100+ datasets found
  1. Data from: Switching to ArcGIS Pro from ArcMap

    • dados-edu-pt.hub.arcgis.com
    Updated Aug 14, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
    Explore at:
    Dataset updated
    Aug 14, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Portugal - Educação
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Description

    The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

  2. m

    Species Abundance, Species Distribution, Sediment Description (ESRI ArcGIS...

    • marine-geo.org
    Updated Jan 17, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MGDS > Marine Geoscience Data System (2025). Species Abundance, Species Distribution, Sediment Description (ESRI ArcGIS map package MPK format), western Long Island Sound (2023) [Dataset]. http://doi.org/10.60521/332216
    Explore at:
    Dataset updated
    Jan 17, 2025
    Dataset authored and provided by
    MGDS > Marine Geoscience Data System
    License

    Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
    License information was derived automatically

    Area covered
    Description

    This data set provides information on species type, abundance, and distribution, and sediment description for the Phase IIIA survey area of the Long Island Sound Cable Fund (LISCF) Seafloor Habitat Mapping Initiative. This data set contains the results of image analyses of frame captures of video collected by the Ponar Imaging and Sampling System for Assessing Habitat (PISSAH) developed by the Long Island Sound Mapping and Research Collaborative (LISMaRC) to obtain both physical sediment grab samples and ultra-high definition (4K) video using the latest version of GoPro cameras. A four-day survey using the PISSAH deployed from the Research Vessel Weicker was conducted from June 12-16, 2023 including mobilization and demobilization. The PISSAH was used to acquire both physical sediment grab samples as well as the GoPro video from 60 sites in the Phase III area of the Long Island Sound Cable Fund (LISCF) Seafloor Habitat Mapping Initiative. These sites were identified in the Phase IIIA area based upon an analysis of existing acoustic backscatter data obtained from multiple surveys by NOAA that exhibited what appeared to be inconsistent gray scale settings. Multiple GoPro cameras with lights captured both forward-looking and down-looking points of view. The down-looking video files were reviewed and two to five still images (frame grabs) were captured in the .tiff format for image analysis. The images were color corrected using the IrfanView software. Each image was then analyzed using the ImageJ software for point count and percent cover of observed taxa, biogenic features and sediment type. The results of this analysis and attendant maps were provided to the team led by Roger Flood from the Stony Brook University to assist with the interpretation of new and existing acoustic backscatter data in the area. The data file is in ESRI ArcGIS map package (MPK) format. Funding was provided by the Long Island Sound Cable Fund Seafloor Habitat Mapping Initiative administered cooperatively by the EPA Long Island Sound Study and the Connecticut Department of Energy and Environmental Protection (DEEP).

  3. i15 Cadastral Map Index DWR

    • data.cnra.ca.gov
    • data.ca.gov
    • +3more
    Updated May 29, 2025
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Water Resources (2025). i15 Cadastral Map Index DWR [Dataset]. https://data.cnra.ca.gov/dataset/i15-cadastral-map-index-dwr
    Explore at:
    arcgis geoservices rest api, html, geojson, zip, kml, csvAvailable download formats
    Dataset updated
    May 29, 2025
    Dataset authored and provided by
    California Department of Water Resourceshttp://www.water.ca.gov/
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    This dataset represents the cadastral maps created by the Geomatics branch in support of real property acquisitions within the Department of Water Resources. The geographic extent of each map frame was created after using all the spatial attributes available in each map to appropriately georeference it and create the extents from the outer frame of the map. The maps were digitally scanned from the original paper format that were archived after moving to the new resources building. As new maps are created by the branch for real property acquisition services, they will be georeference, attributed and updated into this dataset. The associated data are considered DWR enterprise GIS data, which meet all appropriate requirements of the DWR Spatial Data Standards, specifically the DWR Spatial Data Standard version 3.6, dated September 27, 2023. DWR makes no warranties or guarantees either expressed or implied as to the completeness, accuracy, or correctness of the data. DWR neither accepts nor assumes liability arising from or for any incorrect, incomplete, or misleading subject data. Original internal source projection for this dataset was Teale Albers/NAD83. For copies of data in the original projection, please contact DWR. Comments, problems, improvements, updates, or suggestions should be forwarded to gis@water.ca.gov as available and appropriate.

  4. k

    KYAPED Phase 2 Image Frames

    • opengisdata.ky.gov
    • data.lojic.org
    • +2more
    Updated Jun 11, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KyGovMaps (2024). KYAPED Phase 2 Image Frames [Dataset]. https://opengisdata.ky.gov/datasets/kyaped-phase-2-image-frames/about
    Explore at:
    Dataset updated
    Jun 11, 2024
    Dataset authored and provided by
    KyGovMaps
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    To allow the user the ability to glean information related specific to the image frame captured during Aerial Photography acquisition of Kentucky's Aerial Photography and Elevation Data program (KYAPED). https://ky.box.com/v/kymartian-image-frames-Phase2

