100+ datasets found
  1. d

    Imagery and Map Services

    • catalog.data.gov
    • data.cityofnewyork.us
    Updated Nov 1, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    data.cityofnewyork.us (2024). Imagery and Map Services [Dataset]. https://catalog.data.gov/dataset/imagery-and-map-services
    Explore at:
    Dataset updated
    Nov 1, 2024
    Dataset provided by
    data.cityofnewyork.us
    Description

    The Department of Information Technology and Telecommunications, GIS Unit, has created a series of Map Tile Services for use in public web mapping & desktop applications. The link below describes the Basemap, Labels, & Aerial Photographic map services, as well as, how to utilize them in popular JavaScript web mapping libraries and desktop GIS applications. A showcase application, NYC Then&Now (https://maps.nyc.gov/then&now/) is also included on this page.

  2. World Imagery

    • gis-for-secondary-schools-schools-be.hub.arcgis.com
    • inspiracie.arcgeo.sk
    • +6more
    Updated Dec 13, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). World Imagery [Dataset]. https://gis-for-secondary-schools-schools-be.hub.arcgis.com/maps/10df2279f9684e4a9f6a7f08febac2a9
    Explore at:
    Dataset updated
    Dec 13, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources: Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD. Imagery UpdatesYou can use the Updates Mode in the World Imagery Wayback app to learn more about recent and pending updates. Accessing this information requires a user login with an ArcGIS organizational account. CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  3. World Imagery

    • hub.arcgis.com
    • share-open-data-njtpa.hub.arcgis.com
    • +1more
    Updated Dec 12, 2009
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri (2009). World Imagery [Dataset]. https://hub.arcgis.com/maps/10df2279f9684e4a9f6a7f08febac2a9
    Explore at:
    Dataset updated
    Dec 12, 2009
    Dataset authored and provided by
    Esrihttp://esri.com/
    Area covered
    World,
    Description

    World Imagery provides one meter or better satellite and aerial imagery for most of the world’s landmass and lower resolution satellite imagery worldwide. The map is currently comprised of the following sources:Worldwide 15-m resolution TerraColor imagery at small and medium map scales.Maxar imagery basemap products around the world: Vivid Premium at 15-cm HD resolution for select metropolitan areas, Vivid Advanced 30-cm HD for more than 1,000 metropolitan areas, and Vivid Standard from 1.2-m to 0.6-cm resolution for the most of the world, with 30-cm HD across the United States and parts of Western Europe. More information on the Maxar products is included below. High-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 30-cm to 3-cm resolution. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program.Maxar Basemap ProductsVivid PremiumProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product provides 15-cm HD resolution imagery.Vivid AdvancedProvides committed image currency in a high-resolution, high-quality image layer over defined metropolitan and high-interest areas across the globe. The product includes a mix of native 30-cm and 30-cm HD resolution imagery.Vivid StandardProvides a visually consistent and continuous image layer over large areas through advanced image mosaicking techniques, including tonal balancing and seamline blending across thousands of image strips. Available from 1.2-m down to 30-cm HD. More on Maxar HD.Updates and CoverageYou can use the World Imagery Updates app to learn more about recent updates and map coverage.CitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  4. n

    U.S. Geological Survey Aerial Photography

    • cmr.earthdata.nasa.gov
    • s.cnmilf.com
    • +3more
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). U.S. Geological Survey Aerial Photography [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220566204-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Apr 1, 1937 - Present
    Area covered
    Earth
    Description

    The U.S. Geological Survey (USGS) Aerial Photography data set includes over 2.5 million film transparencies. Beginning in 1937, photographs were acquired for mapping purposes at different altitudes using various focal lengths and film types. The resultant black-and-white photographs contain less than 5 percent cloud cover and were acquired under rigid quality control and project specifications (e.g., stereo coverage, continuous area coverage of map or administrative units). Prior to the initiation of the National High Altitude Photography (NHAP) program in 1980, the USGS photography collection was one of the major sources of aerial photographs used for mapping the United States. Since 1980, the USGS has acquired photographs over project areas that require photographs at a larger scale than the photographs in the NHAP and National Aerial Photography Program collections.

  5. n

    Latest Orthoimagery

    • nconemap.gov
    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    • +2more
    Updated Dec 9, 2016
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    NC OneMap / State of North Carolina (2016). Latest Orthoimagery [Dataset]. https://www.nconemap.gov/datasets/c5b316f805ab4d74bf7b598220ac5558
    Explore at:
    Dataset updated
    Dec 9, 2016
    Dataset authored and provided by
    NC OneMap / State of North Carolina
    License

    https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms

    Area covered
    Description

    NOTE: DO NOT DOWNLOAD THE IMAGERY BY USING THE MAP OR DOWNLOAD TOOLS ON THIS ARCGIS HUB ITEM PAGE. IT WILL RESULT IN A PIXELATED ORTHOIMAGE. INSTEAD, DOWNLOAD THE IMAGERY BY TILE OR BY COUNTY MOSAIC (2010 - current year).This service contains the most recent imagery collected by the NC Orthoimagery Program for any given area of North Carolina. The imagery has a pixel resolution of 6 inches with an RMSE of 1.0 ft X and Y. Individual pixel values may have been altered during image processing. Therefore, this service should be used for general reference and viewing. Image analysis requiring examination of individual pixel values is discouraged.

