100+ datasets found
  1. Digital Geologic-GIS Map of Sagamore Hill National Historic Site and...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Jun 5, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    New York
    Description

    The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  2. a

    QGIS - Open Source GIS Software

    • hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    • +1more
    Updated Aug 9, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2018). QGIS - Open Source GIS Software [Dataset]. https://hub.arcgis.com/documents/57198670f4234919bfab87fb64d40a82
    Explore at:
    Dataset updated
    Aug 9, 2018
    Dataset authored and provided by
    Eaton County Michigan
    Description

    This is a link to the QGIS website where you can download open-source GIS software for viewing, analyzing and manipulating geodata like our downloadable shapefiles.

  3. Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida (NPS, GRD, GRI, GUIS, GUIS_geomorphology digital map) adapted from U.S. Geological Survey Open File Report maps by Morton and Rogers (2009) and Morton and Montgomery (2010) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-gulf-islands-national-seashore-5-meter-accuracy-and-1-foot-r
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    The Digital Geomorphic-GIS Map of Gulf Islands National Seashore (5-meter accuracy and 1-foot resolution 2006-2007 mapping), Mississippi and Florida is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (guis_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (guis_geomorphology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (guis_geomorphology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (guis_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (guis_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (guis_geomorphology_metadata_faq.pdf). Please read the guis_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (guis_geomorphology_metadata.txt or guis_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:26,000 and United States National Map Accuracy Standards features are within (horizontally) 13.2 meters or 43.3 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  4. a

    Open Data QGIS Map

    • hub.arcgis.com
    • data-ecgis.opendata.arcgis.com
    Updated Jan 16, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eaton County Michigan (2019). Open Data QGIS Map [Dataset]. https://hub.arcgis.com/content/710eba02b62d4d7c9149671be23fa478
    Explore at:
    Dataset updated
    Jan 16, 2019
    Dataset authored and provided by
    Eaton County Michigan
    Description

    QGIS 3 map of Eaton County, Michigan, USA with:ParcelsBuilding FootprintsSite Address PointsPolling PlacesCounty DistrictsControl CornersTownshipsSectionsGeopolitical AreasRoadsFlowlinesCounty DrainsWaterbodiesCountyAerial 2015 map service * The data in the map is stored in a geopackage called "geodata.gpkg" which should be kept in the same folder as the map "OpenData.qgz" in order to maintain the map's connectivity to the data sources. You will need the free GIS software QGIS installed to view this map. It's available at https://qgis.org

  5. a

    OpenStreetMap

    • africageoportal.com
    • data.baltimorecity.gov
    • +46more
    Updated May 19, 2020
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2020). OpenStreetMap [Dataset]. https://www.africageoportal.com/maps/a5511fbe18ce46788b78adbcba13bc1e
    Explore at:
    Dataset updated
    May 19, 2020
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This web map references the live tiled map service from the OpenStreetMap project. OpenStreetMap (OSM) is an open collaborative project to create a free editable map of the world. Volunteers gather location data using GPS, local knowledge, and other free sources of information such as free satellite imagery, and upload it. The resulting free map can be viewed and downloaded from the OpenStreetMap server: http://www.OpenStreetMap.org. See that website for additional information about OpenStreetMap. It is made available as a basemap for GIS work in Esri products under a Creative Commons Attribution-ShareAlike license.Tip: This service is one of the basemaps used in the ArcGIS.com map viewer and ArcGIS Explorer Online. Simply click one of those links to launch the interactive application of your choice, and then choose Open Street Map from the Basemap control to start using this service. You'll also find this service in the Basemap gallery in ArcGIS Explorer Desktop and ArcGIS Desktop 10.

  6. d

    CoC GIS Tools (GIS Tool).

    • datadiscoverystudio.org
    • data.wu.ac.at
    Updated Mar 15, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). CoC GIS Tools (GIS Tool). [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/654871605908414e8925b5d44771ba4f/html
    Explore at:
    Dataset updated
    Mar 15, 2015
    Description

    description: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.; abstract: This tool provides a no-cost downloadable software tool that allows users to interact with professional quality GIS maps. Users access pre-compiled projects through a free software product called ArcReader, and are able to open and explore HUD-specific project data as well as design and print custom maps. No special software/map skills beyond basic computer skills are required, meaning users can quickly get started working with maps of their communities.

