Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is available for download from: Wetlands (File Geodatabase).
Wetlands in California are protected by several federal and state laws, regulations, and policies. This layer was extracted from the broader land cover raster from the CA Nature project which was recently enhanced to include a more comprehensive definition of wetland. This wetlands dataset is used as an exclusion as part of the biological planning priorities in the CEC 2023 Land-Use Screens.
This layer is featured in the CEC 2023 Land-Use Screens for Electric System Planning data viewer.
For more information about this layer and its use in electric system planning, please refer to the Land Use Screens Staff Report in the CEC Energy Planning Library.
Change Log
Version 1.1 (January 26, 2023)
Facebook
TwitterThe WMTS implementation standard provides a standards-based solution for serviing digital maps using predefined image tiles. Through the constructs of the specification, a WMTS service advertises imagery layers (e.g. imagery product) and defines the coordinate reference system, scale, and tiling grid available for access.
Facebook
TwitterThe WMTS implementation standard provides a standards-based solution for serviing digital maps using predefined image tiles. Through the constructs of the specification, a WMTS service advertises imagery layers (e.g. imagery product) and defines the coordinate reference system, scale, and tiling grid available for access.
Facebook
TwitterThis hosted tile layer provides aerial imagery for the City of Tempe. Imagery was taken in September 2023 and published April 2024.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is available for download from: Parcelization (File Geodatabase)
Parcelization, a measure of size and density of parcels in a localized area, is a development feasibility factor that is used in evaluating substations’ ability to support new utility-scale resources in long-term energy planning. A statewide dataset of parcel boundaries are used to develop this index. The parcels are converted into a 90-meter raster, containing values of a unique identifier reflective of Parcel APN. A focal statistics tool is used to count the number of unique parcels within a 0.5 mile radius of each parcel. This output is provided here and is an intermediate output to the final parcelization map. Users who wish to use this information to produce the final map should overlay parcel boundary data and extract the mean raster value within each parcel.
The map is limited to the area considered with solar technical resource potential after a minimum set of land-use screens (referred to as the Base Exclusions) has been applied.
More information on the methods developing this dataset as well as the main use of this dataset in state electric system planning processes can be found in a recent <a href='https://www.energy.ca.gov/publications/2023/calculating-parcelization-electric-system-planning' style='color:rgb(0, 97, 155);
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
(Link to Metadata) High resolution land cover dataset for Vermont. Eight land cover classes were mapped: (1) tree canopy, (2) grass/shrub, (3) bare earth, (4) water, (5) buildings, (6) roads, (7) other paved surfaces, and (8) railroads. The primary sources used to derive this land cover layer were 2013-2017 LiDAR data and 2016 NAIP imagery. Ancillary data sources included GIS data provided by the State of Vermont or created by the UVM Spatial Analysis Laboratory. Object-based image analysis techniques (OBIA) were employed to extract land cover information using the best available remotely sensed and vector GIS datasets. OBIA systems work by grouping pixels into meaningful objects based on their spectral and spatial properties, while taking into account boundaries imposed by existing vector datasets. Within the OBIA environment a rule-based expert system was designed to effectively mimic the process of manual image analysis by incorporating the elements of image interpretation (color/tone, texture, pattern, location, size, and shape) into the classification process. A series of morphological procedures were employed to ensure that the end product is both accurate and cartographically pleasing. Following the automated OBIA mapping a detailed manual review of the dataset was carried out at a scale of 1:3000 and all observable errors were corrected.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.
This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.
The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).
Most of the imagery in the composite imagery from 2017 - 2021.
Method:
The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.
The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.
The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.
To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.
Single merged composite GeoTiff:
The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.
The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.
The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.
Source datasets:
Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5
Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895
Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.
AIMS Coral Sea Features (2022) - DRAFT
This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp
Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
This is the high resolution imagery used to create the map of Mer.
World_AIMS_Marine-satellite-imagery
The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.
Data Location:
This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.
Change Log:
2025-05-12: Eric Lawrey
Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.
2025-02-04: Eric Lawrey
Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.
2023-11-22: Eric Lawrey
Added the data and maps for close up of Mer.
- 01-data/TS_DNRM_Mer-aerial-imagery/
- preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
- exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.