  6. n

    USGS High Resolution Orthoimagery

    • cmr.earthdata.nasa.gov
    • catalog.data.gov
    Updated Jan 29, 2016
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2016). USGS High Resolution Orthoimagery [Dataset]. https://cmr.earthdata.nasa.gov/search/concepts/C1220567548-USGS_LTA.html
    Explore at:
    Dataset updated
    Jan 29, 2016
    Time period covered
    Jan 1, 1970 - Present
    Area covered
    Earth
    Description

    High resolution orthorectified images combine the image characteristics of an aerial photograph with the geometric qualities of a map. An orthoimage is a uniform-scale image where corrections have been made for feature displacement such as building tilt and for scale variations caused by terrain relief, sensor geometry, and camera tilt. A mathematical equation based on ground control points, sensor calibration information, and a digital elevation model is applied to each pixel to rectify the image to obtain the geometric qualities of a map.

    A digital orthoimage may be created from several photographs mosaicked to form the final image. The source imagery may be black-and-white, natural color, or color infrared with a pixel resolution of 1-meter or finer. With orthoimagery, the resolution refers to the distance on the ground represented by each pixel.

  7. Aerial Image Index Web Map

    • arc-garc.opendata.arcgis.com
    • opendata.atlantaregional.com
    • +1more
    Updated Jan 24, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Dunwoody ArcGIS Online (2017). Aerial Image Index Web Map [Dataset]. https://arc-garc.opendata.arcgis.com/maps/be29a18e512c4b37b04523b2eb55312d
    Explore at:
    Dataset updated
    Jan 24, 2017
    Dataset provided by
    https://arcgis.com/
    Authors
    Dunwoody ArcGIS Online
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    Zoom to desired area, click in the map and click the link to download 2016 Aerial Imagery at 3" resolution of the selected Index Grid. Image downloads are a .zip MrSid file with the .sid and the .sdw. The .sdw contains the georeferencing information for the .sid image.

    Download the entire imagery for Dunwoody here: https://dungis.dunwoodyga.gov/SIDZIP/

    Download / Reference / get a spreadsheet of the Image Index Grid Polygon here: https://get-dunwoody.opendata.arcgis.com/datasets/aerial-image-index-grid-layer

  8. AK RGB High Resolution Imagery (50cm)

    • gis.data.alaska.gov
    • statewide-geoportal-1-soa-dnr.hub.arcgis.com
    Updated Jan 21, 2021
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Alaska Department of Natural Resources ArcGIS Online (2021). AK RGB High Resolution Imagery (50cm) [Dataset]. https://gis.data.alaska.gov/maps/13dd1ccf165845eea5db36465e7d565c
    Explore at:
    Dataset updated
    Jan 21, 2021
    Dataset provided by
    https://arcgis.com/
    Authors
    Alaska Department of Natural Resources ArcGIS Online
    Area covered
    Description

    Suggested use: Use tiled Map Service for large scale mapping when high resolution color imagery is needed.A web app to view tile and block metadata such as year, sensor, and cloud cover can be found here. CoverageState of AlaskaProduct TypeTile CacheImage BandsRGBSpatial Resolution50cmAccuracy5m CE90 or betterCloud Cover<10% overallOff Nadir Angle<30 degreesSun Elevation>30 degreesWMS version of this data: https://geoportal.alaska.gov/arcgis/services/ahri_2020_rgb_cache/MapServer/WMSServer?request=GetCapabilities&service=WMSWMTS version of this data:https://geoportal.alaska.gov/arcgis/rest/services/ahri_2020_rgb_cache/MapServer/WMTS/1.0.0/WMTSCapabilities.xml

  9. Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021...

