Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This North American Environmental Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. Any data outside of Canada, Mexico, and the United States of America included in the North American Environmental Atlas data sets is strictly to complete the context of the data.The North American Environmental Atlas – Lakes and Rivers dataset displays the coastline, linear hydrographic features (major rivers, streams, and canals), and area hydrographic features (major lakes and reservoirs) of North America at a reference spatial scale of 1:1,000,000.This map offers a seamless integration of hydrographic features derived from cartographic products generated by Natural Resources Canada (NRCan), United States Geological Survey (USGS), National Institute of Statistics and Geography, (Instituto Nacional de Estadística y Geografía-Inegi), National Water Commission (Comisión Nacional del Agua-Conagua).This current version of the North America Lakes and Rivers dataset supersedes the version published by the Commission for Environmental Cooperation in 2011.Files Download
This map shows the total change in the average July–September surface water temperatures in 34 North American lakes from 1985 to 2009, as measured by satellites. Red circles represent warming; blue circles represent cooling. Larger circles indicate larger changes. Circles with black borders represent lakes where the trend was statistically significant.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The North American Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. Any data outside of Canada, Mexico, and the United States of America included in the North American Atlas data sets is strictly to complete the context of the data.The North American Environmental Atlas – Lakes dataset displays area hydrographic features (major lakes and reservoirs) of North America at a reference spatial scale of 1:1,000,000.This map offers a seamless integration of hydrographic features derived from cartographic products generated by Natural Resources Canada (NRCan), United States Geological Survey (USGS), National Institute of Statistics and Geography, (Instituto Nacional de Estadística y Geografía-Inegi), National Water Commission (Comisión Nacional del Agua-Conagua).This current version of the North America Lakes and Rivers dataset supersedes the version published by the Commission for Environmental Cooperation in 2011.Files Download
This dataset covers the geographic area of Westchester County, New York. Dataset contains planimetric base map data for lakes and ponds greater than one half acre in size, streams and rivers that are greater than 10' in width and reservoir water bodies. The source for the imagery is aerial photography acquired in April 2023. The planimetric data was originally compiled from aerial imagery collected in the year 2004. In 2023, new aerial imagery was acquired over the county of Westchester and all planimetric data was updated at that time. This layer contains the polygons delineating hydrologic features. The data was photogrammetrically stereo-compiled to North American Datum 1983; New York State Plane East Zone.
This data set consists of a subset of a 1-degree gridded global freshwater wetlands database (Stillwell-Soller et al. 1995). This subset was created for the study area of the Large Scale Biosphere-Atmosphere Experiment in Amazonia (LBA) in South America (i.e., 10? N to 25? S, 30? to 85? W). The data are in ASCII GRID format.
The global freshwater wetlands database was assembled from two data sets: Aselman and Crutzen's (1989) wetlands data set and Klinger's political Alaska data set (pers. comm. to L. M. Stillwell-Soller, 1995). The aim of Stillwell-Soller's global data set was to provide an accurate, comprehensive and uniform set of files for convenient specification of wetlands in global climate models. The main source of data was Aselman and Crutzen's global maps of percent cover for a variety of wetlands categories at 2.5-degree latitude by 5-degree longitude resolution. There was some reorganization for seasonally varying categories. Aselman and Crutzen's data were interpolated to a standard 1-degree by 1-degree grid through bilinear interpolation. Their data were geographically complete except for the Alaskan region, for which Klinger's data set provided values.
More information can be found at ftp://daac.ornl.gov/data/lba/land_use_land_cover_change/soller_wetlands/comp/soller_readme.pdf.
LBA was a cooperative international research initiative led by Brazil. NASA was a lead sponsor for several experiments. LBA was designed to create the new knowledge needed to understand the climatological, ecological, biogeochemical, and hydrological functioning of Amazonia; the impact of land use change on these functions; and the interactions between Amazonia and the Earth system. More information about LBA can be found at http://www.daac.ornl.gov/LBA/misc_amazon.html.
