The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Census Bureau does not recognize or release data for Boston neighborhoods. However, Census block groups can be aggregated to approximate Boston neighborhood boundaries to allow for reporting and visualization of Census data at the neighborhood level. Census block groups are created by the U.S. Census Bureau as statistical geographic subdivisions of a census tract defined for the tabulation and presentation of data from the decennial census and the American Community Survey. The 2020 Census block group boundary files for Boston can be found here. These block group-approximated neighborhood boundaries are used for work with Census data. Work that does not rely on Census data generally uses the Boston neighborhood boundaries found here.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
The Census Bureau does not recognize or release data for Boston neighborhoods. However, Census tracts can be aggregated to approximate Boston neighborhood boundaries to allow for reporting and visualization of Census data at the neighborhood level. Census tracts are created by the U.S. Census Bureau as statistical geographic subdivisions of a county defined for the tabulation and presentation of data from the decennial census and the American Community Survey. The 2020 Census tract boundary files for Boston can be found here. These tract-approximated neighborhood boundaries are used for work with Census data. Work that does not rely on Census data generally uses the Boston neighborhood boundaries found here.
These ESRI shape files are of National Park Service tract and boundary data that was created by the Land Resources Division. Bounds of the tracts and islands are photo interpreted from 1996 ortho photo mosaics created by the University of Rhode Island for the park. Tracts and islands are consistent with the legislated boundaries defined by PL 104-333 which also references map number BOHA 80,002. Tracts are numbered and created by the regional cartographic staff at the Land Resources Program Centers and are associated to the Land Status Maps. This data should be used to display properties that NPS owns and properties that NPS may have some type of interest such as scenic easements or right of ways.
To access parcel information:Enter an address or zoom in by using the +/- tools or your mouse scroll wheel. Parcels will draw when zoomed in.Click on a parcel to display a popup with information about that parcel.Click the "Basemap" button to display background aerial imagery.From the "Layers" button you can turn map features on and off.Complete Help (PDF)Parcel Legend:Full Map LegendAbout this ViewerThis viewer displays land property boundaries from assessor parcel maps across Massachusetts. Each parcel is linked to selected descriptive information from assessor databases. Data for all 351 cities and towns are the standardized "Level 3" tax parcels served by MassGIS. More details ...Read about and download parcel dataUpdatesV 1.1: Added 'Layers' tab. (2018)V 1.2: Reformatted popup to use HTML table for columns and made address larger. (Jan 2019)V 1.3: Added 'Download Parcel Data by City/Town' option to list of layers. This box is checked off by default but when activated a user can identify anywhere and download data for that entire city/town, except Boston. (March 14, 2019)V 1.4: Data for Boston is included in the "Level 3" standardized parcels layer. (August 10, 2020)V 1.4 MassGIS, EOTSS 2021
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. After the field sampling was complete, aerial photograph signatures were verified for all of the associations using the classification plot data, Bell et al. (2002), and Elliman (2004) and (2005) data. These signatures were extrapolated to other areas within the park boundary that were not sampled. Using ARCGIS 9.1, polygon boundaries in the preliminary vegetation map were further edited and refined to develop a draft association-level vegetation map. Polygons were updated with USNVC association names and codes based on the classification plot data. Polygons that were attributed with land use - land cover categories in the preliminary vegetation map retained their attributes. The aerial photointerpretation key was updated. The thematic accuracy of this 2006 draft association-level vegetation association and land use map was then assessed for accuracy.
2020 Census data for the city of Boston, Boston neighborhoods, census tracts, block groups, and voting districts. In the 2020 Census, the U.S. Census Bureau divided Boston into 207 census tracts (~4,000 residents) made up of 581 smaller block groups. The Boston Planning and Development Agency uses the 2020 tracts to approximate Boston neighborhoods. The 2020 Census Redistricting data also identify Boston’s voting districts.