    • researchdata.edu.au
    Updated Oct 1, 2022
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Lawrey, Eric, Dr; Lawrey, Eric, Dr (2022). Torres Strait Sentinel 2 Satellite Regional Maps and Imagery 2015 – 2021 (AIMS) [Dataset]. http://doi.org/10.26274/3CGE-NV85
    Explore at:
    Dataset updated
    Oct 1, 2022
    Dataset provided by
    Australian Institute Of Marine Sciencehttp://www.aims.gov.au/
    Australian Ocean Data Network
    Authors
    Lawrey, Eric
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Time period covered
    Oct 1, 2015 - Mar 1, 2022
    Area covered
    Description

    This dataset contains both large (A0) printable maps of the Torres Strait broken into six overlapping regions, based on a clear sky, clear water composite Sentinel 2 composite imagery and the imagery used to create these maps. These maps show satellite imagery of the region, overlaid with reef and island boundaries and names. Not all features are named, just the more prominent features. This also includes a vector map of Ashmore Reef and Boot Reef in Coral Sea as these were used in the same discussions that these maps were developed for. The map of Ashmore Reef includes the atoll platform, reef boundaries and depth polygons for 5 m and 10 m.

    This dataset contains all working files used in the development of these maps. This includes all a copy of all the source datasets and all derived satellite image tiles and QGIS files used to create the maps. This includes cloud free Sentinel 2 composite imagery of the Torres Strait region with alpha blended edges to allow the creation of a smooth high resolution basemap of the region.

    The base imagery is similar to the older base imagery dataset: Torres Strait clear sky, clear water Landsat 5 satellite composite (NERP TE 13.1 eAtlas, AIMS, source: NASA).

    Most of the imagery in the composite imagery from 2017 - 2021.


    Method:
    The Sentinel 2 basemap was produced by processing imagery from the World_AIMS_Marine-satellite-imagery dataset (01-data/World_AIMS_Marine-satellite-imagery in the data download) for the Torres Strait region. The TrueColour imagery for the scenes covering the mapped area were downloaded. Both the reference 1 imagery (R1) and reference 2 imagery (R2) was copied for processing. R1 imagery contains the lowest noise, most cloud free imagery, while R2 contains the next best set of imagery. Both R1 and R2 are typically composite images from multiple dates.

    The R2 images were selectively blended using manually created masks with the R1 images. This was done to get the best combination of both images and typically resulted in a reduction in some of the cloud artefacts in the R1 images. The mask creation and previewing of the blending was performed in Photoshop. The created masks were saved in 01-data/R2-R1-masks. To help with the blending of neighbouring images a feathered alpha channel was added to the imagery. The processing of the merging (using the masks) and the creation of the feathered borders on the images was performed using a Python script (src/local/03-merge-R2-R1-images.py) using the Pillow library and GDAL. The neighbouring image blending mask was created by applying a blurring of the original hard image mask. This allowed neighbouring image tiles to merge together.

    The imagery and reference datasets (reef boundaries, EEZ) were loaded into QGIS for the creation of the printable maps.

    To optimise the matching of the resulting map slight brightness adjustments were applied to each scene tile to match its neighbours. This was done in the setup of each image in QGIS. This adjustment was imperfect as each tile was made from a different combinations of days (to remove clouds) resulting in each scene having a different tonal gradients across the scene then its neighbours. Additionally Sentinel 2 has slight stripes (at 13 degrees off the vertical) due to the swath of each sensor having a slight sensitivity difference. This effect was uncorrected in this imagery.


    Single merged composite GeoTiff:
    The image tiles with alpha blended edges work well in QGIS, but not in ArcGIS Pro. To allow this imagery to be used across tools that don't support the alpha blending we merged and flattened the tiles into a single large GeoTiff with no alpha channel. This was done by rendering the map created in QGIS into a single large image. This was done in multiple steps to make the process manageable.

    The rendered map was cut into twenty 1 x 1 degree georeferenced PNG images using the Atlas feature of QGIS. This process baked in the alpha blending across neighbouring Sentinel 2 scenes. The PNG images were then merged back into a large GeoTiff image using GDAL (via QGIS), removing the alpha channel. The brightness of the image was adjusted so that the darkest pixels in the image were 1, saving the value 0 for nodata masking and the boundary was clipped, using a polygon boundary, to trim off the outer feathering. The image was then optimised for performance by using internal tiling and adding overviews. A full breakdown of these steps is provided in the README.md in the 'Browse and download all data files' link.

    The merged final image is available in export\TS_AIMS_Torres Strait-Sentinel-2_Composite.tif.


    Source datasets:
    Complete Great Barrier Reef (GBR) Island and Reef Feature boundaries including Torres Strait Version 1b (NESP TWQ 3.13, AIMS, TSRA, GBRMPA), https://eatlas.org.au/data/uuid/d2396b2c-68d4-4f4b-aab0-52f7bc4a81f5

    Geoscience Australia (2014b), Seas and Submerged Lands Act 1973 - Australian Maritime Boundaries 2014a - Geodatabase [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, https://dx.doi.org/10.4225/25/5539DFE87D895

    Basemap/AU_GA_AMB_2014a/Exclusive_Economic_Zone_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014a). The Geodatabase was loaded in ArcMap. The Exclusive_Economic_Zone_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    Geoscience Australia (2014a), Treaties - Australian Maritime Boundaries (AMB) 2014a [Dataset]. Canberra, Australia: Author. https://creativecommons.org/licenses/by/4.0/ [license]. Sourced on 12 July 2017, http://dx.doi.org/10.4225/25/5539E01878302
    Basemap/AU_GA_Treaties-AMB_2014a/Papua_New_Guinea_TSPZ_AMB2014a_Limit.shp
    The original data was obtained from GA (Geoscience Australia, 2014b). The Geodatabase was loaded in ArcMap. The Papua_New_Guinea_TSPZ_AMB2014a_Limit layer was loaded and exported as a shapefile. Since this file was small no clipping was applied to the data.