  7. V

    PLACES: Place Data (GIS Friendly Format), 2024 release

    • data.virginia.gov
    • healthdata.gov
    • +3more
    csv, json, rdf, xsl
    Updated Aug 23, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Centers for Disease Control and Prevention (2024). PLACES: Place Data (GIS Friendly Format), 2024 release [Dataset]. https://data.virginia.gov/dataset/places-place-data-gis-friendly-format-2024-release
    Explore at:
    xsl, rdf, json, csvAvailable download formats
    Dataset updated
    Aug 23, 2024
    Dataset provided by
    Centers for Disease Control and Prevention
    Description

    This dataset contains model-based place (incorporated and census designated places) estimates in GIS-friendly format. PLACES covers the entire United States—50 states and the District of Columbia —at county, place, census tract, and ZIP Code Tabulation Area levels. It provides information uniformly on this large scale for local areas at four geographic levels. Estimates were provided by the Centers for Disease Control and Prevention (CDC), Division of Population Health, Epidemiology and Surveillance Branch. PLACES was funded by the Robert Wood Johnson Foundation in conjunction with the CDC Foundation. Data sources used to generate these model-based estimates are Behavioral Risk Factor Surveillance System (BRFSS) 2022 or 2021 data, Census Bureau 2020 population estimates, and American Community Survey (ACS) 2018–2022 estimates. The 2024 release uses 2022 BRFSS data for 36 measures and 2021 BRFSS data for 4 measures (high blood pressure, high cholesterol, cholesterol screening, and taking medicine for high blood pressure control among those with high blood pressure) that the survey collects data on every other year. These data can be joined with the 2020 Census place boundary file in a GIS system to produce maps for 40 measures at the place level. An ArcGIS Online feature service is also available for users to make maps online or to add data to desktop GIS software. https://cdcarcgis.maps.arcgis.com/home/item.html?id=3b7221d4e47740cab9235b839fa55cd7

  8. Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina...

    • catalog.data.gov
    • datasets.ai
    Updated Jun 4, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) (NPS, GRD, GRI, CALO, CALO_geomorphology digital map) adapted from North Carolina Geological Survey unpublished digital data and maps by Coffey and Nickerson (2008) [Dataset]. https://catalog.data.gov/dataset/digital-geomorphic-gis-map-of-cape-lookout-national-seashore-north-carolina-1-24000-scale-
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Area covered
    Cape Lookout, North Carolina
    Description

    The Digital Geomorphic-GIS Map of Cape Lookout National Seashore, North Carolina (1:24,000 scale 2008 mapping) is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) an ESRI file geodatabase (calo_geomorphology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro 3.X map file (.mapx) file (calo_geomorphology.mapx) and individual Pro 3.X layer (.lyrx) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (calo_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (calo_geomorphology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (calo_geomorphology_metadata_faq.pdf). Please read the calo_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri.htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: North Carolina Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (calo_geomorphology_metadata.txt or calo_geomorphology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS Pro, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  9. P

    Professional Map Services Report

    • archivemarketresearch.com
    doc, pdf, ppt
    Updated Mar 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Archive Market Research (2025). Professional Map Services Report [Dataset]. https://www.archivemarketresearch.com/reports/professional-map-services-55520
    Explore at:
    doc, ppt, pdfAvailable download formats
    Dataset updated
    Mar 10, 2025
    Dataset authored and provided by
    Archive Market Research
    License

    https://www.archivemarketresearch.com/privacy-policyhttps://www.archivemarketresearch.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The professional map services market is experiencing robust growth, projected to reach $625.6 million in 2025 and exhibiting a Compound Annual Growth Rate (CAGR) of 7.0% from 2025 to 2033. This expansion is fueled by several key factors. The increasing adoption of location-based services across diverse sectors like utilities, construction, transportation, and government is a primary driver. Advanced mapping technologies, including AI-powered mapping and real-time data integration, are enhancing the accuracy and functionality of map services, leading to increased demand. Furthermore, the growing need for precise mapping data for infrastructure planning, urban development, and disaster management is significantly contributing to market growth. The market segmentation reveals a strong reliance on consulting and advisory services, alongside significant demand for deployment and integration, and ongoing support and maintenance. Competition is fierce, with established players like Google, TomTom, and Esri vying for market share alongside emerging innovative companies specializing in niche applications. Geographic expansion is also a key aspect, with North America and Europe currently holding significant market share, but Asia-Pacific exhibiting rapid growth potential driven by infrastructure development and increasing technological adoption. The market's future trajectory appears bright, anticipating continued growth driven by technological advancements and expanding application areas. The integration of Internet of Things (IoT) data into mapping solutions presents a substantial opportunity for market expansion. The increasing reliance on autonomous vehicles and drone technology will further fuel demand for highly accurate and detailed mapping data. However, challenges remain, including data security concerns and the need for robust data management infrastructure. The competitive landscape necessitates continuous innovation and strategic partnerships to secure market share and capitalize on emerging opportunities. The ongoing development of standardized mapping data formats and protocols will play a crucial role in facilitating market growth and interoperability.