2023-03-02: Eric Lawrey
Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.
Facebook
TwitterThis map features recent high-resolution National Agriculture Imagery Program (NAIP) imagery for the United States and is optimized for display quality and performance. The map also includes a reference layer.This NAIP imagery is from the USDA Farm Services Agency. The NAIP imagery in this layer has been visually enhanced and published as a tile layer for optimal display performance.NAIP imagery collection occurs on an annual basis during the agricultural growing season in the continental United States. Approximately half of the US is collected each year and each state is typically collected every other year. The NAIP program aims to make the imagery available to governmental agencies and to the public within a year of collection.This layer will be updated each year, as the latest imagery is received and processed. Currently, it is primarily composed of NAIP imagery from 2018 and 2019.Use the NAIP Imagery Metadata layer as an overlay to access detailed information about each image in this tile layer. With the metadata layer, a user can point and click any location within the continental US to access information such as collection date and resolution for the imagery at that location.While this tile layer is intended for visualization, the Living Atlas also provides the following NAIP layers for image analysis:USA NAIP Imagery: Natural ColorUSA NAIP Imagery: Color InfraredUSA NAIP Imagery: NDVI
Facebook
TwitterA forecast map layer covering the UK showing precipitation. Precipitation is any product of the condensation of atmospheric water vapour that falls under gravity. The main forms of precipitation include drizzle, rain, sleet, snow and hail. Single tile map layer images are provided three hourly from T+0 to T+36. The map layer is provided without a map, the boundary box for this image is 48 to 61 degrees north and 12 degrees west to 5 degrees east. The image layers are currently made available in a Mercator projection, it is the same projection used by Bing maps, OpenStreetMap, Google maps, MapQuest, Yahoo maps, and others.
Facebook
TwitterThis data set contains high-resolution QuickBird imagery and geospatial data for the entire Barrow QuickBird image area (156.15° W - 157.07° W, 71.15° N - 71.41° N) and Barrow B4 Quadrangle (156.29° W - 156.89° W, 71.25° N - 71.40° N), for use in Geographic Information Systems (GIS) and remote sensing software. The original QuickBird data sets were acquired by DigitalGlobe from 1 to 2 August 2002, and consist of orthorectified satellite imagery. Federal Geographic Data Committee (FGDC)-compliant metadata for all value-added data sets are provided in text, HTML, and XML formats. Accessory layers include: 1:250,000- and 1:63,360-scale USGS Digital Raster Graphic (DRG) mosaic images (GeoTIFF format); 1:250,000- and 1:63,360-scale USGS quadrangle index maps (ESRI Shapefile format); an index map for the 62 QuickBird tiles (ESRI Shapefile format); and a simple polygon layer of the extent of the Barrow QuickBird image area and the Barrow B4 quadrangle area (ESRI Shapefile format). Unmodified QuickBird data comprise 62 data tiles in Universal Transverse Mercator (UTM) Zone 4 in GeoTIFF format. Standard release files describing the QuickBird data are included, along with the DigitalGlobe license agreement and product handbooks. The baseline geospatial data support education, outreach, and multi-disciplinary research of environmental change in Barrow, which is an area of focused scientific interest. Data are provided on four DVDs. This product is available only to investigators funded specifically from the National Science Foundation (NSF), Office of Polar Programs (OPP), Arctic Sciences Section. An NSF OPP award number must be provided when ordering this data.
Facebook
TwitterThis tile service is derived from a digital raster graphic of the historical 15-minute USGS topographic quadrangle maps of coastal towns in Massachusetts. These quadrangles were mosaicked together to create a single data layer of the coast of Massachusetts and a large portion of the southeastern area of the state.The Massachusetts Office of Coastal Zone Management (CZM) obtained the map images from the Harvard Map Collection. The maps were produced in the late 1890s and early 20th century at a scale of 1:62,500 or 1:63,360 and are commonly known as 15-minute quadrangle maps because each map covers a four-sided area of 15 minutes of latitude and 15 minutes of longitude.
Facebook
TwitterA map overlay showing a forecast of total cloud cover for the UK. Single tile map layer images are provided three hourly from T+0 to T+36.
