Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: ANN WURST, NGS TEACHER CONSULTANTGrade/Audience: grade 6, grade 7, grade 8, high school, ap human geography, post secondary, professional developmentResource type: activitySubject topic(s): cartography, maps, regional geographyRegion: worldStandards: TEXAS TEKS (19) Social studies skills. The student applies critical-thinking skills to organize and use information acquired through established research methodologies from a variety of valid sources, including technology. The student is expected to: (A) analyze information by sequencing, categorizing, identifying cause-and-effect relationships, comparing, contrasting, finding the main idea, summarizing, making generalizations and predictions, and drawing inferences and conclusions; (B) create a product on a contemporary government issue or topic using critical methods of inquiry; (D) analyze and evaluate the validity of information, arguments, and counterarguments from primary and secondary sources for bias, propaganda, point of view, and frame of reference; Objectives: Students will keep a list of the toolkit 'helpers' in their notebook and use the elements to process/apply information in various formats such as short answers responses, tickets out the door, setting up writing samples for world geo, AP Human Geo and other courses involving the study of geographic concepts. Summary: Students can use these 'hooks' in their study of cartography/map making , can be applied in every unit where map skills are needed. Helps further critical thinking skills.
This web map shows natural features point and polygon layers from OSM (OpenStreetMap) in India.OSM is a collaborative, open project to create a freely available and editable map of the world. Geographic information about streets, rivers, borders, points of interest and areas are collected worldwide and stored in a freely accessible database. Everyone can participate and contribute to OSM. The geographic information available on OSM relies entirely on volunteers or contributors.The attributes are given below:BeachCave EntranceCliffGlacierPeakSpringTreeVolcanoThese map layers are offered by Esri India Content. The content team updates the map layers quarterly. If you have any questions or comments, please let us know via content@esri.in.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
FlowMapper.org is a web-based framework for automated production and design of origin-destination flow maps. FlowMapper has four major features that contribute to the advancement of existing flow mapping systems. First, users can upload and process their own data to design and share customized flow maps. The ability to save data, cartographic design and map elements in a project file allows users to easily share their data and/or cartographic design with others. Second, users can generate customized flow symbols to support different flow map reading tasks such as comparing flow magnitudes and directions and identifying flow and location clusters that are strongly connected with each other. Third, FlowMapper supports supplementary layers such as node symbols, choropleth, and base maps to contextualize flow patterns with location references and characteristics. Finally, the web-based architecture of FlowMapper supports server-side computational capabilities to process and normalize large flow data and reveal natural patterns of flows.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: J Cain, educator, Minnesota Alliance for Geographic EducationGrade/Audience: grade 6Resource type: lessonSubject topic(s): mapsRegion: united statesStandards: Minnesota Social Studies Standards
Standard 1: People use geographic representations and geospatial technologies to acquire, process and report information within a spatial context. Objectives: Students will be able to:
https://www.openstreetmap.org/images/osm_logo.png" alt=""> OpenStreetMap (openstreetmap.org) is a global collaborative mapping project, which offers maps and map data released with an open license, encouraging free re-use and re-distribution. The data is created by a large community of volunteers who use a variety of simple on-the-ground surveying techniques, and wiki-syle editing tools to collaborate as they create the maps, in a process which is open to everyone. The project originated in London, and an active community of mappers and developers are based here. Mapping work in London is ongoing (and you can help!) but the coverage is already good enough for many uses.
Browse the map of London on OpenStreetMap.org
The whole of England updated daily:
For more details of downloads available from OpenStreetMap, including downloading the whole planet, see 'planet.osm' on the wiki.
Download small areas of the map by bounding-box. For example this URL requests the data around Trafalgar Square:
http://api.openstreetmap.org/api/0.6/map?bbox=-0.13062,51.5065,-0.12557,51.50969
Data filtered by "tag". For example this URL returns all elements in London tagged shop=supermarket:
http://www.informationfreeway.org/api/0.6/*[shop=supermarket][bbox=-0.48,51.30,0.21,51.70]
The format of the data is a raw XML represention of all the elements making up the map. OpenStreetMap is composed of interconnected "nodes" and "ways" (and sometimes "relations") each with a set of name=value pairs called "tags". These classify and describe properties of the elements, and ultimately influence how they get drawn on the map. To understand more about tags, and different ways of working with this data format refer to the following pages on the OpenStreetMap wiki.