  10. Geographic Information System Market - GIS - Growth, Size & Share

    • mordorintelligence.com
    pdf,excel,csv,ppt
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Mordor Intelligence, Geographic Information System Market - GIS - Growth, Size & Share [Dataset]. https://www.mordorintelligence.com/industry-reports/geographic-information-system-market
    Explore at:
    pdf,excel,csv,pptAvailable download formats
    Dataset authored and provided by
    Mordor Intelligence
    License

    https://www.mordorintelligence.com/privacy-policyhttps://www.mordorintelligence.com/privacy-policy

    Time period covered
    2019 - 2030
    Area covered
    Global
    Description

    GIS Market is Segmented by Component (Hardware and Software), by Function (Mapping, Surveying, Telematics and Navigation, Location-Based Services), by End User (Agriculture, Utilities, and Mining, Among Others), and by Geography (North America, Europe, Asia Pacific, and Rest of the World). The Report Offers Market Forecasts and Size in Value (USD) for all the Above Segments.

  11. Geographic Information System (GIS) In Telecom Sector Market Analysis APAC,...

    • technavio.com
    Updated Jun 15, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Technavio (2024). Geographic Information System (GIS) In Telecom Sector Market Analysis APAC, North America, Europe, South America, Middle East and Africa - China, US, UK, Canada, Italy - Size and Forecast 2024-2028 [Dataset]. https://www.technavio.com/report/gis-market-in-telecom-sector-industry-analysis
    Explore at:
    Dataset updated
    Jun 15, 2024
    Dataset provided by
    TechNavio
    Authors
    Technavio
    Time period covered
    2021 - 2025
    Area covered
    Global, United States, United Kingdom
    Description

    Snapshot img

    GIS In Telecom Sector Market Size 2024-2028

    The GIS in telecom sector market size is forecast to increase by USD 1.91 billion at a CAGR of 14.68% between 2023 and 2028.

    Geographic Information Systems (GIS) have gained significant traction In the telecom sector due to the increasing adoption of advanced technologies such as big data, sensors, drones, and LiDAR. The use of GIS enables telecom companies to effectively manage and analyze large volumes of digital data, including satellite and GPS information, to optimize infrastructure monitoring and antenna placement. In the context of smart cities, GIS plays a crucial role in enabling efficient communication between developers and end-users by providing real-time data on construction progress and infrastructure status. Moreover, the integration of LiDAR technology with drones offers enhanced capabilities for surveying and mapping telecom infrastructure, leading to improved accuracy and efficiency.
    However, the implementation of GIS In the telecom sector also presents challenges, including data security concerns and the need for servers and computers to handle the large volumes of data generated by these technologies. In summary, the telecom sector's growing reliance on digital technologies such as GIS, big data, sensors, drones, and LiDAR is driving market growth, while the need for effective data management and security solutions presents challenges that must be addressed.
    

    What will be the Size of the GIS In Telecom Sector Market During the Forecast Period?

    Request Free Sample

    The Geographic Information System (GIS) market In the telecom sector is experiencing significant growth due to the increasing demand for electronic information and visual representation of data in various industries. This market encompasses a range of hardware and software solutions, including GNSS/GPS antennas, Lidar, GIS collectors, total stations, imaging sensors, and more. Major industries such as agriculture, oil & gas, architecture, and infrastructure monitoring are leveraging GIS technology for data analysis and decision-making. The adoption rate of GIS In the telecom sector is driven by the need for efficient data management and analysis, as well as the integration of real-time data from various sources.
    Data formats and sources vary widely, from satellite and aerial imagery to ground-based sensors and IoT devices. The market is also witnessing innovation from startups and established players, leading to advancements in data processing capabilities and integration with other technologies like 5G networks and AI. Applications of GIS In the telecom sector include smart urban planning, smart utilities, and smart public works, among others.
    

