44 datasets found
  1. d

    All Wells, District Boundaries, and Field Boundaries from the California...

    • catalog.data.gov
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). All Wells, District Boundaries, and Field Boundaries from the California Division of Oil, Gas, and Geothermal Resources (DOGGR) [Dataset]. https://catalog.data.gov/dataset/all-wells-district-boundaries-and-field-boundaries-from-the-california-division-of-oil-gas
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    There are 487 onshore oil and gas fields in California encompassing 3,392 square miles of aggregated area. The California State Water Resources Control Board (State Water Board) initiated a Regional Monitoring Program (RMP) in July 2015, intended to determine where and to what degree groundwater quality may be at potential risk to contamination related to oil and gas development activities including well stimulation, well integrity issues, produced water ponds, and underground injection. The first step in monitoring groundwater in and near oil and gas fields is to prioritize the 487 fields using consistent statewide analysis of available data that indicate potential risk of groundwater to oil and gas development. There were limited existing data on potential groundwater risk factors available for oil and gas fields across the state. During 2014-2016, the U.S. Geological Survey (USGS) extracted and compiled data from various sources, including the California Division of Oil, Gas, and Geothermal Resources (DOGGR) and the Department of Water Resources (DWR). Geospatial data from the DOGGR were used in the prioritization analysis. Dataset include geospatial data for 222,637 petroleum wells, administrative boundaries for 514 oil, gas, and geothermal fields, and boundaries for DOGGR's 6 juristictional districts. The data were downloaded from DOGGR's Geographic Information System (GIS) Mapping website at http://www.conservation.ca.gov/dog/maps. The DOGGR GIS Mapping website is periodally updated, and the datasets downloaded by the U.S. Geological Survey in 2014 may no longer be available on the DOGGR website.

  2. d

    California Oil and Gas Fields Contour Maps cross sections and data sheets.

    • datadiscoverystudio.org
    • data.wu.ac.at
    pdf
    Updated Apr 9, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2015). California Oil and Gas Fields Contour Maps cross sections and data sheets. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/f8d6d71015304641a1b4fbaa91db3304/html
    Explore at:
    pdfAvailable download formats
    Dataset updated
    Apr 9, 2015
    Description

    description: 3 Files Volume 1 Central California.Volume 2 Southern, Central Coastal, and Offshore California. Volume 3 Northern California.Contour maps, cross section, data sheets and representative well logs for California oil and gas fields. This resource is available online for download as 3 pdfs. For more information see links provided; abstract: 3 Files Volume 1 Central California.Volume 2 Southern, Central Coastal, and Offshore California. Volume 3 Northern California.Contour maps, cross section, data sheets and representative well logs for California oil and gas fields. This resource is available online for download as 3 pdfs. For more information see links provided

  3. d

    Water well data used for preliminary regional groundwater salinity mapping...

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Water well data used for preliminary regional groundwater salinity mapping near selected oil fields in central and southern California [Dataset]. https://catalog.data.gov/dataset/water-well-data-used-for-preliminary-regional-groundwater-salinity-mapping-near-selected-o
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    U.S. Geological Survey
    Area covered
    California
    Description