    AIMS Coral Sea Features (2022) - DRAFT
    This is a draft version of this dataset. The region for Ashmore and Boot reef was checked. The attributes in these datasets haven't been cleaned up. Note these files should not be considered finalised and are only suitable for maps around Ashmore Reef. Please source an updated version of this dataset for any other purpose.
    CS_AIMS_Coral-Sea-Features/CS_Names/Names.shp
    CS_AIMS_Coral-Sea-Features/CS_Platform_adj/CS_Platform.shp
    CS_AIMS_Coral-Sea-Features/CS_Reef_Boundaries_adj/CS_Reef_Boundaries.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth5m_Coral-Sea.shp
    CS_AIMS_Coral-Sea-Features/CS_Depth/CS_AIMS_Coral-Sea-Features_Img_S2_R1_Depth10m_Coral-Sea.shp

    Murray Island 20 Sept 2011 15cm SISP aerial imagery, Queensland Spatial Imagery Services Program, Department of Resources, Queensland
    This is the high resolution imagery used to create the map of Mer.

    World_AIMS_Marine-satellite-imagery
    The base image composites used in this dataset were based on an early version of Lawrey, E., Hammerton, M. (2024). Marine satellite imagery test collections (AIMS) [Data set]. eAtlas. https://doi.org/10.26274/zq26-a956. A snapshot of the code at the time this dataset was developed is made available in the 01-data/World_AIMS_Marine-satellite-imagery folder of the download of this dataset.


    Data Location:
    This dataset is filed in the eAtlas enduring data repository at: data\custodian\2020-2029-AIMS\TS_AIMS_Torres-Strait-Sentinel-2-regional-maps. On the eAtlas server it is stored at eAtlas GeoServer\data\2020-2029-AIMS.


    Change Log:
    2025-05-12: Eric Lawrey
    Added Torres-Strait-Region-Map-Masig-Ugar-Erub-45k-A0 and Torres-Strait-Eastern-Region-Map-Landscape-A0. These maps have a brighten satellite imagery to allow easier reading of writing on the maps. They also include markers for geo-referencing the maps for digitisation.

    2025-02-04: Eric Lawrey
    Fixed up the reference to the World_AIMS_Marine-satellite-imagery dataset, clarifying where the source that was used in this dataset. Added ORCID and RORs to the record.

    2023-11-22: Eric Lawrey
    Added the data and maps for close up of Mer.
    - 01-data/TS_DNRM_Mer-aerial-imagery/
    - preview/Torres-Strait-Mer-Map-Landscape-A0.jpeg
    - exports/Torres-Strait-Mer-Map-Landscape-A0.pdf
    Updated 02-Torres-Strait-regional-maps.qgz to include the layout for the new map.

    2023-03-02: Eric Lawrey
    Created a merged version of the satellite imagery, with no alpha blending so that it can be used in ArcGIS Pro. It is now a single large GeoTiff image. The Google Earth Engine source code for the World_AIMS_Marine-satellite-imagery was included to improve the reproducibility and provenance of the dataset, along with a calculation of the distribution of image dates that went into the final composite image. A WMS service for the imagery was also setup and linked to from the metadata. A cross reference to the older Torres Strait clear sky clear water Landsat composite imagery was also added to the record.

  10. a

    Aerial Imagery 2013

    • hub.arcgis.com
    • mapdirect-fdep.opendata.arcgis.com
    Updated Feb 25, 2014
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Florida Department of Environmental Protection (2014). Aerial Imagery 2013 [Dataset]. https://hub.arcgis.com/datasets/78a04581786d451ab9b0fe162bb86196
    Explore at:
    Dataset updated
    Feb 25, 2014
    Dataset authored and provided by
    Florida Department of Environmental Protection
    Area covered
    Description

    This imagery service contains natural color orthophotos covering counties in north Florida that had imagery captured from October 2012 till spring 2013. An orthophoto is remotely sensed image data in which displacement of features in the image caused by terrain relief and sensor orientation have been mathematically removed. Orthophotography combines the image characteristics of a photograph with the geometric qualities of a map. Counties covered in this dataset are: Bay, Bradford, Calhoun, Columbia, Dixie, Duval, Escambia, Franklin, Gadsden, Gilchrist, Gulf, Hamilton, Holmes, Jackson, Jefferson, Lafayette, Levy, Madison, Okaloosa, Palm Beach (partial), Santa Rosa, Suwannee, Taylor, Union, Wakulla, Walton, and Washington. Please contact GIS.Librarian@FloridaDEP.gov for more information.