  5. c

    Land Cover 1992-2020

    • cacgeoportal.com
    • hub.arcgis.com
    • +1more
    Updated Mar 30, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Central Asia and the Caucasus GeoPortal (2024). Land Cover 1992-2020 [Dataset]. https://www.cacgeoportal.com/maps/bb0e4bcd891c4679881f80997c9b8871
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset authored and provided by
    Central Asia and the Caucasus GeoPortal
    Area covered
    Description

    This webmap is a subset of Global Landcover 1992 - 2020 Image Layer. You can access the source data from here. This layer is a time series of the annual ESA CCI (Climate Change Initiative) land cover maps of the world. ESA has produced land cover maps for the years 1992-2020. These are available at the European Space Agency Climate Change Initiative website.Time Extent: 1992-2020Cell Size: 300 meterSource Type: ThematicPixel Type: 8 Bit UnsignedData Projection: GCS WGS84Mosaic Projection: Web Mercator Auxiliary SphereExtent: GlobalSource: ESA Climate Change InitiativeUpdate Cycle: Annual until 2020, no updates thereafterWhat can you do with this layer?This layer may be added to ArcGIS Online maps and applications and shown in a time series to watch a "time lapse" view of land cover change since 1992 for any part of the world. The same behavior exists when the layer is added to ArcGIS Pro.In addition to displaying all layers in a series, this layer may be queried so that only one year is displayed in a map. This layer can be used in analysis. For example, the layer may be added to ArcGIS Pro with a query set to display just one year. Then, an area count of land cover types may be produced for a feature dataset using the zonal statistics tool. Statistics may be compared with the statistics from other years to show a trend.To sum up area by land cover using this service, or any other analysis, be sure to use an equal area projection, such as Albers or Equal Earth.Different Classifications Available to MapFive processing templates are included in this layer. The processing templates may be used to display a smaller set of land cover classes.Cartographic Renderer (Default Template)Displays all ESA CCI land cover classes.*Forested lands TemplateThe forested lands template shows only forested lands (classes 50-90).Urban Lands TemplateThe urban lands template shows only urban areas (class 190).Converted Lands TemplateThe converted lands template shows only urban lands and lands converted to agriculture (classes 10-40 and 190).Simplified RendererDisplays the map in ten simple classes which match the ten simplified classes used in 2050 Land Cover projections from Clark University.Any of these variables can be displayed or analyzed by selecting their processing template. In ArcGIS Online, select the Image Display Options on the layer. Then pull down the list of variables from the Renderer options. Click Apply and Close. In ArcGIS Pro, go into the Layer Properties. Select Processing Templates from the left hand menu. From the Processing Template pull down menu, select the variable to display.Using TimeBy default, the map will display as a time series animation, one year per frame. A time slider will appear when you add this layer to your map. To see the most current data, move the time slider until you see the most current year.In addition to displaying the past quarter century of land cover maps as an animation, this time series can also display just one year of data by use of a definition query. For a step by step example using ArcGIS Pro on how to display just one year of this layer, as well as to compare one year to another, see the blog called Calculating Impervious Surface Change.Hierarchical ClassificationLand cover types are defined using the land cover classification (LCCS) developed by the United Nations, FAO. It is designed to be as compatible as possible with other products, namely GLCC2000, GlobCover 2005 and 2009.This is a heirarchical classification system. For example, class 60 means "closed to open" canopy broadleaved deciduous tree cover. But in some places a more specific type of broadleaved deciduous tree cover may be available. In that case, a more specific code 61 or 62 may be used which specifies "open" (61) or "closed" (62) cover.Land Cover ProcessingTo provide consistency over time, these maps are produced from baseline land cover maps, and are revised for changes each year depending on the best available satellite data from each period in time. These revisions were made from AVHRR 1km time series from 1992 to 1999, SPOT-VGT time series between 1999 and 2013, and PROBA-V data for years 2013, 2014 and 2015. When MERIS FR or PROBA-V time series are available, changes detected at 1 km are re-mapped at 300 m. The last step consists in back- and up-dating the 10-year baseline LC map to produce the 24 annual LC maps from 1992 to 2015.Source dataThe datasets behind this layer were extracted from NetCDF files and TIFF files produced by ESA. Years 1992-2015 were acquired from ESA CCI LC version 2.0.7 in TIFF format, and years 2016-2018 were acquired from version 2.1.1 in NetCDF format. These are downloadable from ESA with an account, after agreeing to their terms of use. https://maps.elie.ucl.ac.be/CCI/viewer/download.phpCitationESA. Land Cover CCI Product User Guide Version 2. Tech. Rep. (2017). Available at: maps.elie.ucl.ac.be/CCI/viewer/download/ESACCI-LC-Ph2-PUGv2_2.0.pdfMore technical documentation on the source datasets is available here:https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-land-cover?tab=doc*Index of all classes in this layer:10 Cropland, rainfed11 Herbaceous cover12 Tree or shrub cover20 Cropland, irrigated or post-flooding30 Mosaic cropland (>50%) / natural vegetation (tree, shrub, herbaceous cover) (<50%)40 Mosaic natural vegetation (tree, shrub, herbaceous cover) (>50%) / cropland (<50%)50 Tree cover, broadleaved, evergreen, closed to open (>15%)60 Tree cover, broadleaved, deciduous, closed to open (>15%)61 Tree cover, broadleaved, deciduous, closed (>40%)62 Tree cover, broadleaved, deciduous, open (15-40%)70 Tree cover, needleleaved, evergreen, closed to open (>15%)71 Tree cover, needleleaved, evergreen, closed (>40%)72 Tree cover, needleleaved, evergreen, open (15-40%)80 Tree cover, needleleaved, deciduous, closed to open (>15%)81 Tree cover, needleleaved, deciduous, closed (>40%)82 Tree cover, needleleaved, deciduous, open (15-40%)90 Tree cover, mixed leaf type (broadleaved and needleleaved)100 Mosaic tree and shrub (>50%) / herbaceous cover (<50%)110 Mosaic herbaceous cover (>50%) / tree and shrub (<50%)120 Shrubland121 Shrubland evergreen122 Shrubland deciduous130 Grassland140 Lichens and mosses150 Sparse vegetation (tree, shrub, herbaceous cover) (<15%)151 Sparse tree (<15%)152 Sparse shrub (<15%)153 Sparse herbaceous cover (<15%)160 Tree cover, flooded, fresh or brakish water170 Tree cover, flooded, saline water180 Shrub or herbaceous cover, flooded, fresh/saline/brakish water190 Urban areas200 Bare areas201 Consolidated bare areas202 Unconsolidated bare areas210 Water bodies