Contained within the 4th Edition (1974) of the Atlas of Canada is a map that shows the lakes, rivers and glaciers as well as the major drainage areas. Provincial and territorial boundaries are shown, but otherwise there are no other names or symbols shown on the Canadian land surface.
https://dataintelo.com/privacy-and-policyhttps://dataintelo.com/privacy-and-policy
The global lake mapping and bathymetry market size was valued at approximately USD 1.2 billion in 2023 and is projected to reach USD 2.8 billion by 2032, growing at a CAGR of 9.6% over the forecast period. This significant growth is propelled by increasing demand for precise aquatic mapping and monitoring, driven by urgent needs in environmental conservation, water resource management, and enhanced navigation safety. Factors such as technological advancements in sonar and LiDAR systems, escalating concerns about water conservation, and the growing importance of aquatic ecosystems in maintaining biodiversity are pivotal to the market's expansion.
A key growth factor is the heightened awareness and regulatory requirements surrounding water conservation and aquatic habitat preservation. Governments and environmental agencies worldwide are investing heavily in technologies that facilitate accurate lake and riverbed mapping to ensure compliance with environmental protection regulations. This investment is not only focused on preserving biodiversity but also on understanding the impacts of climate change on water bodies. As a result, the demand for advanced mapping technologies such as sonar and LiDAR has intensified, as they provide high-resolution data critical for informed decision-making.
Another driving force behind the market's growth is the technological advancements in sonar, LiDAR, and satellite systems, which have revolutionized the precision and efficiency of bathymetric surveys. These technologies allow for comprehensive and accurate underwater topography mapping, which is crucial for various applications including environmental monitoring, navigation, and water resource management. The integration of artificial intelligence and machine learning with these technologies further enhances data processing capabilities, providing real-time insights and predictive analytics that are invaluable for managing water resources effectively.
Moreover, the increasing importance of inland water bodies in supporting local economies and providing recreational opportunities has led to a surge in demand for detailed mapping and bathymetric services. Local governments and municipalities are keen to harness these resources sustainably, which necessitates detailed topographical and ecological assessments of lakes and rivers. This trend is coupled with the growing public interest in outdoor and water-based activities, driving a need for enhanced safety and navigation solutions, thereby creating further opportunities for market growth.
Hydrographic Survey plays a crucial role in the lake mapping and bathymetry market by providing detailed and accurate data on underwater topography. This type of survey is essential for understanding the physical characteristics of water bodies, which is vital for applications such as navigation, environmental monitoring, and resource management. Hydrographic surveys utilize advanced technologies like sonar and LiDAR to map the underwater environment, offering insights into depth variations, sediment composition, and potential hazards. These surveys are indispensable for ensuring safe navigation, particularly in areas with complex underwater landscapes, and for supporting environmental conservation efforts by providing data necessary for habitat preservation and pollution assessment. As the demand for precise aquatic mapping continues to grow, the role of hydrographic surveys becomes increasingly significant in facilitating informed decision-making and sustainable management of water resources.
Regionally, North America and Europe currently dominate the lake mapping and bathymetry market, attributed to their advanced technological infrastructure and strong focus on environmental sustainability. However, the Asia Pacific region is expected to witness the fastest growth during the forecast period, driven by rapid urbanization, increasing population, and growing concerns over water scarcity and environmental degradation. Emerging economies in Asia Pacific are increasingly investing in sophisticated technologies for water resource management and environmental monitoring, which is anticipated to bolster market growth in the region.
In the realm of lake mapping and bathymetry, technology serves as the backbone enabling precise and efficient data collection and analysis. Among the technologies utilized, sonar systems stand out for their ability to provide detailed unde
Lake temperature is an important environmental metric for understanding habitat suitability for many freshwater species and is especially useful when temperatures are predicted throughout the water column (known as temperature profiles). In this data release, multiple modeling approaches were used to generate predictions of daily temperature profiles for thousands of lakes in the Midwest.