  11. a

    World Imagery

    • hub.arcgis.com
    Updated Sep 16, 2013
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Eagle Technology Group Ltd (2013). World Imagery [Dataset]. https://hub.arcgis.com/maps/eaglegis::world-imagery/about
    Explore at:
    Dataset updated
    Sep 16, 2013
    Dataset authored and provided by
    Eagle Technology Group Ltd
    Area covered
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. The map features 0.5m resolution imagery in the continental United States and parts of Western Europe from DigitalGlobe. Additional DigitalGlobe sub-meter imagery is featured in many parts of the world. In the United States, 1 meter or better resolution NAIP imagery is available in some areas. In other parts of the world, imagery at different resolutions has been contributed by the GIS User Community. In select communities, very high resolution imagery (down to 0.03m) is available down to ~1:280 scale. You can contribute your imagery to this map and have it served by Esri via the Community Maps Program. View the list of Contributors for the World Imagery Map.CoverageView the links below to learn more about recent updates and map coverage:What's new in World ImageryWorld coverage mapCitationsThis layer includes imagery provider, collection date, resolution, accuracy, and source of the imagery. With the Identify tool in ArcGIS Desktop or the ArcGIS Online Map Viewer you can see imagery citations. Citations returned apply only to the available imagery at that location and scale. You may need to zoom in to view the best available imagery. Citations can also be accessed in the World Imagery with Metadata web map.UseYou can add this layer to the ArcGIS Online Map Viewer, ArcGIS Desktop, or ArcGIS Pro. To view this layer with a useful reference overlay, open the Imagery Hybrid web map. A similar raster web map, Imagery with Labels, is also available.FeedbackHave you ever seen a problem in the Esri World Imagery Map that you wanted to report? You can use the Imagery Map Feedback web map to provide comments on issues. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  12. i

    Imagery

    • indianamap.org
    • noveladata.com
    • +24more
    Updated Feb 19, 2012
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    esri_en (2012). Imagery [Dataset]. https://www.indianamap.org/maps/86de95d4e0244cba80f0fa2c9403a7b2
    Explore at:
    Dataset updated
    Feb 19, 2012
    Dataset authored and provided by
    esri_en
    Area covered
    Earth
    Description

    This map features satellite imagery for the world and high-resolution aerial imagery for many areas. The map is intended to support the ArcGIS Online basemap gallery. For more details on the map, please visit the World Imagery map service description.

  13. d

    NSW Imagery

    • data.gov.au
    • data.nsw.gov.au
    • +1more
    esri mapserver, pdf +3
    Updated Sep 16, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Spatial Services (DCS) (2024). NSW Imagery [Dataset]. https://data.gov.au/dataset/ds-nsw-88b00529-bc95-4dde-b5f0-662b3086eb45
    Explore at:
    pdf, url, xml, wms, esri mapserverAvailable download formats
    Dataset updated
    Sep 16, 2024
    Dataset provided by
    Spatial Services (DCS)
    Area covered
    New South Wales
    Description

    The NSW Imagery web service provides access to a repository of the Spatial Services (DCS) maintained standard imagery covering NSW, plus additional sourced imagery. It depicts an imagery map of NSW …Show full descriptionThe NSW Imagery web service provides access to a repository of the Spatial Services (DCS) maintained standard imagery covering NSW, plus additional sourced imagery. It depicts an imagery map of NSW showing a selection of LANDSAT® satellite imagery, standard 50cm orthorectified imageries, High resolution 10cm Town Imageries. It also contains high resolution imageries within multiple areas of NSW within DFSI, Spatial Services maintained projects and captured by AAM, VEKTA and Jacobs (previously SKM). The image web service is updated periodically when new imageries are available. The imageries are shown progressively from scales larger than 1:150,000 higher resolution imagery overlays lower resolution imagery and most recent imagery overlays older imagery within each resolution. The characteristics of each image such as accuracy, resolution, viewing scale, image format etc varies by sensor, location, capture methodology, source and processing. For specific information about the metadata for the imagery used, please refer to the individual data series within the NSW Data Catalogue. As a consequence of the variety of source data, each map displayed by the user within this map service may have a number of copyright permissions. It is emphasised that the user should check the use constraints for each image data series. NOTE: Please contact the Customer HUB https://customerhub.spatial.nsw.gov.au/ for advice on datasets access.

  14. n

    Satellite images and road-reference data for AI-based road mapping in...