Facebook
TwitterA map overlay showing screen temperature in degrees centigrade for the UK. Single tile map layer images are provided three hourly from T+0 to T+36. The screen temperature is the ambient temperature without the effect of wind chill or heat from the sun. This allows a consistent measure of temperature without localised effects.
Facebook
TwitterA map overlay showing mean sea level pressure in isobars also known as surface pressure for the UK. Single tile map layer images are provided three hourly from T+0 to T+36.
Facebook
TwitterA set of single tile images in the form of map overlays to show recent rain rates in mm/hour over the UK.
Single tile map layer images are updated every 15 minutes with a 15 minute delay due to processing times.
Facebook
TwitterDescriptionThis is a vector tile layer built from the same data as the Jurisdictional Units Public feature service located here: https://nifc.maps.arcgis.com/home/item.html?id=4107b5d1debf4305ba00e929b7e5971a. This service can be used alone as a fast-drawing background layer, or used in combination with the feature service when Identify and Copy Feature capabilities are needed. At fine zoom levels, the feature service will be needed.OverviewThe Jurisdictional Units dataset outlines wildland fire jurisdictional boundaries for federal, state, and local government entities on a national scale and is used within multiple wildland fire systems including the Wildland Fire Decision Support System (WFDSS), the Interior Fuels and Post-Fire Reporting System (IFPRS), the Interagency Fuels Treatment Decision Support System (IFTDSS), the Interagency Fire Occurrence Reporting Modules (InFORM), the Interagency Reporting of Wildland Fire Information System (IRWIN), and the Wildland Computer-Aided Dispatch Enterprise System (WildCAD-E).In this dataset, agency and unit names are an indication of the primary manager’s name and unit name, respectively, recognizing that:There may be multiple owner names.Jurisdiction may be held jointly by agencies at different levels of government (ie State and Local), especially on private lands, Some owner names may be blocked for security reasons.Some jurisdictions may not allow the distribution of owner names. Private ownerships are shown in this layer with JurisdictionalUnitIID=null, JurisdictionalKind=null, and LandownerKind="Private", LandownerCategory="Private". All land inside the US country boundary is covered by a polygon.Jurisdiction for privately owned land varies widely depending on state, county, or local laws and ordinances, fire workload, and other factors, and is not available in a national dataset in most cases.For publicly held lands the agency name is the surface managing agency, such as Bureau of Land Management, United States Forest Service, etc. The unit name refers to the descriptive name of the polygon (i.e. Northern California District, Boise National Forest, etc.).AttributesField NameDefinitionGeometryIDPrimary key for linking geospatial objects with other database systems. Required for every feature. Not populated for Census Block Groups.JurisdictionalUnitIDWhere it could be determined, this is the NWCG Unit Identifier (Unit ID). Where it is unknown, the value is ‘Null’. Null Unit IDs can occur because a unit may not have a Unit ID, or because one could not be reliably determined from the source data. Not every land ownership has an NWCG Unit ID. Unit ID assignment rules are available in the Unit ID standard.JurisdictionalUnitID_sansUSNWCG Unit ID with the "US" characters removed from the beginning. Provided for backwards compatibility.JurisdictionalUnitNameThe name of the Jurisdictional Unit. Where an NWCG Unit ID exists for a polygon, this is the name used in the Name field from the NWCG Unit ID database. Where no NWCG Unit ID exists, this is the “Unit Name” or other specific, descriptive unit name field from the source dataset. A value is populated for all polygons except for Census Blocks Group and for PAD-US polygons that did not have an associated name.LocalNameLocal name for the polygon provided from agency authoritative data, PAD-US, or other source.JurisdictionalKindDescribes the type of unit jurisdiction using the NWCG Landowner Kind data standard. There are two valid values: Federal, Other, and Private. A value is not populated for Census Block Groups.JurisdictionalCategoryDescribes the type of unit jurisdiction using the NWCG Landowner Category data standard. Valid values include: BIA, BLM, BOR, DOD, DOE, NPS, USFS, USFWS, Foreign, Tribal, City, County, State, OtherLoc (other local, not in the standard), Private, and ANCSA. A value is not populated for Census Block Groups.LandownerKindThe landowner kind