Research Report: By Application (Education, Healthcare, Business, Technology), By User Type (Students, Professionals, Educators, Researchers), By Deployment Model (On-Premises, Cloud-Based, Hybrid), By Features (Collaboration Tools, Data Visualization, Assessment Tools, Content Management) and By Regional (North America, Europe, South America, Asia Pacific, Middle East and Africa) - Forecast to 2035 [Dataset]. https://www.wiseguyreports.com/reports/knowledge-area-mapping-map-market
    Explore at:
    Dataset updated
    Sep 15, 2025
    License

    https://www.wiseguyreports.com/pages/privacy-policyhttps://www.wiseguyreports.com/pages/privacy-policy

    Time period covered
    Sep 25, 2025
    Area covered
    Global, North America
    Description
    BASE YEAR2024
    HISTORICAL DATA2019 - 2023
    REGIONS COVEREDNorth America, Europe, APAC, South America, MEA
    REPORT COVERAGERevenue Forecast, Competitive Landscape, Growth Factors, and Trends
    MARKET SIZE 20242.55(USD Billion)
    MARKET SIZE 20252.73(USD Billion)
    MARKET SIZE 20355.5(USD Billion)
    SEGMENTS COVEREDApplication, User Type, Deployment Model, Features, Regional
    COUNTRIES COVEREDUS, Canada, Germany, UK, France, Russia, Italy, Spain, Rest of Europe, China, India, Japan, South Korea, Malaysia, Thailand, Indonesia, Rest of APAC, Brazil, Mexico, Argentina, Rest of South America, GCC, South Africa, Rest of MEA
    KEY MARKET DYNAMICSTechnological advancement, Increasing demand for visualization, Growing focus on data-driven decision-making, Rising need for course customization, Emergence of remote learning tools
    MARKET FORECAST UNITSUSD Billion
    KEY COMPANIES PROFILEDSisense, IBM, Domo, Oracle, Zoho, Infor, SAP, Microsoft, Tableau Software, Microsoft Power BI, Board International, TIBCO Software, Adobe, SAS Institute, Alteryx, Qlik
    MARKET FORECAST PERIOD2025 - 2035
    KEY MARKET OPPORTUNITIESIncreased demand for educational technology, Integration with AI-driven analytics, Customization for diverse industries, Expansion in remote learning solutions, Rising focus on skills-based training
    COMPOUND ANNUAL GROWTH RATE (CAGR) 7.2% (2025 - 2035)
Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
State of Delaware (2019). Fundamentals of Mapping and Visualization [Dataset]. https://hub.arcgis.com/documents/d083dd3edc1b4b9d9d3ee95c75717f60

Fundamentals of Mapping and Visualization

Explore at:
Dataset updated
May 3, 2019
Dataset authored and provided by
State of Delaware
Description

Using ArcGIS, anyone can quickly make and share a map-but creating an effective map requires knowing a few design fundamentals. Enroll in this plan to learn techniques to appropriately symbolize and label map features, apply settings that enhance user interaction with your maps, and create impactful data visualizations that resonate with your intended audience.Goals Choose appropriate map symbols to represent your data. Create attractive labels to provide information about map features. Visualize data in 2D and 3D.

Search
Clear search
Close search
Google apps
Main menu