    • data.niaid.nih.gov
    • dataone.org
    • +1more
    zip
    Updated Apr 4, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Sean Sloan; Raiyan Talkhani; Tao Huang; Jayden Engert; William Laurance (2024). Satellite images and road-reference data for AI-based road mapping in Equatorial Asia [Dataset]. http://doi.org/10.5061/dryad.bvq83bkg7
    Explore at:
    zipAvailable download formats
    Dataset updated
    Apr 4, 2024
    Dataset provided by
    Vancouver Island University
    James Cook University
    Authors
    Sean Sloan; Raiyan Talkhani; Tao Huang; Jayden Engert; William Laurance
    License

    https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html

    Area covered
    Asia
    Description

    For the purposes of training AI-based models to identify (map) road features in rural/remote tropical regions on the basis of true-colour satellite imagery, and subsequently testing the accuracy of these AI-derived road maps, we produced a dataset of 8904 satellite image ‘tiles’ and their corresponding known road features across Equatorial Asia (Indonesia, Malaysia, Papua New Guinea). Methods

    1. INPUT 200 SATELLITE IMAGES

    The main dataset shared here was derived from a set of 200 input satellite images, also provided here. These 200 images are effectively ‘screenshots’ (i.e., reduced-resolution copies) of high-resolution true-colour satellite imagery (~0.5-1m pixel resolution) observed using the Elvis Elevation and Depth spatial data portal (https://elevation.fsdf.org.au/), which here is functionally equivalent to the more familiar Google Earth. Each of these original images was initially acquired at a resolution of 1920x886 pixels. Actual image resolution was coarser than the native high-resolution imagery. Visual inspection of these 200 images suggests a pixel resolution of ~5 meters, given the number of pixels required to span features of familiar scale, such as roads and roofs, as well as the ready discrimination of specific land uses, vegetation types, etc. These 200 images generally spanned either forest-agricultural mosaics or intact forest landscapes with limited human intervention. Sloan et al. (2023) present a map indicating the various areas of Equatorial Asia from which these images were sourced.
    IMAGE NAMING CONVENTION A common naming convention applies to satellite images’ file names: XX##.png where:

    XX – denotes the geographical region / major island of Equatorial Asia of the image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])

    – denotes the ith image for a given geographical region / major island amongst the original 200 images, e.g., bo1, bo2, bo3…

    1. INTERPRETING ROAD FEATURES IN THE IMAGES For each of the 200 input satellite images, its road was visually interpreted and manually digitized to create a reference image dataset by which to train, validate, and test AI road-mapping models, as detailed in Sloan et al. (2023). The reference dataset of road features was digitized using the ‘pen tool’ in Adobe Photoshop. The pen’s ‘width’ was held constant over varying scales of observation (i.e., image ‘zoom’) during digitization. Consequently, at relatively small scales at least, digitized road features likely incorporate vegetation immediately bordering roads. The resultant binary (Road / Not Road) reference images were saved as PNG images with the same image dimensions as the original 200 images.

    2. IMAGE TILES AND REFERENCE DATA FOR MODEL DEVELOPMENT

    The 200 satellite images and the corresponding 200 road-reference images were both subdivided (aka ‘sliced’) into thousands of smaller image ‘tiles’ of 256x256 pixels each. Subsequent to image subdivision, subdivided images were also rotated by 90, 180, or 270 degrees to create additional, complementary image tiles for model development. In total, 8904 image tiles resulted from image subdivision and rotation. These 8904 image tiles are the main data of interest disseminated here. Each image tile entails the true-colour satellite image (256x256 pixels) and a corresponding binary road reference image (Road / Not Road).
    Of these 8904 image tiles, Sloan et al. (2023) randomly selected 80% for model training (during which a model ‘learns’ to recognize road features in the input imagery), 10% for model validation (during which model parameters are iteratively refined), and 10% for final model testing (during which the final accuracy of the output road map is assessed). Here we present these data in two folders accordingly:

    'Training’ – contains 7124 image tiles used for model training in Sloan et al. (2023), i.e., 80% of the original pool of 8904 image tiles. ‘Testing’– contains 1780 image tiles used for model validation and model testing in Sloan et al. (2023), i.e., 20% of the original pool of 8904 image tiles, being the combined set of image tiles for model validation and testing in Sloan et al. (2023).