value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. Legal values align with the NWCG Landowner Kind data standard. A value is populated for all polygons.LandownerCategoryThe landowner category value associated with the polygon. May be inferred from jurisdictional agency, or by lack of a jurisdictional agency. Legal values align with the NWCG Landowner Category data standard. A value is populated for all polygons.LandownerDepartmentFederal department information that aligns with a unit’s landownerCategory information. Legal values include: Department of Agriculture, Department of Interior, Department of Defense, and Department of Energy. A value is not populated for all polygons.DataSourceThe database from which the polygon originated. An effort is made to be as specific as possible (i.e. identify the geodatabase name and feature class in which the polygon originated).SecondaryDataSourceIf the DataSource field is an aggregation from other sources, use this field to specify the source that supplied data to the aggregation. For example, if DataSource is "PAD-US 4.0", then for a TNC polygon, the SecondaryDataSource would be " TNC_PADUS2_0_SA2015_Public_gdb ".SourceUniqueIDIdentifier (GUID or ObjectID) in the data source. Used to trace the polygon back to its authoritative source.DataSourceYearYear that the source data for the polygon were acquired.MapMethodControlled vocabulary to define how the geospatial feature was derived. MapMethod will be Mixed Methods by default for this layer as the data are from mixed sources. Valid Values include: GPS-Driven; GPS-Flight; GPS-Walked; GPS-Walked/Driven; GPS-Unknown Travel Method; Hand Sketch; Digitized-Image; DigitizedTopo; Digitized-Other; Image Interpretation; Infrared Image; Modeled; Mixed Methods; Remote Sensing Derived; Survey/GCDB/Cadastral; Vector; Phone/Tablet; Other.DateCurrentThe last edit, update, of this GIS record. Date should follow the assigned NWCG Date Time data standard, using the 24-hour clock, YYYY-MM-DDhh.mm.ssZ, ISO8601 Standard.CommentsAdditional information describing the feature.JoinMethodAdditional information on how the polygon was matched to information in the NWCG Unit ID database.LegendJurisdictionalCategoryJurisdictionalCategory values grouped for more intuitive use in a map legend or summary table. Census Block Groups are classified as “No Unit”.LegendLandownerCategoryLandownerCategory values grouped for more intuitive use in a map legend or summary table.Other Relevant NWCG Definition StandardsUnitA generic term that represents an organizational entity that only has meaning when it is contextualized by a descriptor, e.g. jurisdictional.Definition Extension: When referring to an organizational entity, a unit refers to the smallest area or lowest level. Higher levels of an organization (region, agency, department, etc.) can be derived from a unit based on organization hierarchy.Unit, JurisdictionalThe governmental entity having overall land and resource management responsibility for a specific geographical area as provided by law.Definition Extension: 1) Ultimately responsible for the fire report to account for statistical fire occurrence; 2) Responsible for setting fire management objectives; 3) Jurisdiction cannot be re-assigned by agreement; 4) The nature and extent of the incident determines jurisdiction (for example, Wildfire vs. All Hazard); 5) Responsible for signing a Delegation of Authority to the Incident Commander.See also: Protecting Unit; LandownerData SourcesThis dataset is an aggregation of multiple spatial data sources: • Authoritative land ownership records from BIA, BLM, NPS, USFS, USFWS, and the Alaska Fire Service/State of Alaska• The Protected Areas Database US (PAD-US 4.0)• Census Block-Group Geometry BIA and Tribal Data:BIA and Tribal land management data were aggregated from BIA regional offices. These data date from 2012 and were reviewed/updated in 2024. Indian Trust Land affiliated with Tribes, Reservations, or BIA Agencies: These data are not considered the system of record and are not intended to be used as such. The Bureau of Indian Affairs (BIA), Branch of Wildland Fire Management (BWFM) is not the originator of these data. The spatial data coverage is a consolidation of the best available records/data received from each of the 12 BIA Regional Offices. The data are no better than the original sources from which they were derived. Care was taken when consolidating these files. However, BWFM cannot accept any responsibility for errors, omissions, or positional accuracy in the original digital data. The information contained in these data is dynamic and is continually changing. Updates to these data will be made whenever