    This digital dataset is comprised of three separate data files that contain total dissolved solids, well construction, and well identifying information for 3,546 water wells used to map salinity in and around 31 southern and central California oil fields. Salinity mapping was done for 27 fields located in the southern San Joaquin Valley of Kern County (North Belridge, South Belridge, Canfield Ranch, North Coles Levee, South Coles Levee, Cymric, Edison, Elk Hills, Fruitvale, Greely, Jasmin, Kern Bluff, Kern Front, Kern River, Lost Hills, Mount Poso, Mountain View, Poso Creek, Rio Bravo, Rosedale, Rosedale Ranch, Round Mountain, San Emidio Nose, Tejon, Ten Section, Wheeler Ridge, and Yowlumne), 3 fields in the LA Basin of Los Angeles County (Montebello, Santa Fe Springs, and Wilmington), and 1 field in the central coast area of Santa Barbara and San Luis Obispo Counties (Santa Maria Valley). Unlike petroleum wells, water wells both within and adjacent to oil fields of interest were used for salinity mapping. Water wells within an area (buffer) of 2-miles from the administrative field boundaries, with the exception of the Wilmington oil field with a buffer of 1-mile, were used for salinity mapping. Water wells located within overlapping buffer areas of adjacent oil fields were assigned to multiple fields for the purpose of being able to map salinity on a field-by-field basis. The dataset includes total dissolved solids (TDS) analyses from 1927 to 2016. Many of the analyses represent TDS concentrations that were calculated, as part of the salinity mapping, from specific conductance (SC) in lieu of reported TDS concentrations. Approximately 30 percent of the mapped water wells are wholly or partially derived from SC. In addition, approximately 50 percent of the water wells have TDS or SC analyses from more than one unique sample date. For wells having multiple analyses TDS represents the median value for the entire period of record, irrespective of whether it is from reported, calculated, or a combination of both TDS types. This dataset also includes ancillary data in the form of bottom perforation depth, well depth, or hole depth, land-surface elevation at the well head, and well location and identifier information. Bottom perforation depth was missing for about 65 percent of all water wells used for salinity mapping and were assigned a alternative value for plotting purposes. Where available, well depth or hole depth were used in lieu of bottom perforation depth. For water wells lacking bottom perforation, well depth, or hole depth (40 percent), the bottom perforation was estimated based on screen length when available (5 percent), or when the median bottom perforation or median well depth for all wells associated with an individual field is provided as an approximation for the purpose of vertical plotting (35 percent). Summary data about each well used for salinity mapping is contained in the file called Water_Wells_Summary_Data. Detailed information about all individual TDS values including those used for determining median TDS values, are contained in the file called Water_Wells_All_Data. Data used for the development of linear regression equations for calculating TDS from specific conductance in lieu of reported TDS values are contained in the file called Water_Wells_Regress_Data.

  4. K

    Kern County, CA Oil Wells

    • koordinates.com
    csv, dwg, geodatabase +6
    Updated Sep 13, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Kern County, California (2018). Kern County, CA Oil Wells [Dataset]. https://koordinates.com/layer/97160-kern-county-ca-oil-wells/
    Explore at:
    dwg, shapefile, geopackage / sqlite, csv, pdf, geodatabase, mapinfo tab, kml, mapinfo mifAvailable download formats
    Dataset updated
    Sep 13, 2018
    Dataset authored and provided by
    Kern County, California
    Area covered
    Description

    The California Department of Conservation, Division of Oil, Gas and Geothermal Resources publishes a GIS feature class of well locations across the state for use by the public. This shapefile is the same as the data displayed in the Division's WellFinder application (http://maps.conservation.ca.gov/doggr/index.html) as of July 6, 2016. This shapefile is provided in geographic coordinates on the North American Datum of 1983. A partial description of the attributes contained in this feature class is listed on the WellFinder application's Help system (see entity and attributes section in this metadata). Geothermal wells have been excluded from this shapefile.The DOGGR Wells layer in WellFinder is also available as a WFS service at http://spatialservices.conservation.ca.gov/arcgis/rest/services/DOMS/DOMS_Wells/MapServer/WFSServer?/.Well Attributes: API Number, Well Number, Well Status, GIS Symbol, Operator Code, Operator Name, Lease Name, Field Name, Area Name, District, County, Section, Township, Range, Base Meridian, Latitude, Longitude, Elevation, Total Depth, Redrill Footage, Redrill Cancel Flag, Location Description, Comments, GIS Source Code, Dry Hole, Confidential Well, Directionally Drilled, Hydraulically Fractured, BLM Well, EPA Well, Spud Date, Completion Date, Abandoned Date

    © Division of Oil, Gas and Geothermal Resources

    This layer is a component of Geology & Geography.

  5. d

    California Oil and Gas Fields, Volumes 1, 2 and 3, Central, Southern, and...