    IMAGE TILE NAMING CONVENTION A common naming convention applies to image tiles’ directories and file names, in both the ‘training’ and ‘testing’ folders: XX##_A_B_C_DrotDDD where

    XX – denotes the geographical region / major island of Equatorial Asia of the original input 1920x886 pixel image, as follows: ‘bo’ (Borneo), ‘su’ (Sumatra), ‘sl’ (Sulawesi), ‘pn’ (Papua New Guinea), ‘jv’ (java), ‘ng’ (New Guinea [i.e., Papua and West Papua provinces of Indonesia])

    – denotes the ith image for a given geographical region / major island amongst the original 200 images, e.g., bo1, bo2, bo3…

    A, B, C and D – can all be ignored. These values, which are one of 0, 256, 512, 768, 1024, 1280, 1536, and 1792, are effectively ‘pixel coordinates’ in the corresponding original 1920x886-pixel input image. They were recorded within the names of image tiles’ sub-directories and file names merely to ensure that names/directory were uniquely named)

    rot – implies an image rotation. Not all image tiles are rotated, so ‘rot’ will appear only occasionally.

    DDD – denotes the degree of image-tile rotation, e.g., 90, 180, 270. Not all image tiles are rotated, so ‘DD’ will appear only occasionally.

    Note that the designator ‘XX##’ is directly equivalent to the filenames of the corresponding 1920x886-pixel input satellite images, detailed above. Therefore, each image tiles can be ‘matched’ with its parent full-scale satellite image. For example, in the ‘training’ folder, the subdirectory ‘Bo12_0_0_256_256’ indicates that its image tile therein (also named ‘Bo12_0_0_256_256’) would have been sourced from the full-scale image ‘Bo12.png’.

  15. a

    World Imagery Basemap

    • austin.hub.arcgis.com
    Updated Aug 31, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin (2023). World Imagery Basemap [Dataset]. https://austin.hub.arcgis.com/maps/4b97011c3ebe43749fb6b2716259fc23
    Explore at:
    Dataset updated
    Aug 31, 2023
    Dataset authored and provided by
    City of Austin
    Area covered
    World,
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3m resolution for select metropolitan areas around the world, 0.5m resolution across the United States and parts of Western Europe, and 1m resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3m to 0.03m resolution (down to ~1:280 in select communities). For more information on this map, including the terms of use, visit us online at http://goto.arcgisonline.com/maps/World_Imagery

  16. d

    Declassified Satellite Imagery 2 (2002)

    • catalog.data.gov
    • gimi9.com
    • +4more
    Updated Apr 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    DOI/USGS/EROS (2025). Declassified Satellite Imagery 2 (2002) [Dataset]. https://catalog.data.gov/dataset/declassified-satellite-imagery-2-2002
    Explore at:
    Dataset updated
    Apr 10, 2025
    Dataset provided by
    DOI/USGS/EROS
    Description

    Declassified satellite images provide an important worldwide record of land-surface change. With the success of the first release of classified satellite photography in 1995, images from U.S. military intelligence satellites KH-7 and KH-9 were declassified in accordance with Executive Order 12951 in 2002. The data were originally used for cartographic information and reconnaissance for U.S. intelligence agencies. Since the images could be of historical value for global change research and were no longer critical to national security, the collection was made available to the public. Keyhole (KH) satellite systems KH-7 and KH-9 acquired photographs of the Earth’s surface with a telescopic camera system and transported the exposed film through the use of recovery capsules. The capsules or buckets were de-orbited and retrieved by aircraft while the capsules parachuted to earth. The exposed film was developed and the images were analyzed for a range of military applications. The KH-7 surveillance system was a high resolution imaging system that was operational from July 1963 to June 1967. Approximately 18,000 black-and-white images and 230 color images are available from the 38 missions flown during this program. Key features for this program were larger area of coverage and improved ground resolution. The cameras acquired imagery in continuous lengthwise sweeps of the terrain. KH-7 images are 9 inches wide, vary in length from 4 inches to 500 feet long, and have a resolution of 2 to 4 feet. The KH-9 mapping program was operational from March 1973 to October 1980 and was designed to support mapping requirements and exact positioning of geographical points for the military. This was accomplished by using image overlap for stereo coverage and by using a camera system with a reseau grid to correct image distortion. The KH-9 framing cameras produced 9 x 18 inch imagery at a resolution of 20-30 feet. Approximately 29,000 mapping images were acquired from 12 missions. The original film sources are maintained by the National Archives and Records Administration (NARA). Duplicate film sources held in the USGS EROS Center archive are used to produce digital copies of the imagery.