  6. a

    Esri Hydro Reference Overlay

    • kenya.africageoportal.com
    • fesec-cesj.opendata.arcgis.com
    • +2more
    Updated Dec 8, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2016). Esri Hydro Reference Overlay [Dataset]. https://kenya.africageoportal.com/datasets/esri::esri-hydro-reference-overlay/about
    Explore at:
    Dataset updated
    Dec 8, 2016
    Dataset authored and provided by
    Esri
    Area covered
    Description

    This tile layer is designed to provide a a hydrologically oriented set of features to use with the World Terrain Base Layer or other simple base maps. The map features a hydro-centric design based on the amount of water flowing within the drainage network such that symbols of the same size and color represent roughly the same amount of water. This map shows surface water flow as a linear phenomenon even over and through bodies of water. Using the best available data we show relative flow accurately, so that if one river carries more water downstream than another river, the result will be that the river will have a thicker symbol on the map.This map is used as an overlay for content such as elevation from the World Terrain Base service or thematic services such as soil units, vegetation, or ecoregions. Combined with a basemap and your map services, this map provides a frame of reference for showing regional, national, and continental hydrologic phenomena such as drought, runoff, river level monitoring and flood forecasting.River names are collected in the UTF8 character set so river names are collected in their original language but are written in the Roman alphabet. Sources for all river names are from the open source geonames.org project so they are international by nature.The map is compiled from several sources. The global scales (very small scales through 1:2,300,000) include content from: HydroSHEDS, GTOPO30 Global Topographic Data, SRTM, GLWD, WorldClim, GRDC, and WWF Global 200 Terrestrial Eco Regions, with the latter three providing the inputs and basis for calculating flow. At medium scales (1:36,000 to 1:2,000,000) this service currently contains only U.S. data from the NHDPlusV2 that was jointly produced by the USGS and EPA.

  7. Toepassen van Map Series op meerdere map frames

    • support-esrinl-support.hub.arcgis.com
    Updated Dec 5, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Nederland Support (2023). Toepassen van Map Series op meerdere map frames [Dataset]. https://support-esrinl-support.hub.arcgis.com/datasets/toepassen-van-map-series-op-meerdere-map-frames
    Explore at:
    Dataset updated
    Dec 5, 2023
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Nederland Support
    Description

    Laatste update: 05 december 2023Een Map Series kan op maar één map frame ingesteld worden. Het is echter mogelijk om map frames binnen een layout met elkaar te linken, zodat er toch meerdere map frames gebruikt kunnen worden in de layout. Dit werkt als volgt:Maak eerst een aantal maps aan en voeg de map frames toe aan een layout:

  8. H

    DWCZ - GIS - Resources-Various Frame Work kmls - Links - Lidar

    • hydroshare.org
    • beta.hydroshare.org
    • +1more
    zip
    Updated Jul 18, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DWCZ; Boulder Creek CZO; Kyotaek Hwang (2024). DWCZ - GIS - Resources-Various Frame Work kmls - Links - Lidar [Dataset]. https://www.hydroshare.org/resource/0ab6d50fe8e74ec9b3fde242eea07a7f
    Explore at:
    zip(121.1 MB)Available download formats
    Dataset updated
    Jul 18, 2024
    Dataset provided by
    HydroShare
    Authors
    DWCZ; Boulder Creek CZO; Kyotaek Hwang
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    There is a Boulder County focus inherited from the Boulder Creek Critical Zone program. If you are aware of a resource worth sharing please let us know. Files are in the versatile KML format for ease of sharing. If you have trouble importing these into ArcGIS or another program just let us know.