    • datadiscoverystudio.org
    pdf, zip
    Updated Jan 23, 2012
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    No Name Was Given (2012). California Oil and Gas Fields, Volumes 1, 2 and 3, Central, Southern, and Northen California, Contour Maps, Cross Sections, and Data Sheets [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/6dba6518f260490d906ba8ec6b03231f/html
    Explore at:
    zip, pdfAvailable download formats
    Dataset updated
    Jan 23, 2012
    Authors
    No Name Was Given
    Area covered
    Description

    California Oil and Gas Fields Volume 1, Central California, 1998, Contour maps, cross section, and data sheets for California oil and gas fields. Geological and statistical data are available in these documents for most oil and gas fields in California. For each field, a contour map and a cross section page will appear, followed by a page of statistical data. Most fields have two pages of information, but larger fields have more. The information is current to the date at the foot of each page. For more information or to download the three reports PDFs, see Online Availability links provided.

  6. Oil and Gas Fields in Canada

    • climate.esri.ca
    • climat.esri.ca
    Updated May 15, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Esri Canada - Technology Strategy Group (2019). Oil and Gas Fields in Canada [Dataset]. https://climate.esri.ca/maps/esrica-tsg::oil-and-gas-fields-in-canada/about
    Explore at:
    Dataset updated
    May 15, 2019
    Dataset provided by
    Esrihttp://esri.com/
    Authors
    Esri Canada - Technology Strategy Group
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Area covered
    Description

    IMPORTANT NOTICE This item has moved to a new organization and will enter Mature Support on May 7th, 2025. This item is scheduled to be Retired and removed from ArcGIS Online on July 7th, 2025. We encourage you to switch to using the item on the new organization as soon as possible to avoid any disruptions within your workflows. If you have any questions, please feel free to leave a comment below or email our Living Atlas Curator (livingatlascurator@esri.ca) The new version of this item can be found here. This dataset provides information related to the principal producing oil and gas fields operating in Canada during the given reference year. The dataset is maintained by the National Energy Board.See Principal Mineral Areas, Producing Mines, and Oil and Gas Fields (900A) for additional resources, formats, services, and contact information.

  7. Oil and Gas Field Administrative Boundaries

    • catalog.data.gov
    • data.cnra.ca.gov
    • +8more
    Updated Nov 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2024). Oil and Gas Field Administrative Boundaries [Dataset]. https://catalog.data.gov/dataset/oil-and-gas-field-administrative-boundaries-a26fc
    Explore at:
    Dataset updated
    Nov 27, 2024
    Dataset provided by
    California Department of Conservationhttp://www.conservation.ca.gov/
    Description

    Administrative boundaries for oil and gas fields in California.CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed

  8. d

    Geophysical and geochemical data for salinity mapping in the Midway-Sunset...

    • catalog.data.gov
    • data.amerigeoss.org
    Updated Jul 6, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Geophysical and geochemical data for salinity mapping in the Midway-Sunset oil field area [Dataset]. https://catalog.data.gov/dataset/geophysical-and-geochemical-data-for-salinity-mapping-in-the-midway-sunset-oil-field-area
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Description

    The U.S. Geological Survey (USGS) and California State University-Sacramento, in cooperation with the California State Water Resources Control Board and U.S. Bureau of Land Management, compiled and analyzed data for mapping groundwater salinity in selected oil and gas fields in California. The data for the Midway-Sunset (MWSS) oil field includes digitized borehole geophysical data, geochemical analyses of produced water samples from oil and gas wells, core sample analysis from select wells, and groundwater total dissolved solids (TDS) estimations with the related geophysical log data. These data have been compiled from many sources and span several decades. The geochemical data include ion concentrations and TDS which are attributed with the sample date, geological formation, and perforation depths. These data have been in archived scanned pages of historical lab analyses on the Division of Oil, Gas, and Geothermal Resources (DOGGR) website. The borehole geophysical data has been provided by California Division of Oil, Gas, and Geothermal Resources (DOGGR). These data were compiled primarily to create groundwater salinity maps to assist in regional groundwater monitoring as part of the California State Water Resources Control Board's Program of Regional Monitoring of Water Quality in Areas of Oil and Gas Production and the USGS California Oil, Gas, and Groundwater (COGG) program.