    How is this GIS In Telecom Sector Industry segmented and which is the largest segment?

    The GIS in telecom sector industry research report provides comprehensive data (region-wise segment analysis), with forecasts and estimates in 'USD billion' for the period 2024-2028, as well as historical data from 2018-2022 for the following segments.

    Product
    
      Software
      Data
      Services
    
    
    Deployment
    
      On-premises
      Cloud
    
    
    Geography
    
      APAC
    
        China
    
    
      North America
    
        Canada
        US
    
    
      Europe
    
        UK
        Italy
    
    
      South America
    
    
    
      Middle East and Africa
    

    By Product Insights

    The software segment is estimated to witness significant growth during the forecast period. The telecom sector's Global GIS market encompasses software solutions for desktops, mobiles, cloud, and servers, along with developers' platforms. companies provide industry-specific GIS software, expanding the growth potential of this segment. Telecom companies heavily utilize intelligent maps generated by GIS for informed decisions on capacity planning and enhancements, such as improved service and next-generation networks. This drives significant growth In the software segment. Commercial entities offer open-source GIS software to counteract the threat of counterfeit products.
    GIS technologies are integral to telecom network management, spatial data analysis, infrastructure planning, location-based services, network coverage mapping, data visualization, asset management, real-time network monitoring, design, wireless network mapping, integration, maintenance, optimization, and geospatial intelligence. Key applications include 5G network planning, network visualization, outage management, geolocation, mobile network optimization, and smart infrastructure planning. The GIS industry caters to major industries, including agriculture, oil & gas, architecture, engineering, construction, mining, utilities, retail, healthcare, government, and smart city planning. GIS solutions facilitate real-time data management, spatial information, and non-spatial information, offering enterprise solutions and transportation applications.
    

    Get a glance at the market report of share of variou

  12. Facility Mapping Solutions for COVID-19 Recovery

    • coronavirus-disasterresponse.hub.arcgis.com
    • coronavirus-resources.esri.com
    Updated Jun 16, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri’s Disaster Response Program (2020). Facility Mapping Solutions for COVID-19 Recovery [Dataset]. https://coronavirus-disasterresponse.hub.arcgis.com/documents/c0652eb993a14f0fa375211a3a5f2d78
    Explore at:
    Dataset updated
    Jun 16, 2020
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri’s Disaster Response Program
    Description

    With the White House release of guidelines for states to reopen and employees to gradually return to work, facilities are tasked with complex challenges. Managers must make decisions to ensure a safe work environment and adhere to social distancing requirements. Office layouts must be restructured for adequate spacing between workspaces and to allow for routing that minimizes close-proximity encounters. Clear communication with staff will also be a key factor: Which areas should be avoided? When has an area last be cleaned?The ArcGIS Indoors system from Esri can help answer these geospatially focused questions for reopening the workplace. With indoor maps and an indoor positioning system, managers can create a floor-plan level awareness of the workplace, one that will allow for safe reopening._Communities around the world are taking strides in mitigating the threat that COVID-19 (coronavirus) poses. Geography and location analysis have a crucial role in better understanding this evolving pandemic.When you need help quickly, Esri can provide data, software, configurable applications, and technical support for your emergency GIS operations. Use GIS to rapidly access and visualize mission-critical information. Get the information you need quickly, in a way that’s easy to understand, to make better decisions during a crisis.Esri’s Disaster Response Program (DRP) assists with disasters worldwide as part of our corporate citizenship. We support response and relief efforts with GIS technology and expertise.More information...

  13. W

    Tennessee Department of Environment and Conservation Interactive Mapping...