For analysis of Boston’s 2020 Census data including graphs and maps by the BPDA Research Division and Office of Digital Cartography and GIS, see 2020 Census Research Publications
For a complete official data dictionary, please go to 2020 Census State Redistricting Data (Public Law 94-171) Summary File, Chapter 6. Data Dictionary. 2020 Census State Redistricting Data (Public Law 94-171) Summary File
2020 Census Block Groups In Boston
Boston Neighborhood Boundaries Approximated By 2020 Census Tracts
The 1:100,000-scale geologic map of the South Boston 30' x 60' quadrangle, Virginia and North Carolina, provides geologic information for the Piedmont along the I-85 and U.S. Route 58 corridors and in the Roanoke River watershed, which includes the John H. Kerr Reservoir and Lake Gaston. The Raleigh terrane (located on the eastern side of the map) contains Neoproterozoic to early Paleozoic(?) polydeformed, amphibolite-facies gneisses and schists. The Carolina slate belt of the Carolina terrane (located in the central part of the map) contains Neoproterozoic metavolcanic and metasedimentary rocks at greenschist facies. Although locally complicated, the slate-belt structure mapped across the South Boston map area is generally a broad, complex anticlinorium of the Hyco Formation (here called the Chase City anticlinorium) and is flanked to the west and east by synclinoria, which are cored by the overlying Aaron and Virgilina Formations. The western flank of the Carolina terrane (located in the western-central part of the map) contains similar rocks at higher metamorphic grade. This terrane includes epidote-amphibolite-facies to amphibolite-facies gneisses of the Neoproterozoic Country Line complex, which extends north-northeastward across the map. The Milton terrane (located on the western side of the map) contains Ordovician amphibolite-facies metavolcanic and metasedimentary gneisses of the Cunningham complex. Crosscutting relations and fabrics in mafic to felsic plutonic rocks constrain the timing of Neoproterozoic to late Paleozoic deformations across the Piedmont. In the eastern part of the map, a 5- to 9-kilometer-wide band of tectonic elements that contains two late Paleozoic mylonite zones (Nutbush Creek and Lake Gordon) and syntectonic granite (Buggs Island pluton) separates the Raleigh and Carolina terranes. Amphibolite-facies, infrastructural metaigneous and metasedimentary rocks east of the Lake Gordon mylonite zone are generally assigned to the Raleigh terrane. In the western part of the map area, a 5- to 8-kilometer-wide band of late Paleozoic tectonic elements includes the Hyco and Clover shear zones, syntectonic granitic sheets, and amphibolite-facies gneisses along the western margin of the Carolina terrane at its boundary with the Milton terrane. This band of tectonic elements is also the locus for early Mesozoic extensional faults associated with the early Mesozoic Scottsburg, Randolph, and Roanoke Creek rift basins. The map shows fluvial terrace deposits of sand and gravel on hills and slopes near the Roanoke and Dan Rivers. The terrace deposits that are highest in altitude are the oldest. Saprolite regolith is spatially associated with geologic source units and is not shown separately on the map. Mineral resources in the area include gneiss and granite quarried for crushed stone, tungsten-bearing vein deposits of the Hamme district, and copper and gold deposits of the Virgilina district. Surface-water resources are abundant and include rivers, tributaries, the John H. Kerr Reservoir, and Lake Gaston. Groundwater flow is concentrated in saprolite regolith, along fractures in the crystalline bedrock, and along fractures and bedding-plane partings in the Mesozoic rift basins.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
This layer represents all the public and many of the private roadways in Massachusetts, including designations for Interstate, U.S. and State routes.
Formerly known as the Massachusetts Highway Department (MHD) Roads, then the Executive Office of Transportation - Office of Transportation Planning (EOT-OTP) Roads, the MassDOT roads layer includes linework from the 1:5,000 road and rail centerlines data that were interpreted as part of the 1990s Black and White Digital Orthophoto project. The Massachusetts Department of Transportation - Office of Transportation Planning, which maintains this layer, continues to add linework from municipal and other sources and update existing linework using the most recent color ortho imagery as a base. The attribute table includes many "road inventory" items maintained in MassDOT's linear referencing system.
The data layer published in November 2018 is based on the MassDOT 2017 year-end Road Inventory layer and results of a 2014-2015 MassDOT-Central Transportation Planning Staff project to conflate street names and other attributes from MassGIS' "base streets" to the MassDOT Road Inventory linework. The base streets are continually maintained by MassGIS as part of the NextGen 911 and Master Address Database projects. MassGIS staff reviewed the conflated layer and added many base street arcs digitized after the completion of the conflation work. MassGIS added several fields to support legacy symbology and labeling. Other edits included modifying some linework in areas of recent construction and roadway reconfiguration to align to 2017-2018 Google ortho imagery, and making minor fixes to attributes and linework.
In ArcSDE this layer is named EOTROADS_ARC.
From this data layer MassGIS extracted the Major Roads and Major Highway Routes layers.