Predictions were generated using two modeling frameworks: a machine learning model (specifically an entity-aware long short-term memory or EA-LSTM model; Kratzert et al., 2019) and a process-based model (specifically the General Lake Model or GLM; Hipsey et al., 2019). Both the EA-LSTM and GLM frameworks were used to generate lake temperature predictions in the contemporary period (1979-04-12 to 2022-04-11 for EA-LSTM and 1980-01-01 to 2021-12-31 for GLM; times differ due to modeling spin-up/spin-down configurations) using the North American Land Data Assimilation System [NLDAS; Mitchell et al., 2004] as meteorological drivers. In addition, GLM was used to generate lake temperature predictions under future climate scenarios (covering 1981-2000, 2040-2059, and 2080-2099) using six dynamically downscaled Global Climate Models (GCM; Notaro et al., 2018) as meteorological drivers. Appropriate application of the six GCMs is dependent on the use-case and will be up to the user to determine. For an example of a similar analysis in the Midwest and Great Lakes region using 31 GCMs, see Byun and Hamlet, 2018.
The modeling frameworks and driver datasets have slightly different footprints and input data requirements. This means that some of the lakes do not meet the criteria to be included in all three modeling approaches, which results in different numbers of lakes in the output (noted in the file descriptions below). The input data requirements for lakes to be included in the EA-LSTM predictions are lake latitude, longitude, elevation, and surface area, plus NLDAS drivers at the lake's location. All 62,966 lakes included this data release met these requirements. The input data requirements for lakes to be included in the contemporary GLM NLDAS-driven predictions are lake location (within one of the following 11 states: North Dakota, South Dakota, Iowa, Michigan, Indiana, Illinois, Wisconsin, Minnesota, Missouri, Arkansas, and Ohio), latitude, longitude, maximum depth (though more detailed hypsography was used where available), surface area, and a clarity esitmate, plus NLDAS drivers at the lake's location. 12,688 lakes included this data release met these requirements. The input data requirements for lakes to be included in the future climate scenario GCM-driven predictions were the same as for the contemporary GLM predictions, except GCM drivers at the lake's location were required in place of NLDAS drivers. 11,715 lakes included this data release met these requirements.
This data release includes the following files:
This work was completed with funding support from the Midwest Climate Adaptation Science Center (MW CASC) and as part of the USGS project on Predictive Understanding of Multiscale Processes (PUMP), an element of the Integrated Water Prediction Program, supported by the Water Availability and Use Science Program to advance multi-scale, integrated modeling capabilities to address water resource issues. Access to computing facilities was provided by USGS Advanced Research Computing, USGS Tallgrass Supercomputer (doi.org/10.5066/F7D798MJ).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The USNIC Great Lakes Ice Chart Web Service is made up of Analysis polygon features classes. The Great Lakes Analysis GIS Shapefile and KMZ file are created and loaded into CloudGIS Database for use in the USNIC Great Lakes Ice Chart Web Service from the North American Ice Service daily Great Lakes Analysis coordinated between the U.S. National Ice Center and Canadian Ice Service. The daily Great Lakes Analysis contains SIGRID-3 information on ice conditions that are separated into various fields including total ice concentration, ice types and their respective partial concentrations, and floe size, among others. This analysis is updated daily, valid at 18 UTC, and available at https://usicecenter.gov/Products/GreatLakesData.The SIGRID-3 vector archive format is one of the World Meteorological Organization (WMO) standards for archiving digital ice charts. The U.S National Ice Center (USNIC) creates SIGRID-3 ice charts on a regular basis for a number of regions in the Arctic, Antarctic, Great Lakes and U.S. East Coast. These SIGRID-3 files have two main components: the shapefile containing the ice analysis information (ice polygons and related attributes) and the metadata describing the ice analysis data under the SIGRID-3 format. Current and legacy data for many USNIC products can be found through the USNIC website (https://usicecenter.gov/), the National Snow and Ice Data Center (https://nsidc.org/) or, for the Great Lakes specifically, through the Great Lakes Environmental Research Laboratory (https://www.glerl.noaa.gov/). The joint North American Ice Service analysis from which this USNIC product derives represents ice conditions valid at approximately 1800 UTC but is analyzed from imagery over the preceding 24hrs. Imagery utilized includes synthetic aperture radar (SAR), geostationary imagery such as GOES, polar orbiting imagery such as VIIRS, other optical or infrared sensors prioritized by regency and image quality, and application of an understanding of conditions gained from surface stations, radar, and forecast weather conditions.Update Frequency: Daily at 1800UTCLink to metadataFor questions about the underlying data or other ice datasets, please see https://usicecenter.gov/Contact.Questions/Concerns about the service, please contact the DISS-GIS team.Time Information:This service is not time enabled.