    • cloud.csiss.gmu.edu
    • data.amerigeoss.org
    • +1more
    html
    Updated Aug 8, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Energy Data Exchange (2019). Tennessee Department of Environment and Conservation Interactive Mapping Portal [Dataset]. https://cloud.csiss.gmu.edu/uddi/dataset/tennessee-department-of-environment-and-conservation-interactive-mapping-portal
    Explore at:
    htmlAvailable download formats
    Dataset updated
    Aug 8, 2019
    Dataset provided by
    Energy Data Exchange
    Area covered
    Tennessee
    Description

    TDEC is continuously striving to create better business practices through GIS and one way that we have found to provide information and answer some question is utilizing an interactive map. An interactive map is a display of geospatial data that allows you to manipulate and query the contents to get the information needed using a set of provided tools. Interactive maps are created using GIS software, and then distributed to users, usually over a computer network. The TDEC Land and Water interactive map will allow you to do simple tasks such as pan, zoom, measure and find a lat/long, while also giving you the capability of running simple queries to locate land and waters by name, entity, and number. With the ability to turn off and on back ground images such as aerial imagery (both black and white as well as color), we hope that you can find much utility in the tools provided.

  14. M

    Mobile Map Market Report

    • marketreportanalytics.com
    doc, pdf, ppt
    Updated Mar 19, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Report Analytics (2025). Mobile Map Market Report [Dataset]. https://www.marketreportanalytics.com/reports/mobile-map-market-11363
    Explore at:
    pdf, doc, pptAvailable download formats
    Dataset updated
    Mar 19, 2025
    Dataset authored and provided by
    Market Report Analytics
    License

    https://www.marketreportanalytics.com/privacy-policyhttps://www.marketreportanalytics.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The mobile map market is experiencing robust growth, fueled by the increasing penetration of smartphones, the proliferation of location-based services (LBS), and the rising demand for real-time navigation and mapping solutions. The market's Compound Annual Growth Rate (CAGR) of 18.41% from 2019 to 2024 indicates significant expansion, driven by factors such as advancements in augmented reality (AR) mapping, the integration of map data with ride-sharing and delivery applications, and the growing adoption of connected car technologies. This growth is further supported by continuous improvements in mapping accuracy, the development of offline map functionalities, and the increasing integration of mobile maps with other applications and services, enhancing user experience and functionality. The market segmentation by type (e.g., 2D, 3D) and application (e.g., navigation, gaming, location-based advertising) reveals diverse opportunities for market players. Leading companies are focusing on strategic partnerships, acquisitions, and technological innovations to gain a competitive edge and cater to the evolving needs of consumers. Regional variations in market growth are expected, with North America and Asia-Pacific likely to remain dominant due to high smartphone adoption rates and advanced technological infrastructure. The future of the mobile map market hinges on continued technological advancements, such as the development of highly accurate and detailed 3D maps, the integration of artificial intelligence (AI) for improved route optimization and personalized experiences, and the increasing utilization of 5G networks to enhance data speed and reliability. The market will also be shaped by evolving consumer preferences for personalized and immersive map experiences, the expansion of the Internet of Things (IoT), and the increasing importance of data privacy and security. This presents both opportunities and challenges for market players who need to adapt their strategies to stay ahead of the curve and meet the evolving expectations of users. The competitive landscape is characterized by both established players and emerging startups, resulting in increased innovation and competition within the market.

  15. Healthcare Data

    • caliper.com
    cdf, dwg, dxf, gdb +9
    Updated Jul 25, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caliper Corporation (2024). Healthcare Data [Dataset]. https://www.caliper.com/mapping-software-data/maptitude-healthcare-data.htm
    Explore at:
    sql server mssql, ntf, postgis, cdf, kmz, shp, kml, geojson, dwg, sdo, dxf, gdb, postgresqlAvailable download formats
    Dataset updated
    Jul 25, 2024
    Dataset authored and provided by
    Caliper Corporationhttp://www.caliper.com/
    License

    https://www.caliper.com/license/maptitude-license-agreement.htmhttps://www.caliper.com/license/maptitude-license-agreement.htm

    Time period covered
    2024
    Area covered
    United States
    Description

    Healthcare Data for use with GIS mapping software, databases, and web applications are from Caliper Corporation and contain point geographic files of healthcare organizations, providers, and hospitals and an boundary file of Primary Care Service Areas.