This map shows a simple summary of the social vulnerability of populations in the United States. Using Census 2010 information, the map answers the question “Where are the areas of relatively greater potential impact from disaster events within the U.S.?” from the perspective of social vulnerability to hazards. In other words, all areas of the U.S. are assessed relative to each other. Local and regional assessments of social vulnerability should apply the same model to their multi-county or multi-state region. For emergency response planning and hazard mitigation, populations can be assessed by their vulnerability to various hazards (fire, flood, etc). Physical vulnerability refers to a population’s exposure to specific potential hazards, such as living in a designated flood plain. There are various methods for calculating the potential or real geographic extents for various types of hazards. Social vulnerability refers to sensitivity to this exposure due to population and housing characteristics: age, low income, disability, home value or other factors. The social vulnerability score presented in this web service is based upon a 2000 article from the Annals of the Association of American Geographers which sums the values of 8 variables as a surrogate for "social vulnerability". For example, low-income seniors may not have access to a car to simply drive away from an ongoing hazard such as a flood. A map of the flood’s extent can be overlaid on the social vulnerability layer to allow planners and responders to better understand the demographics of the people affected by the hazard. This map depicts social vulnerability at the block group level. A high score indicates an area is more vulnerable. This web service provides a simplistic view of social vulnerability. There are more recent methods and metrics for determining and displaying social vulnerability, including the Social Vulnerability Index (SoVI) which capture the multi-dimensional nature of social vulnerability across space. See www.sovius.org for more information on SoVI. The refereed journal article used to guide the creation of the model in ModelBuilder was: Cutter, S. L., J. T. Mitchell, and M. S. Scott, 2000. "Revealing the Vulnerability of People and Places: A Case Study of Georgetown County, South Carolina." Annals of the Association of American Geographers 90(4): 713-737. Additionally, a white paper used to guide creation of the model in ModelBuilder was "Handbook for Conducting a GIS-Based Hazards Assessment at the County Level" by Susan L. Cutter, Jerry T. Mitchell, and Michael S. Scott.Off-the-shelf software and data were used to generate this index. ModelBuilder in ArcGIS 10.1 was used to connect the data sources and run the calculations required by the model.-------------------------The Civic Analytics Network collaborates on shared projects that advance the use of data visualization and predictive analytics in solving important urban problems related to economic opportunity, poverty reduction, and addressing the root causes of social problems of equity and opportunity. For more information see About the Civil Analytics Network.
description: This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.; abstract: This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.
This reference contains the imagery data used in the completion of the baseline vegetation inventory project for the NPS park unit. Orthophotos, raw imagery, and scanned aerial photos are common files held here. High-quality existing photography housed by the Commonwealth of Massachusetts Office of Geographic and Environmental Information (MassGIS) was used as the base for the BOHA vegetation map. A true color orthophotomosaic was developed from a set of digital 1:5,000 scale medium resolution true color aerial images that are considered the new "basemap" for the Commonwealth of Massachusetts by MassGIS and the Executive Office of Environmental Affairs (EOEA) until 2005 DOQs became available in 2006 (MassGIS 2007). The photography for the entire commonwealth was captured in April 2005 when deciduous trees were mostly bare and the ground was generally free of snow. The image type is 4-band (RGBN) natural color (Red, Green, Blue) and Near infrared in 8 bits (values ranging 0-255) per band format.
This dataset underlies a choropleth map of Boston area communities in which areas are shaded according to the percentage of the population that was foreign-born during each decade. The data was drawn from the US Census of Population, as well as the American Community Survey.
https://www.massachusetts-demographics.com/terms_and_conditionshttps://www.massachusetts-demographics.com/terms_and_conditions
A dataset listing Massachusetts cities by population for 2024.
Areas that are within 10 minutes of an exit are emphasized on this map, to give an indication of how accessible neighborhoods are by highway. The colors represent 1, 3, 5 and 10 minute increments from the exits, based on posted exit speeds and local road speeds in ideal conditions. The areas were calculated using ready to use services hosted in ArcGIS which feature a road network from HERE. A simple geoprocessing tool sent 40,000+ exit locations to the service, which returned the 160,000+ polygons. ---------------------The Civic Analytics Network collaborates on shared projects that advance the use of data visualization and predictive analytics in solving important urban problems related to economic opportunity, poverty reduction, and addressing the root causes of social problems of equity and opportunity. For more information see About the Civil Analytics Network.