    SITE EXTENTS: Kml's that shows study site extents. The main set of extents was created by Kyotaek Hwang.

    SITE: BOULDER CREEK BOULDER COUNTY More Boulder County data can be found here: https://opendata-bouldercounty.hub.arcgis.com/ Selected kmls include: - Archaeologically_Sensitive_Areas - County_Open_Space - Lakes_and_Reservoirs (included modern glaciers) - mun_wtrsheds_czo (restricted areas) - Open_space_czo - Riparian_Areas_-_2013_ERE - Road_Map_Roads

    GEOLOGY - Geological map by Ogden Tweto, clipped here to Boulder Creek, geo_czo_tweto https://coloradogeologicalsurvey.org/publications/tweto-geologic-map-colorado-1979/

    • Clipped Cole & Braddock geologic map

    SOILS Natural Resources Conservation Service soil maps https://www.nrcs.usda.gov - soilmu_a_co643_bc (boulder County) - soilmu_a_co645_arnf (Arapaho National Forest

    GLACIERS Madole's Glaciers LGM. No online source. Check licensing before using in publication

    TOPOGRAPHIC Topographic Lines created but the BcCZO from 30m USGS DEM

    LIDAR For Lidar: OpenTopgraphy 2010 Lidar, Snow ON Snow Off https://portal.opentopography.org/dataSearch?search=Boulder%20creek%20CZO

    SITE: COAL CREEK Coal Creek Trails

  9. Georeferenced and cropped "63k Maps of Burma"

    • zenodo.org
    bin, jpeg, zip
    Updated Nov 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Horst Held; Horst Held (2024). Georeferenced and cropped "63k Maps of Burma" [Dataset]. http://doi.org/10.5281/zenodo.11367062
    Explore at:
    bin, zip, jpegAvailable download formats
    Dataset updated
    Nov 24, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Horst Held; Horst Held
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Georeferenced (to WGS1984) and cropped set of about 820 historic maps of Burma at a scale of 1 inch per mile (63,360) covering about 75% of the country. Those topographic maps, originally produced and published by the Great Trigonometrical Survey of India between 1899 and 1946, have been scanned and shared with the public as part of the "Old Survey Of India Maps” Community under a CC BY 4.0 International Licence. Many of these maps are reprints of earlier maps produced before the war. Most mapsheets are early editions (edition 1 or edition 2).

    Each of the 820 map sheet scans was georeferenced using the Latitude-Longitude corner coordinates in Everest 1830 projection. Those map sheets were cropped, keeping only the map area - to allow a seamless mosaic without the mapframe overlapping adjacent map sheets when several map sheets are put together in a GIS. Those cropped map sheets were projected from Everest 1830 to WGS1984 (EPSG4326) - standard GPS - projection to make them easier to use and combine with other GIS data.

    Those map sheets can be loaded directly in any GIS such as QGIS or ESRI ArcGIS as well as Google Earth.

    • The mm_OI_JBv2024 folder contains the cropped end georeferenced map sheets in jpg-format as well as accompagning georeference and metadata incl.
      • The mm_OI_JBv2024_kmlLinks contains kml files to easily load the mapsheets into Google Earth
      • The mm_historicOI_EPSG4326.gdb contains an ESRI mosaic dataset to easily load all mapsheets into ArcGIS
    • The mm_OI_JBv2024_scanMaps folder contains the uncropped original map scans (renamed though) in jpg-format.
    • The mm_topoOI_JBv7_masterlist.xlsx is a masterlist cataloguing all map sheets for easier use and matching them with the original source files as shared as part of the "Old Survey Of India Maps" (e.g. to identify new mapsheets should new maps be released)
    • The indexMaps folder contains small scale index maps to locate the map sheets using their map sheet Grid-Letter-nomenclature

    All georeferenced map scans are based on maps shared by John Brown via Zenodo

    The file naming convention is to first give the number of the 4 degree x 4 degree block followed by the letter (A to P) of the sixteen 1 degree x 1 degree blocks in each 4 degree block eg. 38 D, and this is followed by a number from 1 to 16 to indicate the number of the map in the 1 degree block.

    This Number Letter Number designation is followed by the map series type either OI (contains a LCC grid) or OILatLon (only has a Lat-Lon grid), followed by the edition and year of the edition, followed by the date of publication/print. If the information is not available an "X" (for edition) or "0000" (for an unknown year) is used. A best-guess approach was used if the edition and print year and version information was ambiguous.

    The files as shared via the "Old Survey Of India Maps" have been renamed to standardize the file naming, sometimes correcting them and to make them unique in the case several editions of the same map sheet were available.

    A topographical index produced by the Survey of India is provided to assist the viewer in selecting a particular map of interest.