The USGS compiles online access to water-resources data collected at approximately 1.5 million sites in all 50 States, the District of Columbia, Puerto Rico, the Virgin Islands, Guam, American Samoa and the Commonwealth of the Northern Mariana Islands.
Observations and subtle shifts of vegetation communities in Lake Erie have USGS researchers concerned about the potential for Grass Carp to alter these vegetation communities. Broad-scale surveys of vegetation using remote sensing and GIS mapping, coupled with on-the-ground samples in key locations will permit assessment of the effect Grass Carp may have already had on aquatic vegetation communities and establish baseline conditions for assessing future effects. Existing aerial imagery was used with object-based image analysis to detect and map aquatic vegetation in the eastern basin of Lake Erie.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Mississippi River is North America’s largest river, flowing over 2,300 miles through America’s heartland to the Gulf of Mexico. The watershed not only provides drinking water, food, industry, and recreation for millions of people, it also hosts a globally significant migratory flyway and home for over 325 bird species. Leading the world in agricultural production, a healthy agricultural sector in the Mississippi River Basin is essential for maintaining the nation’s and the world’s food and fiber supply. USDA Conservation Effects Assessment Project (CEAP) cropland models show that conservation on cropland throughout the entire Mississippi River Basin has reduced nitrogen and sediment loading to the Gulf of Mexico by 28 percent and 45 percent, respectively, over what would be lost without conservation systems in place. With the CCA designation, USDA will build on existing strong partnerships in the basin to accelerate conservation in the 13-state area to continue to reduce nutrient and sediment loading to local and regional water bodies and to improve efficiency in using water supplies, particularly in the southern states. The CCA boundary was identified to harness the partnerships and momentum already established by NRCS’s Mississippi River Basin Healthy Watersheds Initiative (MRBI). With more than 600 partners engaged throughout the initiative area, MRBI has treated over 800,000 acres of agricultural land with systems of practices intended to avoid, control, and trap nutrient and sediment run-off and improve irrigation efficiency. This dataset includes a printer-friendly CCA map and shapefiles for GIS. Resources in this dataset:Resource Title: Mississippi River Basin. File Name: Web Page, url: https://www.nrcs.usda.gov/programs-initiatives/rcpp-regional-conservation-partnership-program/critical-conservation-areas Information about the project and links to a printer-friendly CCA map (PDF, 1.2MB) and shapefiles for GIS (ZIP, 218KB).
Between 1609 and 1628, European explorers charted more unknown waters along the Atlantic Coast, and also penetrated down the St. Lawrence River into the eastern Great Lakes. The routes of four explorers are shown on this map: Hudson (1609), Champlain (1609, 1613 and 1615 to 1616), Brûlé (1615 to 1618 and 1621 to 1623) and La Roche (1626). The map also shows the extent of territory known to Europeans in the period 1497 to 1650; and the navigation of all exploration routes during the period of the penetration of the Eastern Great Lakes and Hudson Bay from 1600 to 1650. The historical names found on the map are derived from contemporaneous maps and written documents of the period.
Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. The King City Reservoir system is a set of water supply lakes used by the city of King City in northwestern Missouri. The three main lakes have a combined surface area of about 48 acres at the flood pool level of the emergency spillway (approximately 1,038.2 feet above the North American Datum of 1988 for the lower and middle lakes, and approximately 1,053.2 feet above the North American Vertical Datum of 1988 for the upper lake). A previous bathymetric survey had been completed at this lake in July 2000 with a single-beam echosounder, but was not reported. In September 2019, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources and the City of King City, completed a bathymetric survey of the King City Reservoir system using a multibeam echosounder. The water-surface elevations during the survey were about 1051.24, 1035.36, and 1034.74 feet in the upper, middle, and lower lakes, respectively. The echosounder data can be combined with light detection and ranging (lidar) data to prepare a bathymetric map and a surface area and capacity table for the lakes. The gridded bathymetric point data (KingCityRes2019_bathy_pts.zip) were computed on a 0.82-foot (0.25-meter) grid using the Combined Uncertainty and Bathymetry Estimator (CUBE) method, which is used as the source of points to create the bathymetric surface for the three lakes. Bathymetric quality-assurance data (KingCityRes2019_QA_raw.zip) were collected to evaluate the vertical accuracy of the gridded bathymetric point data. Each of these two zip files contains a shapefile with an attribute table. Attribute/column labels of each table are described in the "Entity and attribute" section of the metadata file. References Cited: Huizinga, R.J., 2014, Bathymetric surveys and area/capacity tables of water-supply reservoirs for the city of Cameron, Missouri, July 2013: U.S. Geological Survey Open-File Report 2014–1005, 15 p., http://dx.doi.org/10.3133/ofr20141005. Richards, J.M., 2013, Bathymetric surveys of selected lakes in Missouri—2000–2008: U.S. Geological Survey Open-File Report 2013–1101, 9 p. with appendix, http://pubs.usgs.gov/of/2013/1101.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Terminal lakes are lakes with no hydrologic surface outflows and with losses of water occurring only through surface evaporation and groundwater discharge. We quantified the extent of the littoral zones (areas where 1% or more of surface irradiation reaches the lake bottom) and open water zones (areas where less than 1% of surface irradiation reaches the lake bottom) in 18 terminal lakes. Additionally, we quantified habitat usage and diets of the fish species inhabiting these lakes. This dataset contains includes seven lakes from North America (Atitlan, Crater, Eagle, Mann, Pyramid, Summit, Walker), one from South America (Titicaca), five from Eurasia (Caspian, Issyk-Kul, Neusiedl, Qinghai, Van), and five from Africa (Abijatta, Manyara, Nakuru, Shala, Turkana). Methods Measurements of the surface areas of the littoral and open water zones were performed using ArcGIS Pro Version 2.9. First, we generated year-specific digital elevation models (DEMs) of the lake’s bathymetry by a) using existing bathymetry raster data or b) by digitizing published depth contours of the lake’s bathymetry and interpolating a bathymetry raster using a natural neighbor interpolation. For several lakes that showed significant changes in lake level and where data regarding lake level change were available, we were able to produce a second year closer to the present by using the Raster Calculator function in ArcGIS Pro and then clipping the bathymetry raster to the lower lake level. This was possible for 5 of the 18 lakes (Mann Lake, Eagle Lake, Lake Abijatta, Walker Lake, and Lake Turkana), allowing us to map changes in the littoral zone size between the two years. For the lakes containing two years of data, we used only the most recent year in all subsequent analyses. We defined the portions of the littoral zone of the lake as the portions where the intensity of photosynthetically active radiation (PAR) reaching the lake bottom is 1% or greater relative to the intensity at the surface. For lakes where 1% PAR depth was not published, we calculated 1% PAR depth from published light profiles using the Lambert-Beer Law: 0.01 = e-u*z where µ is the light attenuation coefficient (meters-1) and z is 1% PAR depth (meters). For lakes where neither 1% PAR depth nor light profiles were published, we approximated the 1% PAR depth by multiplying the Secchi depth of the lake by a coefficient of 2.5. We sought the most recently collected Secchi depth to make these calculations. We then used the Raster Calculator function in ArcGIS PRO 2.9 to determine the portions of the lake where depth was less than or greater than the 1% PAR depth to map the open