such data are received from a Regional Office. The BWFM gives no guarantee, expressed, written, or implied, regarding the accuracy, reliability, or completeness of these data.Alaska:The state of Alaska and Alaska Fire Service (BLM) co-manage a process to aggregate authoritative land ownership, management, and jurisdictional boundary data, based on Master Title Plats. Data ProcessingTo compile this dataset, the authoritative land ownership records and the PAD-US data mentioned above were crosswalked into the Jurisdictional Unit Polygon schema and aggregated through a series of python scripts and FME models. Once aggregated, steps were taken to reduce overlaps within the data. All overlap areas larger than 300 acres were manually examined and removed with the assistance of fire management SMEs. Once overlaps were removed, Census Block Group geometry were crosswalked to the Jurisdictional Unit Polygon schema and appended in areas in which no jurisdictional boundaries were recorded within the authoritative land ownership records and the PAD-US data. Census Block Group geometries represent areas of unknown Landowner Kind/Category and Jurisdictional Kind/Category and were assigned LandownerKind and LandownerCategory values of "Private".Update
Facebook
TwitterThe Department of Information Technology and Telecommunications, GIS Unit, is providing the raw orthoimagery for download. This orthoimagery is used to create the Aerial Photography Tile Layer services described in further detail here: https://maps.nyc.gov/tiles/. Full metadata on the Aerial & Orthoimagery can be found at: https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_AerialImagery.md The 2016 Orthoimagery Tile Index can be used to geo-reference the individual image tiles across the City. (https://data.cityofnewyork.us/City-Government/2016-Orthoimagery-Tile-Index/sms6-sm5p)
Facebook
TwitterThis data set contains ortho-rectified mosaic tiles, created as a product from the NOAA Integrated Ocean and Coastal Mapping (IOCM) initiative of Beaumont, Orange, and Port Author, Texas. The source imagery was acquired on March 12, 2010 and March 13, 2010. The true color images were acquired with an Applanix Digital Sensor System (DSS). Ortho-rectified mosaic tiles are an ancillary product of NOAA's Coastal Mapping Program (CMP), created through a wider Integrated Ocean and Coastal Mapping initiative to increase support for multiple uses of the data. Files are in .his, .tif, and .jpg format with included metadata. The ground sample distance (GSD) for each pixel is 0.35 m.
Ortho-rectified mosaic tiles are not intended for mapping, charting or navigation.
Facebook
TwitterThe Department of Information Technology and Telecommunications, GIS Unit, is providing the raw orthoimagery for download. This orthoimagery is used to create the Aerial Photography Tile Layer services described in further detail here: https://maps.nyc.gov/tiles/. Full metadata on the Aerial & Orthoimagery can be found at: https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_AerialImagery.md The 2016 Orthoimagery Tile Index can be used to geo-reference the individual image tiles across the City (https://data.cityofnewyork.us/City-Government/2016-Orthoimagery-Tile-Index/sms6-sm5p)
Facebook
TwitterThe Department of Information Technology and Telecommunications, GIS Unit, is providing the raw orthoimagery for download. This orthoimagery is used to create the Aerial Photography Tile Layer services described in further detail here: https://maps.nyc.gov/tiles/. Full metadata on the Aerial & Orthoimagery can be found at: https://github.com/CityOfNewYork/nyc-geo-metadata/blob/master/Metadata/Metadata_AerialImagery.md The 2012 Orthoimagery Tile Index can be used to geo-reference the individual image tiles across the City (https://data.cityofnewyork.us/City-Government/2012-Orthoimagery-Tile-Index/aajk-7hbr)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This dataset is available for download from: Wetlands (File Geodatabase).
Wetlands in California are protected by several federal and state laws, regulations, and policies. This layer was extracted from the broader land cover raster from the CA Nature project which was recently enhanced to include a more comprehensive definition of wetland. This wetlands dataset is used as an exclusion as part of the biological planning priorities in the CEC 2023 Land-Use Screens.
This layer is featured in the CEC 2023 Land-Use Screens for Electric System Planning data viewer.
For more information about this layer and its use in electric system planning, please refer to the Land Use Screens Staff Report in the CEC Energy Planning Library.
Change Log
Version 1.1 (January 26, 2023)