  10. Georeferenced and cropped "Half Inch" (1:126,720) maps of Burma (colonial...

    • zenodo.org
    bin, jpeg, zip
    Updated Nov 24, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Horst Held; Horst Held (2024). Georeferenced and cropped "Half Inch" (1:126,720) maps of Burma (colonial period) [Dataset]. http://doi.org/10.5281/zenodo.13346102
    Explore at:
    jpeg, bin, zipAvailable download formats
    Dataset updated
    Nov 24, 2024
    Dataset provided by
    Zenodohttp://zenodo.org/
    Authors
    Horst Held; Horst Held
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    Georeferenced (to WGS1984) and cropped set of about 555 historic maps of Burma at a scale of 1 inch per two miles (1:126,720) covering most of the country. Those topographic maps, originally produced and published by the Great Trigonometrical Survey of India between 1878 and 1949, have been scanned and shared with the public as "Old Survey Of India Maps” Community under a CC BY 4.0 International Licence.

    Each of the map sheet scans was georeferenced using the Latitude-Longitude corner coordinates in Everest 1830 projection. Those map sheets were cropped, keeping only the map area - to allow a seamless mosaic without the mapframe overlapping adjacent map sheets when several map sheets are put together in a GIS. Those cropped map sheets were projected from Everest 1830 to WGS1984 (EPSG:4326) - standard GPS - projection to make them easier to use and combine with other GIS data.

    Many grid cells in this dataset are covered by 2 versions of map sheets - those with hill shade and only lat-lon grid and those without hill shade and featuring a LCC map grid.

    Those map sheets can be loaded directly in any GIS such as QGIS or ESRI ArcGIS.

    • The mm_HI_JBv2024_epsg4326 folder contains the cropped end georeferenced map sheets in jpg-format as well as accompagning georeference and metadata incl.
      • The mm_HI_JBv2024_epsg4326_kmlLinks contains a KML file for each map sheet facilitating their easy use in Google Earth byt linking them the georeferenced map sheet file located in the mm_HI_JBv2024_epsg4326 folder.
      • The mm_historicHI_EPSG4326.gdb contains three ESRI mosaic datasets to easily load all mapsheets, only mapheets with hillshading and lat-lon grid and only "regular" mapsheets without hillshading and LCC grid into ArcGIS
    • The mm_HI_JBv2024_scanMaps folder contains the uncropped original map scans (renamed though) in jpg-format.
    • The mm_historicTopoHI_JBv2024 is a masterlist cataloguing all map sheets for easier use and matching them with the original source files as shared via the "Old Survey Of India Maps” Community (e.g. to identify new mapsheets should new maps be released)

    All georeferenced map scans are based on maps shared as part of the "Old Survey Of India Maps” via Zenodo. Links to each file can be found in the above mentined excel file and most can be also accessed through the zenodo repository below.

    The file naming convention is to first give the number of the 4 degree x 4 degree block followed by the letter (A to P) of the sixteen 1 degree x 1 degree blocks in each 4 degree block eg. 38 D, and this is followed by the cardinal direction letters (NE, NW, SE, SW) to indicate the 30x30 minutes sized map position in the 1 degree block.

    This Number - Letter - Cardinal direction letter designation is followed by the year of the edition, followed by the map series type either HI-hs (hillshaded) or HI-reg (regular), followed by the map sheet title/name.

    The original files as shared as part of the "Old Survey Of India Maps” have been renamed to further standardize the file naming, sometimes correcting them and to make them unique in the case several editions of the same map sheet were available.

    Lineage: This version (1.01, Upload 2024-08-20) has some file attributes fixed.

  11. Confined Aquifer Wells - Well List Frame

    • geodata.dep.state.fl.us
    • hub.arcgis.com
    • +1more
    Updated Nov 15, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2013). Confined Aquifer Wells - Well List Frame [Dataset]. https://geodata.dep.state.fl.us/items/7896c9e8098e46f2a3e7c21853c67505
    Explore at:
    Dataset updated
    Nov 15, 2013
    Dataset authored and provided by
    Florida Department of Environmental Protectionhttp://www.floridadep.gov/
    Area covered
    Description

    The dataset was developed to support the field reconnaissance by samplers for the probabilistic design of the Status and Trends Networks.

  12. Stream Site Selections - Surface Water List Frame

    • geodata.dep.state.fl.us
    • mapdirect-fdep.opendata.arcgis.com
    • +1more
    Updated Oct 30, 2013
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2013). Stream Site Selections - Surface Water List Frame [Dataset]. https://geodata.dep.state.fl.us/datasets/stream-site-selections-surface-water-list-frame
    Explore at:
    Dataset updated
    Oct 30, 2013
    Dataset authored and provided by
    Florida Department of Environmental Protectionhttp://www.floridadep.gov/
    Area covered
    Description

    A point feature class representing the random site selections within low order streams, and small streams, comprising the low order stream and small stream sample frames from the Cycle 1 to the most recent Status Network cycle. Refer to https://floridadep.gov/dear/watershed-monitoring-section/content/status-monitoring-network for more information on the Status monitoring network.