water and littoral zones, respectively. Fish species inventories and information regarding each species’ habitat and diet was compiled from 1) published peer-reviewed primary literature, 2) non-peer-reviewed literature (books, reports by government agencies or private firms), 3) online databases (i.e., FishBase (https://www.fishbase.de/home.htm), California Fish Website (www.calfish.ucdavis.edu)), and/or 4) experts studying the ecology of the species or lake ecosystem. We employed a conservative view regarding species taxonomy (i.e., ‘lumping’ rather than ‘splitting’). We classified species’ habitats with respect to three categories: 1) littoral zone (occurring in parts of the lake where 1% or more of the surface radiation reaches the lake bottom), 2) open water zone (occurring in parts of the lake where less than 1% of the surface radiation reaches the lake bottom), and 3) littoral & open water zone (occurring in both lake zones). These habitat classifications were based on adult habitat use only, and habitat use during larval and juvenile stages was not considered. We classified diets with respect to seven categories: 1) plankton only, 2) periphyton only, 3) periphyton and macroinvertebrates, 4) periphyton, macroinvertebrates, and plankton, 5) periphyton, macroinvertebrates, and fish, 6) fish OR fish and plankton, and 7) fish, plankton, periphyton, and macroinvertebrates.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This map shows different wetland types, as well as lakes and rivers, across North America.The map was made using the Global Lakes and Wetlands Database (GLWD) Level 3, which was created using a variety of the best available sources for lakes and wetlands on a global scale.Level 3 of the Global Lakes and Wetlands Database (GLWD) comprises lakes, reservoirs, rivers, and different wetland types in the form of a global raster map at 30-sec resolution. GLWD-3 may serve as an estimate of wetland extents for global hydrology and climatology models, or to identify large-scale wetland distributions and important wetland complexes.Source: Lehner, B., and P. Döll. 2004. Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296/1-4: 1–22. Global Lakes and Wetlands Database available through World Wildlife Fund (WWF).Files Download
Data to accompany the article below. Miranda, L. E., M. C. Rhodes, Y. Allen, and K. J. Killgore. 2021. An inventory and typology of permanent floodplain lakes in the Mississippi Alluvial Valley: a first step to conservation planning. Aquatic Sciences 83:20. https://link.springer.com/article/10.1007/s00027-020-00775-3The alluvial valley of the Mississippi River is an extensive area harboring hundreds of lakes created by fluvial dynamics. These floodplain lakes are scattered throughout the valley and carved over thousands of years by shifting river courses and other hydro-fluvial processes associated with contemporary and prehistoric rivers. These lakes have significant ecological importance as they support a large component of North American biodiversity. We used remote sensing to catalog lakes, to characterize morphology, and to construct a typology via cluster analysis. We identified over 1300 permanent lakes totaling over 100,000 ha. The lakes were classified into 12 types according to lake size, shape, depth, connectivity, inundation frequency, and surrounding landcover. We anticipate that biotic characteristics differ among the 12 types, but large-scale systematic analyses of biotic assemblages of floodplain lakes in the region are mostly absent. Our typology can provide the framework essential for organizing research to define water dynamics, water quality, and ecological conditions such as forests, mussel, fish, and avian communities to construct conservation plans. The typology encourages a large-scale view of the properties of floodplain lakes in the alluvial valley. It is a functional tool that can be used to begin identifying conservation and research needs, adapt monitoring and management programs, customize environmental programs, and use conservation resources more effectively to achieve large-scale management objectives.
In the period from 1634 to 1650, exploration in what is now Canada was largely carried out by Jesuit missionaries. Their findings consolidated European knowledge of the eastern Great Lakes. The map shows the routes of seven expeditions: Nicollet (1634), Bogaert (1634 to 1635), Brébeuf and Chaumonot (1640 to 1641), Jogues and Raymbaut (1641), Jogues and Couture (1642), Druillettes (1646) and De Quen (1647). The map also shows the extent of territory known to Europeans in the period 1497 to 1650; and the navigation of all exploration routes during the period of the penetration of the Eastern Great Lakes and Hudson Bay from 1600 to 1650. The historical names found on the map are derived from contemporaneous maps and written documents of the period.