  16. Global Business Process Mapping Software Market Size By Deployment Type, By...

    • verifiedmarketresearch.com
    Updated Aug 26, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    VERIFIED MARKET RESEARCH (2024). Global Business Process Mapping Software Market Size By Deployment Type, By Industry Vertical, By Features, By Geographic Scope And Forecast [Dataset]. https://www.verifiedmarketresearch.com/product/business-process-mapping-software-market/
    Explore at:
    Dataset updated
    Aug 26, 2024
    Dataset provided by
    Verified Market Researchhttps://www.verifiedmarketresearch.com/
    Authors
    VERIFIED MARKET RESEARCH
    License

    https://www.verifiedmarketresearch.com/privacy-policy/https://www.verifiedmarketresearch.com/privacy-policy/

    Time period covered
    2024 - 2031
    Area covered
    Global
    Description

    Business Process Mapping Software Market size was valued at USD 50 Billion in 2023 and is projected to reach USD 82 Billion by 2031, growing at a CAGR of 6.03% during the forecast period 2024-2031.

    Global Business Process Mapping Software Market Drivers

    Increasing Demand for Process Optimization: Businesses are continuously looking for ways to streamline operations and enhance efficiency. Process mapping software helps organizations visualize and analyze their current processes, leading to improved workflow and productivity.
    Digital Transformation: The shift towards digitalization in various industries necessitates effective process mapping. Organizations are adopting digital tools to map their processes, identify bottlenecks, and improve overall performance, driving demand for specialized software.

    Global Business Process Mapping Software Market Restraints

    High Initial Investment: Many businesses, especially small and medium-sized enterprises (SMEs), may find the initial costs of implementing business process mapping software prohibitive.
    Complexity of Integration: Integrating business process mapping software with existing systems and processes can be complex and resource-intensive, which may deter companies from adopting such solutions.

  17. n

    MapSAR Template Feature Layer

    • prep-response-portal.napsgfoundation.org
    • data-napsg.opendata.arcgis.com
    • +3more
    Updated Oct 21, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NAPSG Foundation (2017). MapSAR Template Feature Layer [Dataset]. https://prep-response-portal.napsgfoundation.org/maps/f412081560ec4074ac16e2161f7d5def
    Explore at:
    Dataset updated
    Oct 21, 2017
    Dataset authored and provided by
    NAPSG Foundation
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    IMPORTANT: This is the source of the feature layer template in the LearnArcGIS Lesson: Prepare for SAR Incidents and for the MapSAR Solution. If this layer is cloned or copied, the owner of the items needs to update the item details to reflect this. Purpose: This is a feature layer template for use in missing person search operations. It is based on the MapSAR (ArcGIS Desktop) Data Model but simplified for use in web maps and apps. Please see MapSAR GitHub for more information on this project.Maps are at the core of any Search and Rescue (SAR) operation. Geographic information system (GIS) software allows rescue personnel to quickly generate maps that depict specific aspects of the operation and show what is happening on the ground over time. The maps and operations data can be shared over a network to supply an enhanced common operating picture throughout the Incident Command Post (ICP). A team of GIS and SAR professionals from Sierra Madre Search and Rescue Team, Esri, Sequoia and Kings Canyon National Park, Yosemite National Park, Grand Canyon National Park, and the Mountaineer Rescue Group came together to develop the tools and instructions to fit established SAR workflows. The goal is to meet the critical need to provide standards, documents, and training to the international SAR community and establish more widespread and effective integration of GIS into operations.See Comments below for updates to the data model.

  18. S

    Sales Mapping Software Report

    • marketresearchforecast.com
    doc, pdf, ppt
    Updated Mar 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Market Research Forecast (2025). Sales Mapping Software Report [Dataset]. https://www.marketresearchforecast.com/reports/sales-mapping-software-27181
    Explore at:
    pdf, ppt, docAvailable download formats
    Dataset updated
    Mar 4, 2025
    Dataset authored and provided by
    Market Research Forecast
    License