ODC Public Domain Dedication and Licence (PDDL) v1.0http://www.opendatacommons.org/licenses/pddl/1.0/
License information was derived automatically
Locations within the City of Boston of all small cell antenna/DAS approved by the City prior to 01/01/2017
Between 1935 and 1940 the federal government’s Home Owners’ Loan Corporation (HOLC) classified the neighborhoods of 239 cities according to their perceived investment risk. This practice has since been referred to as “redlining,” as the neighborhoods classified as being the highest risk for investment were often colored red on the resultant maps. The Mapping Inequality project, a collaboration of faculty at the University of Richmond’s Digital Scholarship Lab, the University of Maryland’s Digital Curation Innovation Center, Virginia Tech, and Johns Hopkins University has digitized and georectified all 239 HOLC maps and made them publicly available, including the HOLC map of Boston from 1938. The Boston Area Research Initiative has coordinated (i.e., spatial joined) the districts from the 1938 HOLC map of Boston with census tracts from the 2010 U.S. Census. This dataset contains the original shapefile and the spatially joined tract-level data.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
Noise pollution in cities has major negative effects on the health of both humans and wildlife. Using iPhones, we collected sound-level data at hundreds of locations in four areas of Boston, Massachusetts (USA) before, during, and after the fall 2020 pandemic lockdown, during which most people were required to remain at home. These spatially dispersed measurements allowed us to make detailed maps of noise pollution that are not possible when using standard fixed sound equipment. The four sites were: the Boston University campus (which sits between two highways), the Fenway/Longwood area (which includes an urban park and several hospitals), Harvard Square (home of Harvard University), and East Boston (a residential area near Logan Airport). Across all four sites, sound levels averaged 6.4 dB lower during the pandemic lockdown than after. Fewer high noise measurements occurred during lockdown as well. The resulting sound maps highlight noisy locations such as traffic intersections and quiet locations such as parks. This project demonstrates that changes in human activity can reduce noise pollution and that simple smartphone technology can be used to make highly detailed maps of noise pollution that identify sources of high sound levels potentially harmful to humans in urban environments. Methods We collected sound measurements within four different urban sites in Boston, Massachusetts. Working in small teams of 2-4 people, we used the mobile app SPLnFFT to collect sound level data in A-weighted decibel readings using smartphones. We exclusively used iPhones for data collection for consistency in hardware and software. Before each collection, we calibrated each iPhone to the same standard, which was used for every collection outing. We recorded the L50 value (the median sound level) for each recording because the L50 value is less affected by short bursts of loud sound than the mean reading. Recordings ran for approximately 20 seconds each. We recorded all sound measurements between 9 am and 5 pm on workdays to avoid the influence of rush-hour traffic, and only collected data on days without rain, snow, or strong wind to prevent inaccuracies due to weather. Within these conditions, we collected sound measurements over multiple days and at different times to ensure representative data. We followed these procedures for both collection cycles (2020 during lockdown and 2021 after lockdown had been lifted). The 2017 data were collected for an unrelated noise pollution project conducted by previous members of the Primack Lab and were not collected with the exact parameters established for the 2020 and 2021 collections. However, we found these noise data to be valuable given that they could be used to compare lockdown sound levels to the soundscape before the COVID-19 pandemic. We used R Studio to create sound maps from the individual data points in a way that allows for spatial visualization of the soundscape before, during, and after the pandemic lockdown. To test for statistically significant differences in sound level between years, we performed Welch’s t-tests on the raw data for all sites comparing lockdown (2020) measurements to pre (2017) and post (2021) lockdown measurements. Given the hypothesis that 2020 would have lower sound levels at each site, we report the results of one-tailed t-tests.
Wicked Free WiFi locations around the City of Boston as determined by the Meraki API.
This map contains demographic variables for block groups in the Boston area. The map shows a comparison of two variables: per capita income growth from 2015-2020 and unemployment. Size and color are used to show the two variables.The size of the circle represents the unemployed population over the age of 16, so the largest circles show the areas with the most unemployment. The colors showcase a range of personal income growth from 2015 to 2020. Green areas have the least projected growth, and yellow areas have the highest projected income growth.The data comes from Esri's ArcGIS Online data enrichment using the Living Atlas Block Group Analysis layer. The vintage of the data is 2015.
The population density picture of Boston is generally a story of two Bostons: the high density central and northern neighborhoods, and the low density southern neighborhoods.The highest density areas of Boston are particularly concentrated in Brighton, Allston, and the Fenway area, areas of the city with large numbers of college students and young adults. There is also high population density in areas such as the Back Bay, the South End, Charlestown, the North End, and South Boston. These are all relatively small areas geographically, but have housing stock conducive to population density (e.g. multi-family dwelling units, row housing, large apartment buildings). The southern neighborhoods, specifically Hyde Park and West Roxbury, have significant numbers of people living in them, but lots sizes tend to be much larger. These areas of the city also tend to have more single family dwelling units. In that, there are fewer people per square mile than places north in the city. Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, areas of highest density exceed 30,000 persons per square kilometer. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.How to make this map for your city