  17. a

    Africa Imagery

    • africageoportal.com
    • rwanda.africageoportal.com
    • +2more
    Updated Dec 2, 2017
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Africa GeoPortal (2017). Africa Imagery [Dataset]. https://www.africageoportal.com/maps/1082e34aaf7140e793f4c960a24ff44b
    Explore at:
    Dataset updated
    Dec 2, 2017
    Dataset authored and provided by
    Africa GeoPortal
    Area covered
    Description

    This map features the World Imagery map, focused on the continent of Africa. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. DigitalGlobe sub-meter imagery is featured in many parts of the world, including Africa. Sub-meter Pléiades imagery is available in select urban areas. Additionally, imagery at different resolutions has been contributed by the GIS User Community.For more information on this map, view the World Imagery item description. Metadata: This service is metadata-enabled. With the Identify tool in ArcMap or the World Imagery with Metadata web map, you can see the resolution, collection date, and source of the imagery at the location you click. Values of "99999" mean that metadata is not available for that field. The metadata applies only to the best available imagery at that location. You may need to zoom in to view the best available imagery.Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  18. a

    World Imagery Basemap

    • wildfire-austin.hub.arcgis.com
    Updated Aug 31, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    City of Austin (2023). World Imagery Basemap [Dataset]. https://wildfire-austin.hub.arcgis.com/maps/4b97011c3ebe43749fb6b2716259fc23
    Explore at:
    Dataset updated
    Aug 31, 2023
    Dataset authored and provided by
    City of Austin
    Area covered
    World
    Description

    World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:288k) for the world. The map features Maxar imagery at 0.3m resolution for select metropolitan areas around the world, 0.5m resolution across the United States and parts of Western Europe, and 1m resolution imagery across the rest of the world. In addition to commercial sources, the World Imagery map features high-resolution aerial photography contributed by the GIS User Community. This imagery ranges from 0.3m to 0.03m resolution (down to ~1:280 in select communities). For more information on this map, including the terms of use, visit us online at http://goto.arcgisonline.com/maps/World_Imagery

  19. c

    Caribbean Imagery

    • caribbeangeoportal.com
    • data.amerigeoss.org
    • +1more
    Updated Mar 20, 2020
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Caribbean GeoPortal (2020). Caribbean Imagery [Dataset]. https://www.caribbeangeoportal.com/maps/caribbean-imagery/about
    Explore at:
    Dataset updated
    Mar 20, 2020
    Dataset authored and provided by
    Caribbean GeoPortal
    Area covered
    Description

    This map features the World Imagery map, focused on the Carribean region. World Imagery provides one meter or better satellite and aerial imagery in many parts of the world and lower resolution satellite imagery worldwide. The map includes 15m TerraColor imagery at small and mid-scales (~1:591M down to ~1:72k) and 2.5m SPOT Imagery (~1:288k to ~1:72k) for the world. DigitalGlobe sub-meter imagery is featured in many parts of the world, including Africa. Sub-meter Pléiades imagery is available in select urban areas. Additionally, imagery at different resolutions has been contributed by the GIS User Community.For more information on this map, view the World Imagery item description. Metadata: This service is metadata-enabled. With the Identify tool in ArcMap or the World Imagery with Metadata web map, you can see the resolution, collection date, and source of the imagery at the location you click. Values of "99999" mean that metadata is not available for that field. The metadata applies only to the best available imagery at that location. You may need to zoom in to view the best available imagery.Feedback: Have you ever seen a problem in the Esri World Imagery Map that you wanted to see fixed? You can use the Imagery Map Feedback web map to provide feedback on issues or errors that you see. The feedback will be reviewed by the ArcGIS Online team and considered for one of our updates.

  20. Imagery data for the Vegetation Mapping Inventory Project of Bent's Old Fort...

    • catalog.data.gov
    • gimi9.com
    • +1more
    Updated Jun 5, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    National Park Service (2024). Imagery data for the Vegetation Mapping Inventory Project of Bent's Old Fort National Historic Site [Dataset]. https://catalog.data.gov/dataset/imagery-data-for-the-vegetation-mapping-inventory-project-of-bents-old-fort-national-histo
    Explore at:
    Dataset updated
    Jun 5, 2024
    Dataset provided by
    National Park Servicehttp://www.nps.gov/
    Description

    This reference contains the imagery data used in the completion of the baseline vegetation inventory project for the NPS park unit. Orthophotos, raw imagery, and scanned aerial photos are common files held here. After fieldwork was completed, ecologists used field data (plot data, observation points, photographs, and field notes) and digital aerial imagery (NAIP 2005) to map draft vegetation polygons for BEOL within an ESRI personal geodatabase.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
data.cityofnewyork.us (2024). Imagery and Map Services [Dataset]. https://catalog.data.gov/dataset/imagery-and-map-services

Imagery and Map Services

Explore at:
2 scholarly articles cite this dataset (View in Google Scholar)
Dataset updated
Nov 1, 2024
Dataset provided by
data.cityofnewyork.us
Description

The Department of Information Technology and Telecommunications, GIS Unit, has created a series of Map Tile Services for use in public web mapping & desktop applications. The link below describes the Basemap, Labels, & Aerial Photographic map services, as well as, how to utilize them in popular JavaScript web mapping libraries and desktop GIS applications. A showcase application, NYC Then&Now (https://maps.nyc.gov/then&now/) is also included on this page.

Search
Clear search
Close search
Google apps
Main menu