    https://www.marketresearchforecast.com/privacy-policyhttps://www.marketresearchforecast.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global sales mapping software market, valued at $2337.7 million in 2025, is poised for substantial growth. The market's expansion is fueled by several key drivers. Increasing adoption of cloud-based solutions offers scalability and cost-effectiveness, attracting both large enterprises and SMEs. Furthermore, the rising need for efficient territory management and optimized sales force productivity drives demand for sophisticated mapping software. Integration with CRM systems streamlines sales processes, providing a single source of truth for customer data and sales performance. The market is segmented by software type (GIS, CRM integration, and other) and application (large enterprises and SMEs). The geographic segmentation reveals strong growth potential across North America and Europe, driven by early adoption and well-established tech infrastructure. However, Asia-Pacific is expected to witness significant expansion in the coming years due to increasing digitalization and the growth of e-commerce. Competitive pressures are present, with numerous vendors offering varying levels of functionality and pricing. However, continued innovation in areas like AI-driven sales route optimization and predictive analytics is likely to further propel market growth. While precise CAGR data is missing, considering the dynamic nature of the software market and the factors driving growth, a conservative estimate of 10-15% CAGR over the forecast period (2025-2033) appears reasonable. This reflects a healthy market expansion driven by ongoing technological advancements and the increasing strategic importance of sales force optimization for businesses across various industries. The market's maturity level and the presence of established players suggest a moderate growth trajectory, avoiding overly optimistic projections. The restraints might include high initial investment costs for some solutions and the need for effective training and integration to realize full benefits, potentially slowing down adoption among some smaller businesses. However, the overall market outlook remains optimistic, with significant opportunities for both established and emerging vendors.

  19. d

    Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky (NPS, GRD,...

    • catalog.data.gov
    • gimi9.com
    Updated Jun 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky (NPS, GRD, GRI, MACA, MACV digital map) adapted from a U.S. Geological Survey Geologic Quadrangle Map by Haynes (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-the-mammoth-cave-quadrangle-kentucky-nps-grd-gri-maca-macv-dig
    Explore at:
    Dataset updated
    Jun 4, 2024
    Dataset provided by
    National Park Service
    Area covered
    Mammoth Cave, Kentucky
    Description

    The Digital Geologic-GIS Map of the Mammoth Cave Quadrangle, Kentucky is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (macv_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (macv_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (macv_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) a readme file (maca_abli_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (maca_abli_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (macv_geology_metadata_faq.pdf). Please read the maca_abli_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (macv_geology_metadata.txt or macv_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

  20. 3

    3D Mapping Modelling Market Report

    • promarketreports.com
    doc, pdf, ppt
    Updated Feb 1, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Pro Market Reports (2025). 3D Mapping Modelling Market Report [Dataset]. https://www.promarketreports.com/reports/3d-mapping-modelling-market-10299
    Explore at:
    doc, pdf, pptAvailable download formats
    Dataset updated
    Feb 1, 2025
    Dataset authored and provided by
    Pro Market Reports
    License

    https://www.promarketreports.com/privacy-policyhttps://www.promarketreports.com/privacy-policy

    Time period covered
    2025 - 2033
    Area covered
    Global
    Variables measured
    Market Size
    Description