Water supply lakes are the primary source of water for many communities in northern and western Missouri. Therefore, accurate and up-to-date estimates of lake capacity are important for managing and predicting adequate water supply. Many of the water supply lakes in Missouri were previously surveyed by the U.S. Geological Survey in the early 2000s (Richards, 2013) and in 2013 (Huizinga, 2014); however, years of potential sedimentation may have resulted in reduced water storage capacity. Periodic bathymetric surveys are useful to update the area/capacity table and to determine changes in the bathymetric surface. Monroe City Lake (locally known as Route J Reservoir) is a water supply lake used by the city of Monroe City in northeastern Missouri. The surface area of Monroe City Lake is about 97.4 acres at the full pool level of the primary spillway (669.7 feet above the North American Vertical Datum of 1988). A previous bathymetric survey was completed in 2002 with a single-beam echosounder. In April 2021, the U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources and in collaboration with the City of Monroe City, completed a bathymetric survey of Monroe City Lake using a multibeam echosounder. The water-surface elevation during the survey was about 669.7 feet. The echosounder data can be combined with light detection and ranging (lidar) data to prepare a bathymetric map and a surface area and capacity table for the lake. The gridded bathymetric point data (MonroeCity2021_bathy_pts.zip) were computed on a 1.64-foot (0.50-meter) grid using the Combined Uncertainty and Bathymetry Estimator (CUBE) method, which is used as the source of points to create the bathymetric surface. Bathymetric quality-assurance data (MonroeCity2021_QA_raw.zip) were collected to evaluate the vertical accuracy of the gridded bathymetric point data. Each of these two zip files contains a shapefile with an attribute table. Attribute/column labels of each table are described in the "Entity and attribute" section of the metadata file. References Cited: Huizinga, R.J., 2014, Bathymetric surveys and area/capacity tables of water-supply reservoirs for the city of Cameron, Missouri, July 2013: U.S. Geological Survey Open-File Report 2014–1005, 15 p., http://dx.doi.org/10.3133/ofr20141005. Richards, J.M., 2013, Bathymetric surveys of selected lakes in Missouri—2000–2008: U.S. Geological Survey Open-File Report 2013–1101, 9 p. with appendix, http://pubs.usgs.gov/of/2013/1101.
This dataset includes simulated water surface elevations that resemble the Ka-band Interferometer (KaRIn) measurements by the Surface Water and Ocean Topography (SWOT) mission. SWOT will provide a global coverage but this simulated subset focuses on the North America continent. The simulated SWOT KaRIN swaths span 128 km in the cross-swath direction with a 20-km nadir gap. The primary product contains the following: 1. Geolocated elevations (latitude, longitude, and height) 2. Classification mask (water/land flags, and water fraction) 3. Surface areas (projected pixel area on the ground) 4. Relevant data needed to compute and aggregate height and area uncertainties. Additional information includes: 1. Meta data (global instrument parameters) 2. Time varying parameters (TVP), which include sensor position, velocity, altitude, and time 3. Noise power estimates 4. Quality flags 5. Interferogram measurements (power and phase) and range and azimuth indices 6. Geophysical and crossover-calibration correction values. These additional fields are provided to improve the utility of the product and to facilitate generation of downstream products. Note that this is a simulated SWOT product and not suited for any scientific exploration.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
This North American Environmental Atlas data are standardized geospatial data sets at 1:10,000,000 scale. A variety of basic data layers (e.g. roads, railroads, populated places, political boundaries, hydrography, bathymetry, sea ice and glaciers) have been integrated so that their relative positions are correct. This collection of data sets forms a base with which other North American thematic data may be integrated. Any data outside of Canada, Mexico, and the United States of America included in the North American Environmental Atlas data sets is strictly to complete the context of the data.The North American Environmental Atlas – Lakes and Rivers dataset displays the coastline, linear hydrographic features (major rivers, streams, and canals), and area hydrographic features (major lakes and reservoirs) of North America at a reference spatial scale of 1:1,000,000.This map offers a seamless integration of hydrographic features derived from cartographic products generated by Natural Resources Canada (NRCan), United States Geological Survey (USGS), National Institute of Statistics and Geography, (Instituto Nacional de Estadística y Geografía-Inegi), National Water Commission (Comisión Nacional del Agua-Conagua).This current version of the North America Lakes and Rivers dataset supersedes the version published by the Commission for Environmental Cooperation in 2011.Files Download