  13. a

    Primary Canal Site Selections – Surface Water List Frame

    • hub.arcgis.com
    • geodata.dep.state.fl.us
    • +2more
    Updated Dec 6, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2016). Primary Canal Site Selections – Surface Water List Frame [Dataset]. https://hub.arcgis.com/datasets/e9e9b563d03a435cbafdcbdf43b1ed3c
    Explore at:
    Dataset updated
    Dec 6, 2016
    Dataset authored and provided by
    Florida Department of Environmental Protection
    Area covered
    Description

    Florida Department of Environmental Protection's Watershed Monitoring Section (WMS) collects samples from a number of water resources. Beginning in 2012, samples will be obtained from Canals in addition to Rivers, Streams, Large Lakes, Small Lakes, Confined and Unconfined aquifers. This dataset illustrates potential Status Monitoring Network Canal sampling locations across the state. For more information on the Status Monitoring Network refer to https://floridadep.gov/dear/watershed-monitoring-section/content/status-monitoring-network

  14. k

    KyFromAbove Phase2 leaf-off 6" ortho imagery (Image Service)

    • kyfromabove.ky.gov
    • hub.arcgis.com
    • +1more
    Updated Jun 25, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    KyGovMaps (2025). KyFromAbove Phase2 leaf-off 6" ortho imagery (Image Service) [Dataset]. https://kyfromabove.ky.gov/datasets/2422e9f709f641378503240e8e29a43c
    Explore at:
    Dataset updated
    Jun 25, 2025
    Dataset authored and provided by
    KyGovMaps
    License

    MIT Licensehttps://opensource.org/licenses/MIT
    License information was derived automatically

    Area covered
    Description

    KyFromAbove Phase2 leaf-off 6" resolution ortho imagery provided as a dynamic image service in the Kentucky Single Zone Coordinate System (3089). This imagery is most appropriately used in ArcGIS Pro with a map frame that matches its coordinate system. Imagery in the Phase2 collection was acquired during the 2019-2022 time period during leaf-off conditions.The Phase2 project called for the planning, acquisition, processing, and derivative products of imagery data to be collected at a ground sample distance (GSD) of 0.5 foot. Project specifications are based on the American Society of Photogrammetry and Remote Sensing (ASPRS) standards. The data were developed based on a horizontal projection/datum of NAD 1983 StatePlane Kentucky FIPS 1600 Feet, Foot US. Imagery data were delivered as 0.5 foot 8-bit 4-band (RGB-IR) GeoTIFF tiles.More information regarding the KyFromAbove program can be found here.

  15. Nelly Island Adelie Penguin Colonies, Vector GIS Layer

    • data.aad.gov.au
    • researchdata.edu.au
    Updated Oct 18, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    WOEHLER, ERIC (2012). Nelly Island Adelie Penguin Colonies, Vector GIS Layer [Dataset]. http://doi.org/10.4225/15/5549AD3D38F8F
    Explore at:
    Dataset updated
    Oct 18, 2012
    Dataset provided by
    Australian Antarctic Divisionhttps://www.antarctica.gov.au/
    Australian Antarctic Data Centre
    Authors
    WOEHLER, ERIC
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Dec 17, 1990
    Area covered
    Description

    An ArcGIS shapefile layer showing the extent of all extant Adelie penguin (Pygoscelis adeliae) colonies at Nelly Island, Windmill Islands, December, 1990.

    The colony boundaries were digitised from Linhof aerial photographs (ANTC1219, run 53, frames 5-7) that were georeferenced to the Windmill Islands Topopoly GIS dataset.

    Data quality cannot be accurately assessed. Errors in the georeferencing process could not be quantified, and there are positional discrepancies between overlapping aerial photographs are up to 2.4 m. Thus, absolute errors in the position of the colonies cannot be quantified, but the colony boundaries should be within ~0.5m of their location within the photographs.

    The shapefile and the georeferenced aerial photographs are available for download from a Related URL.

    This work was completed as part of ASAC project 1219 (ASAC_1219).

  16. d

    Landing Page

    • datadiscoverystudio.org
    Updated Jun 27, 2018
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Map service: Eric Kauffman; Source Data: NWS (2018). Landing Page [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/0f06fdddf75c48edb6d10640fde4d17d/html
    Explore at:
    Dataset updated
    Jun 27, 2018
    Authors
    Map service: Eric Kauffman; Source Data: NWS
    Area covered
    Description

    Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.

  17. MMPA Incidental Take Authorization (ITA) GIS Map Data

    • fisheries.noaa.gov
    Updated May 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dwayne Meadows (2019). MMPA Incidental Take Authorization (ITA) GIS Map Data [Dataset]. https://www.fisheries.noaa.gov/inport/item/29667
    Explore at:
    csv - comma separated values (text)Available download formats
    Dataset updated
    May 16, 2019
    Dataset provided by
    National Marine Fisheries Servicehttps://www.fisheries.noaa.gov/
    Authors
    Dwayne Meadows
    Time period covered
    2008 - Jun 29, 2125
    Area covered
    excluding territorial waters of any foreign nation)., Within the U.S. Exclusive Economic Zone (EEZ) and outside the U.S. EEZ (i.e., the high seas, Earth
    Description

    All marine mammals are protected under the Marine Mammal Protection Act of 1972, as amended (MMPA). The MMPA prohibits, with certain exceptions, the "take" of marine mammals in U.S. waters and by U.S. citizens on the high seas. However, the MMPA allows, upon request, the incidental take of marine mammals by U.S. citizens who engage in a specified activity (other than commercial fishing) within...