    The global 3D mapping and modeling market is expected to grow significantly in the next few years as demand increases for detailed and accurate representations of physical environments in three-dimensional space. Estimated to be valued at USD 38.62 billion in the year 2025, the market was expected to grow at a CAGR of 14.5% from 2025 to 2033 and was estimated to reach an amount of USD 90.26 billion by the end of 2033. The high growth rate is because of improvement in advanced technologies with the development of high-resolution sensors and methods of photogrammetry that make possible higher-resolution realistic and immersive 3D models.Key trends in the market are the adoption of virtual and augmented reality (VR/AR) applications, 3D mapping with smart city infrastructure, and increased architecture, engineering, and construction utilization of 3D models. Other factors are driving the growing adoption of cloud-based 3D mapping and modeling solutions. The solutions promise scalability, cost-effectiveness, and easy access to 3D data, thus appealing to business and organizations of all sizes. Recent developments include: Jun 2023: Nomoko (Switzerland), a leading provider of real-world 3D data technology, announced that it has joined the Overture Maps Foundation, a non-profit organization committed to fostering collaboration and innovation in the geospatial domain. Nomoko will collaborate with Meta, Amazon Web Services (AWS), TomTom, and Microsoft, to create interoperable, accessible 3D datasets, leveraging its real-world 3D modeling capabilities., May 2023: The Sanborn Map Company (Sanborn), an authority in 3D models, announced the development of a powerful new tool, the Digital Twin Base Map. This innovative technology sets a new standard for urban analysis, implementation of Digital Cities, navigation, and planning with a fundamental transformation from a 2D map to a 3D environment. The Digital Twin Base Map is a high-resolution 3D map providing unprecedented detail and accuracy., Feb 2023: Bluesky Geospatial launched the MetroVista, a 3D aerial mapping program in the USA. The service employs a hybrid imaging-Lidar airborne sensor to capture highly detailed 3D data, including 360-degree views of buildings and street-level features, in urban areas to create digital twins, visualizations, and simulations., Feb 2023: Esri, a leading global provider of geographic information system (GIS), location intelligence, and mapping solutions, released new ArcGIS Reality Software to capture the world in 3D. ArcGIS Reality enables site, city, and country-wide 3D mapping for digital twins. These 3D models and high-resolution maps allow organizations to analyze and interact with a digital world, accurately showing their locations and situations., Jan 2023: Strava, a subscription-based fitness platform, announced the acquisition of FATMAP, a 3D mapping platform, to integrate into its app. The acquisition adds FATMAP's mountain-focused maps to Strava's platform, combining with the data already within Strava's products, including city and suburban areas for runners and other fitness enthusiasts., Jan 2023: The 3D mapping platform FATMAP is acquired by Strava. FATMAP applies the concept of 3D visualization specifically for people who like mountain sports like skiing and hiking., Jan 2022: GeoScience Limited (the UK) announced receiving funding from Deep Digital Cornwall (DDC) to develop a new digital heat flow map. The DDC project has received grant funding from the European Regional Development Fund. This study aims to model the heat flow in the region's shallower geothermal resources to promote its utilization in low-carbon heating. GeoScience Ltd wants to create a more robust 3D model of the Cornwall subsurface temperature through additional boreholes and more sophisticated modeling techniques., Aug 2022: In order to create and explore the system's possibilities, CGTrader worked with the online retailer of dietary supplements Hello100. The system has the ability to scale up the generation of more models, and it has enhanced and improved Hello100's appearance on Amazon Marketplace.. Key drivers for this market are: The demand for 3D maps and models is growing rapidly across various industries, including architecture, engineering, and construction (AEC), manufacturing, transportation, and healthcare. Advances in hardware, software, and data acquisition techniques are making it possible to create more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations.

    . Potential restraints include: The acquisition and processing of 3D data can be expensive, especially for large-scale projects. There is a lack of standardization in the 3D mapping modeling industry, which can make it difficult to share and exchange data between different software and systems. There is a shortage of skilled professionals who are able to create and use 3D maps and models effectively.. Notable trends are: 3D mapping and modeling technologies are becoming essential for a wide range of applications, including urban planning, architecture, construction, environmental management, and gaming. Advancements in hardware, software, and data acquisition techniques are enabling the creation of more accurate, detailed, and realistic 3D maps and models. Digital twins, which are virtual representations of real-world assets or systems, are driving the demand for 3D mapping and modeling technologies for the creation of accurate and up-to-date digital representations..

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
National Park Service (2024). Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964) [Dataset]. https://catalog.data.gov/dataset/digital-geologic-gis-map-of-sagamore-hill-national-historic-site-and-vicinity-new-york-nps
Organization logo

Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York (NPS, GRD, GRI, SAHI, SAHI digital map) adapted from U.S. Geological Survey Water-Supply Paper maps by Isbister (1966) and Lubke (1964)

Explore at:
Dataset updated
Jun 5, 2024
Dataset provided by
National Park Servicehttp://www.nps.gov/
Area covered
New York
Description

The Digital Geologic-GIS Map of Sagamore Hill National Historic Site and Vicinity, New York is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (sahi_geology.gdb), a 2.) Open Geospatial Consortium (OGC) geopackage, and 3.) 2.2 KMZ/KML file for use in Google Earth, however, this format version of the map is limited in data layers presented and in access to GRI ancillary table information. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (sahi_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (sahi_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). The OGC geopackage is supported with a QGIS project (.qgz) file. Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (sahi_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (sahi_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (sahi_geology_metadata_faq.pdf). Please read the sahi_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. Google Earth software is available for free at: https://www.google.com/earth/versions/. QGIS software is available for free at: https://www.qgis.org/en/site/. Users are encouraged to only use the Google Earth data for basic visualization, and to use the GIS data for any type of data analysis or investigation. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (sahi_geology_metadata.txt or sahi_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:62,500 and United States National Map Accuracy Standards features are within (horizontally) 31.8 meters or 104.2 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in Google Earth, ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).

Search
Clear search
Close search
Google apps
Main menu