Rather than working with raw map data, you may prefer to embed maps from OpenStreetMap on your website with a simple bit of javascript. You can also present overlays of other data, in a manner very similar to working with google maps. In fact you can even use the google maps API to do this. See OSM on your own website for details and links to various javascript map libraries.
The OpenStreetMap project aims to attract large numbers of contributors who all chip in a little bit to help build the map. Although the map editing tools take a little while to learn, they are designed to be as simple as possible, so that everyone can get involved. This project offers an exciting means of allowing local London communities to take ownership of their part of the map.
Read about how to Get Involved and see the London page for details of OpenStreetMap community events.
The Woodlands land and property features web map including commercial & residential properties, area & boundary, open space reserves (OSR's), streets, neighborhoods & subdivision plats, MUD's (Municipal Utility Districts), RUD (Right-of-Way Utility District), associations, villages, county commissioner precincts, GreenUp (Earth Day) sites & routes, parks, aquatic pools, trails & trail features, lakes & ponds, and branches, creeks & streams.Users may explore the map using 'Search' box tool to find a property by address or business by name, and toggle on additional layers from layers list to display, interact with and query even more feature data on the map.
The symbology of the data in this hosted tile layer is optimized for display atop aerial (ortho) imagery. Tiles are available for levels 7 through 20.Map Features for imagery include:
Political Boundaries: Massachusetts cities and towns, counties and state border, MassGIS).Transportation: Massachusetts Department of Transportation (MassDOT) Roads (MassDOT, MassGIS); MBTA subway and Commuter Rail lines and stations (Central Transportation Planning Staff, MassGIS); Airports, Ferry Routes and Seaports (MassDOT); Airport Runways and Airfields (Massachusetts Emergency Management Agency (MEMA)).Infrastructure and Facilities: Lighthouses and Lights (Massachusetts Coastal Zone Management); Licensed Child Care Programs (Department of Early Education and Care); Schools (Pre-K-High School) (Massachusetts Department of Education, MassGIS); Colleges and Universities (MassGIS); Acute Care Hospitals and Non-acute Care Hospitals (Massachusetts Department of Public Health Office of Emergency Medical Services, CHIA); Libraries, Police Stations, Fire Stations, Town Halls, Places of Worship, Courthouses, Prisons, DCR Pools.This service is used in the MassGIS Image Basemap.
The Digital Geologic-GIS Map of San Miguel Island, California is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (smis_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (smis_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (smis_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) this file (chis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (chis_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (smis_geology_metadata_faq.pdf). Please read the chis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: American Association of Petroleum Geologists. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (smis_geology_metadata.txt or smis_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The ubiMap dataset is comprised of 3,530 map images collected from the Bing image search service (1,730 maps) and Geo-Journal (1,800 maps). Each image has been manually labeled with 22 types of map elements, including their boundary shapes and category properties, resulting in an average of 5.92 elements per map. ubiMap-l is built uopon ubiMap by removing maps that contained only one element, which results a total of 3,515 maps for map layout retrieval test. We first opensourced 703 maps in ubiMap-l that we used for testing our map layout representation learning framework, MapLayNet. Besides 703 map images and their layout label data, embedding of MapLayNet and its baseline model is provided along with the python codes for embedding visualizaiton. The dataset will be open access in late 2025.
Representation of the structural features and in particular faults and thrusts.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
A series of element maps collected using the Maia 384 detector array on the XFM beamline at the Australian Synchrotron. Maps are RGB composites (indicated by file name) or a combination of black and white intensity with RGB. Lower resolution versions of these files are used in a paper on the application of microanalysis techniques in ore geology and are made available here to allow the full resolution images (1:1 binning of pixels) to be accessed. Lineage: X-ray spectra were collected using the Maia 384 detector on the XFM beamline at the Australian Synchrotron. The spectral data were collected with an incident beam energy of 18.5 keV, a pixel size of 4 µm and dwell times per pixel of 0.97 msec. The Maia XFM full spectral data were analysed using the GeoPIXE software suite which uses a fundamental parameters approach, with spectral deconvolution and imaging using the Dynamic Analysis method based on fitting a representative total spectrum, and a detailed model of Maia detector array efficiency. Spectra are fitted using a X-ray line relative intensities that reflect integration of yields and X-ray self-absorption effects for the given matrix or mineral phase and the contrasting efficiency characteristics across the detector array. The result is a matrix transformation that allows projection of the full-spectral data into element maps in this collection.