  18. ESI GIS Data and PDF Maps: Environmental Sensitivity Index including GIS...

    • fisheries.noaa.gov
    • datadiscoverystudio.org
    • +2more
    Updated Jan 1, 1984
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Office of Response and Restoration (1984). ESI GIS Data and PDF Maps: Environmental Sensitivity Index including GIS Data and Maps (for the U.S. Shorelines, including Alaska, Hawaii, and Puerto Rico) [Dataset]. https://www.fisheries.noaa.gov/inport/item/40691
    Explore at:
    shapefile, pdf - adobe portable document formatAvailable download formats
    Dataset updated
    Jan 1, 1984
    Dataset provided by
    Office of Response and Restoration
    Time period covered
    1984 - 2007
    Area covered
    United States, American Samoa, Puerto Rican shoreline, Golfo de Fonseca (Honduras and Nicaragua),
    Description

    Environmental Sensitivity Index (ESI) maps are an integral component in oil-spill contingency planning and assessment. They serve as a source of information in the event of an oil spill incident. ESI maps are a product of the Hazardous Materials Response Division of the Office of Response and Restoration (OR&R).ESI maps contain three types of information: shoreline habitats (classified accordin...

  19. a

    1947 Aerial Map

    • data-roseville.opendata.arcgis.com
    • hub.arcgis.com
    Updated Mar 28, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    CityofRoseville (2019). 1947 Aerial Map [Dataset]. https://data-roseville.opendata.arcgis.com/maps/a522a09c7e0d4cde8b3f495009eb83d3
    Explore at:
    Dataset updated
    Mar 28, 2019
    Dataset authored and provided by
    CityofRoseville
    Area covered
    Description

    This raster dataset corresponds to the year 1947, with data obtained from the USGS Earth Explorer, an online collection of aerial photography. This image is a mosaic of the following photo frames: 1EJA000010017, 1EJA000010019, 1EJA000010024, 1EJA000010025, 1EJA000010027, 1EJA000010066, 1EJA000010067, 1EJA000010102, 1EJA000010103, 1EJA000010106, 1EJA000020081, 1EJA000020082,Some images were clipped to fit into the Roseville City limit.

    Access the Data:

    Access the REST Service from https://ags.roseville.ca.us/arcgis/rest/services/PublicServices/. View the data in our Historical Imagery Collection.Add data to ArcMap or ArcPro by clicking on “View Metadata” and selecting “Open in ArcGIS Desktop”.

  20. d

    Hardest Hit Fund Areas, with Expansion

    • catalog.data.gov
    • datasets.ai
    • +5more
    Updated Feb 21, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Data Driven Detroit (2025). Hardest Hit Fund Areas, with Expansion [Dataset]. https://catalog.data.gov/dataset/hardest-hit-fund-areas-with-expansion-e7da8
    Explore at:
    Dataset updated
    Feb 21, 2025
    Dataset provided by
    Data Driven Detroit
    Description

    The Hardest Hit Fund was first designated in 2010 to provide financial assistance to 18 states that were particularly impacted by the housing crisis that began in 2007. Michigan received nearly $500 million from this fund, which was initially intended to provide assistance to homeowners who were either unemployed or significantly underwater with their mortgage. However, given the high levels of blight in Detroit and other Michigan cities, some of the Hardest Hit Fund money was released to be used for structure demolition. With the first phase of the program the City of Detroit received approximately $52 million, with the money to be spent by Spring 2015 in six target areas. The intent of the program was to conduct demolitions in more stable neighborhoods to ensure a higher impact of the limited funds that were available. However, these areas did not contain enough eligible properties for demolition in the time frame allotted for the money to be spent, so the Detroit Land Bank Authority expanded the Hardest Hit Fund program to include a number of other areas across Detroit. Through November 2014, the Hardest Hit Fund program has demolished nearly 2,400 structures in these targeted areas. This layer was acquired as part of Phase 2 of the Motor City Mapping project.An Excel sheet containing field description metadata is available for download. Follow the links in this description for more information on the Hardest Hit Fund program at both the national level and the local level.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
Esri Portugal - Educação (2020). Switching to ArcGIS Pro from ArcMap [Dataset]. https://dados-edu-pt.hub.arcgis.com/datasets/switching-to-arcgis-pro-from-arcmap
Organization logo

Data from: Switching to ArcGIS Pro from ArcMap

Related Article
Explore at:
Dataset updated
Aug 14, 2020
Dataset provided by
Esrihttp://esri.com/
Authors
Esri Portugal - Educação
License

Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically

Description

The arrival of ArcGIS Pro has brought a challenge to ArcMap users. The new software is sufficiently different in architecture and layout that switching from the old to the new is not a simple process. In some ways, Pro is harder to learn for ArcMap users than for new GIS users, because some workflows have to be unlearned, or at least heavily modified. Current ArcMap users are pressed for time, trying to learn the new software while still completing their daily tasks, so a book that teaches Pro from the start is not an efficient method.Switching to ArcGIS Pro from ArcMap aims to quickly transition ArcMap users to ArcGIS Pro. Rather than teaching Pro from the start, as for a novice user, this book focuses on how Pro is different from ArcMap. Covering the most common and important workflows required for most GIS work, it leverages the user’s prior experience to enable a more rapid adjustment to Pro.AUDIENCEProfessional and scholarly; College/higher education; General/trade.AUTHOR BIOMaribeth H. Price, PhD, South Dakota School of Mines and Technology, has been using Esri products since 1991, teaching college GIS since 1995 and writing textbooks utilizing Esri’s software since 2001. She has extensive familiarity with both ArcMap/ArcCatalog and Pro, both as a user and in the classroom, as well as long experience writing about GIS concepts and developing software tutorials. She teaches GIS workshops, having offered more than 100 workshops to over 1,200 participants since 2000.Pub Date: Print: 2/14/2019 Digital: 1/28/2019 Format: PaperbackISBN: Print: 9781589485440 Digital: 9781589485457 Trim: 8 x 10 in.Price: Print: $49.99 USD Digital: $49.99 USD Pages: 172Table of ContentsPreface1 Contemplating the switch to ArcGIS ProBackgroundSystem requirementsLicensingCapabilities of ArcGIS ProWhen should I switch?Time to exploreObjective 1.1: Downloading the data for these exercisesObjective 1.2: Starting ArcGIS Pro, signing in, creating a project, and exploring the interfaceObjective 1.3: Accessing maps and data from ArcGIS OnlineObjective 1.4: Arranging the windows and panesObjective 1.5: Accessing the helpObjective 1.6: Importing a map document2 Unpacking the GUIBackgroundThe ribbon and tabsPanesViewsTime to exploreObjective 2.1: Getting familiar with the Contents paneObjective 2.2: Learning to work with objects and tabsObjective 2.3: Exploring the Catalog pane3 The projectBackgroundWhat is a project?Items stored in a projectPaths in projectsRenaming projectsTime to exploreObjective 3.1: Exploring different elements of a projectObjective 3.2: Accessing properties of projects, maps, and other items4 Navigating and exploring mapsBackgroundExploring maps2D and 3D navigationTime to exploreObjective 4.1: Learning to use the Map toolsObjective 4.2: Exploring 3D scenes and linking views5 Symbolizing mapsBackgroundAccessing the symbol settings for layersAccessing the labeling propertiesSymbolizing rastersTime to exploreObjective 5.1: Modifying single symbolsObjective 5.2: Creating maps from attributesObjective 5.3: Creating labelsObjective 5.4: Managing labelsObjective 5.5: Symbolizing rasters6 GeoprocessingBackgroundWhat’s differentAnalysis buttons and toolsTool licensingTime to exploreObjective 6.1: Getting familiar with the geoprocessing interfaceObjective 6.2: Performing interactive selectionsObjective 6.3: Performing selections based on attributesObjective 6.4: Performing selections based on locationObjective 6.5: Practicing geoprocessing7 TablesBackgroundGeneral table characteristicsJoining and relating tablesMaking chartsTime to exploreObjective 7.1: Managing table viewsObjective 7.2: Creating and managing properties of a chartObjective 7.3: Calculating statistics for tablesObjective 7.4: Calculating and editing in tables8 LayoutsBackgroundLayouts and map framesLayout editing proceduresImporting map documents and templatesTime to exploreObjective 8.1: Creating the maps for the layoutObjective 8.2: Setting up a layout page with map framesObjective 8.3: Setting map frame extent and scaleObjective 8.4: Formatting the map frameObjective 8.5: Creating and formatting map elementsObjective 8.6: Fine-tuning the legendObjective 8.7: Accessing and copying layouts9 Managing dataBackgroundData modelsManaging the geodatabase schemaCreating domainsManaging data from diverse sourcesProject longevityManaging shared data for work groupsTime to exploreObjective 9.1: Creating a project and exporting data to itObjective 9.2: Creating feature classesObjective 9.3: Creating and managing metadataObjective 9.4: Creating fields and domainsObjective 9.5: Modifying the table schemaObjective 9.6: Sharing data using ArcGIS Online10 EditingBackgroundBasic editing functionsCreating featuresModifying existing featuresCreating and editing annotationTime to exploreObjective 10.1: Understanding the editing tools in ArcGIS ProObjective 10.2: Creating pointsObjective 10.3: Creating linesObjective 10.4: Creating polygonsObjective 10.5: Modifying existing featuresObjective 10.6: Creating an annotation feature classObjective 10.7: Editing annotationObjective 10.8: Creating annotation features11 Moving forwardData sourcesIndex

Search
Clear search
Close search
Google apps
Main menu