Use the resources below to understand how smart mapping tools work and how to apply them to enhance your mapping projects.GoalsAccess available smart mapping options to explore and better understand your data.Style maps using cartographically correct symbology for qualitative and quantitative data.Use Arcade expressions to quickly customize data display and map elements.
The Story Map Basic application is a simple map viewer with a minimalist user interface. Apart from the title bar, an optional legend, and a configurable search box the map fills the screen. Use this app to let your map speak for itself. Your users can click features on the map to get more information in pop-ups. The Story Map Basic application puts all the emphasis on your map, so it works best when your map has great cartography and tells a clear story.You can create a Basic story map by sharing a web map as an application from the map viewer. You can also click the 'Create a Web App' button on this page to create a story map with this application. Optionally, the application source code can be downloaded for further customization and hosted on your own web server.For more information about the Story Map Basic application, a step-by-step tutorial, and a gallery of examples, please see this page on the Esri Story Maps website.
Linear elements of the 2008 Land Use Map. The linear entities represent hydrographic and road elements with a width of less than 25 m. The figure was created following the update of the land use map created in 2003.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Overview
3DHD CityScenes is the most comprehensive, large-scale high-definition (HD) map dataset to date, annotated in the three spatial dimensions of globally referenced, high-density LiDAR point clouds collected in urban domains. Our HD map covers 127 km of road sections of the inner city of Hamburg, Germany including 467 km of individual lanes. In total, our map comprises 266,762 individual items.
Our corresponding paper (published at ITSC 2022) is available here.
Further, we have applied 3DHD CityScenes to map deviation detection here.
Moreover, we release code to facilitate the application of our dataset and the reproducibility of our research. Specifically, our 3DHD_DevKit comprises:
The DevKit is available here:
https://github.com/volkswagen/3DHD_devkit.
The dataset and DevKit have been created by Christopher Plachetka as project lead during his PhD period at Volkswagen Group, Germany.
When using our dataset, you are welcome to cite:
@INPROCEEDINGS{9921866,
author={Plachetka, Christopher and Sertolli, Benjamin and Fricke, Jenny and Klingner, Marvin and
Fingscheidt, Tim},
booktitle={2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC)},
title={3DHD CityScenes: High-Definition Maps in High-Density Point Clouds},
year={2022},
pages={627-634}}
Acknowledgements
We thank the following interns for their exceptional contributions to our work.
The European large-scale project Hi-Drive (www.Hi-Drive.eu) supports the publication of 3DHD CityScenes and encourages the general publication of information and databases facilitating the development of automated driving technologies.
The Dataset
After downloading, the 3DHD_CityScenes folder provides five subdirectories, which are explained briefly in the following.
1. Dataset
This directory contains the training, validation, and test set definition (train.json, val.json, test.json) used in our publications. Respective files contain samples that define a geolocation and the orientation of the ego vehicle in global coordinates on the map.
During dataset generation (done by our DevKit), samples are used to take crops from the larger point cloud. Also, map elements in reach of a sample are collected. Both modalities can then be used, e.g., as input to a neural network such as our 3DHDNet.
To read any JSON-encoded data provided by 3DHD CityScenes in Python, you can use the following code snipped as an example.
import json
json_path = r"E:\3DHD_CityScenes\Dataset\train.json"
with open(json_path) as jf:
data = json.load(jf)
print(data)
2. HD_Map
Map items are stored as lists of items in JSON format. In particular, we provide:
3. HD_Map_MetaData
Our high-density point cloud used as basis for annotating the HD map is split in 648 tiles. This directory contains the geolocation for each tile as polygon on the map. You can view the respective tile definition using QGIS. Alternatively, we also provide respective polygons as lists of UTM coordinates in JSON.
Files with the ending .dbf, .prj, .qpj, .shp, and .shx belong to the tile definition as “shape file” (commonly used in geodesy) that can be viewed using QGIS. The JSON file contains the same information provided in a different format used in our Python API.
4. HD_PointCloud_Tiles
The high-density point cloud tiles are provided in global UTM32N coordinates and are encoded in a proprietary binary format. The first 4 bytes (integer) encode the number of points contained in that file. Subsequently, all point cloud values are provided as arrays. First all x-values, then all y-values, and so on. Specifically, the arrays are encoded as follows.
After reading, respective values have to be unnormalized. As an example, you can use the following code snipped to read the point cloud data. For visualization, you can use the pptk package, for instance.
import numpy as np
import pptk
file_path = r"E:\3DHD_CityScenes\HD_PointCloud_Tiles\HH_001.bin"
pc_dict = {}
key_list = ['x', 'y', 'z', 'intensity', 'is_ground']
type_list = ['
5. Trajectories
We provide 15 real-world trajectories recorded during a measurement campaign covering the whole HD map. Trajectory samples are provided approx. with 30 Hz and are encoded in JSON.
These trajectories were used to provide the samples in train.json, val.json. and test.json with realistic geolocations and orientations of the ego vehicle.
- OP1 – OP5 cover the majority of the map with 5 trajectories.
- RH1 – RH10 cover the majority of the map with 10 trajectories.
Note that OP5 is split into three separate parts, a-c. RH9 is split into two parts, a-b. Moreover, OP4 mostly equals OP1 (thus, we speak of 14 trajectories in our paper). For completeness, however, we provide all recorded trajectories here.
Polygonal elements of the 2008 Land Use Map. The polygonal elements represent land use elements with a width greater than 25 m. The figure was created following the update of the map relating to land use created in 2003. In the first half of 2009 it underwent some improvements for which a new version was derived starting from the 2008 edition It relates to land use, divided into legend classes (Corine Land Cover), for the polygons of the areas represented; it also contains linear thematic layers of traffic and hydrography. The legend, organized hierarchically according to the detailed classification of the five CORINE Land Cover categories up to 5 levels, has undergone some changes compared to the previous 2003 version. For the creation and updating of the land use map of the Autonomous Region of Sardinia, it was based on the following materials: Ikonos 2005-06 images, CTRN10k, toponymy, various data published on institutional thematic sites.
The Charted Territory Map (World Edition) web map provides a customized world basemap uniquely symbolized. It takes its inspiration from a printed atlas plate and pull-down scholastic classroom maps. The map emphasizes the geographic and political features in the design. The use of country level polygons are preassigned with eight different colors. It also includes the global graticule features as well as landform labels of physical features and hillshade. This basemap, included in the ArcGIS Living Atlas of the World, uses the Charted Territory vector tile layer and World Hillshade. The vector tile layer in this web map is built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the layers referenced in this map.
The vector collection of data DPK 250V is object oriented cartographic database at 1 : 250 000 scale. Elements on the map are divided into eight groups: mathematical elements, settlements and objects, communications, relief, hydrography, land cover, boundaries and dividing lines, geographical names.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The “Protected Small Landscape Element” map is included in the Environment Regulation. On this are the most special, often old landscape features of the province of Utrecht. These elements are protected and should not be cut down. In 2021, this map was updated with elements in the municipality of Vijfheerenlanden and a number of new elements in the rest of the province. The Environment Regulation has been adopted but will only work after the Environment Act enters into force.Until then the map from the Interim Regulation is active.
Attribution-NonCommercial-ShareAlike 4.0 (CC BY-NC-SA 4.0)https://creativecommons.org/licenses/by-nc-sa/4.0/
License information was derived automatically
Author: ANN WURST, NGS TEACHER CONSULTANTGrade/Audience: grade 6, grade 7, grade 8, high school, ap human geography, post secondary, professional developmentResource type: activitySubject topic(s): cartography, maps, regional geographyRegion: worldStandards: TEXAS TEKS (19) Social studies skills. The student applies critical-thinking skills to organize and use information acquired through established research methodologies from a variety of valid sources, including technology. The student is expected to: (A) analyze information by sequencing, categorizing, identifying cause-and-effect relationships, comparing, contrasting, finding the main idea, summarizing, making generalizations and predictions, and drawing inferences and conclusions; (B) create a product on a contemporary government issue or topic using critical methods of inquiry; (D) analyze and evaluate the validity of information, arguments, and counterarguments from primary and secondary sources for bias, propaganda, point of view, and frame of reference; Objectives: Students will keep a list of the toolkit 'helpers' in their notebook and use the elements to process/apply information in various formats such as short answers responses, tickets out the door, setting up writing samples for world geo, AP Human Geo and other courses involving the study of geographic concepts. Summary: Students can use these 'hooks' in their study of cartography/map making , can be applied in every unit where map skills are needed. Helps further critical thinking skills.