  9. d

    Public Land Survey System (PLSS): Sections

    • datasets.ai
    • data.ca.gov
    • +8more
    15, 21, 25, 3, 57, 8
    Updated Aug 27, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    State of California (2024). Public Land Survey System (PLSS): Sections [Dataset]. https://datasets.ai/datasets/public-land-survey-system-plss-sections-f599c
    Explore at:
    25, 21, 15, 3, 57, 8Available download formats
    Dataset updated
    Aug 27, 2024
    Dataset authored and provided by
    State of California
    Description

    In support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).


    CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).

    Update Frequency: As Needed


  10. g

    Petroleum Well

    • geohub.lio.gov.on.ca
    • cbc.ca
    • +3more
    Updated Oct 4, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Land Information Ontario (2018). Petroleum Well [Dataset]. https://geohub.lio.gov.on.ca/datasets/petroleum-well
    Explore at:
    Dataset updated
    Oct 4, 2018
    Dataset authored and provided by
    Land Information Ontario
    License

    https://www.ontario.ca/page/open-government-licence-ontariohttps://www.ontario.ca/page/open-government-licence-ontario

    Area covered
    Description

    The locations of wells that have been drilled for oil production, gas or salt resources or for underground storage of hydrocarbons.This data can be used for land use and resource management, emergency management, as well as compliance and enforcement in the petroleum industry. The Data is collected on an on-going basis and maintained in the Ontario Petroleum Data System (OPDS). Additional Documentation Petroleum Well - Data DescriptionPetroleum Well - DocumentationPetroleum Well- User Guide Status
    On going: data is being continually updated

    Maintenance and Update Frequency

    Semi-monthly: data is updated twice a month

    Contact Petroleum Operations Section, Ministry of Natural Resources and Forestry, POSrecords@ontario.ca

  11. c

    Public Land Survey System (PLSS): Township and Range

    • gis.data.ca.gov
    • data.ca.gov
    • +4more
    Updated May 14, 2019
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California Department of Conservation (2019). Public Land Survey System (PLSS): Township and Range [Dataset]. https://gis.data.ca.gov/datasets/cadoc::public-land-survey-system-plss-township-and-range/about
    Explore at:
    Dataset updated
    May 14, 2019
    Dataset authored and provided by
    California Department of Conservation
    Area covered
    Description

    In support of new permitting workflows associated with anticipated WellSTAR needs, the CalGEM GIS unit extended the existing BLM PLSS Township & Range grid to cover offshore areas with the 3-mile limit of California jurisdiction. The PLSS grid as currently used by CalGEM is a composite of a BLM download (the majority of the data), additions by the DPR, and polygons created by CalGEM to fill in missing areas (the Ranchos, and Offshore areas within the 3-mile limit of California jurisdiction).CalGEM is the Geologic Energy Management Division of the California Department of Conservation, formerly the Division of Oil, Gas, and Geothermal Resources (as of January 1, 2020).Update Frequency: As Needed

  12. d

    Depths to top of perforation and base of freshwater for oil and gas...

    • catalog.data.gov
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Depths to top of perforation and base of freshwater for oil and gas production wells in California [Dataset]. https://catalog.data.gov/dataset/depths-to-top-of-perforation-and-base-of-freshwater-for-oil-and-gas-production-wells-in-ca
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    California
    Description

    There are 487 onshore oil and gas fields in California encompassing 3,392 square miles of aggregated area. The California State Water Resources Control Board (State Water Board) initiated a Regional Monitoring Program (RMP) in July 2015, intended to determine where and to what degree groundwater quality may be at potential risk to contamination related to oil and gas development activities including well stimulation, well integrity issues, produced water ponds, and underground injection. The first step in monitoring groundwater in and near oil and gas fields is to prioritize the 487 fields using consistent statewide analysis of available data that indicate potential risk of groundwater to oil and gas development. There were limited existing data on potential groundwater risk factors available for oil and gas fields across the state. During 2014-2016, the U.S. Geological Survey (USGS) extracted and compiled data from various sources, including the California Division of Oil, Gas, and Geothermal Resources (DOGGR) and the California Department of Water Resources (DWR). During 2014-2016, the depth to top of perforated intervals and depth to base of freshwater for oil and gas production wells in California were extracted from well records maintained by the DOGGR. Well records including geophysical logs, well history, well completion reports, and correspondences were viewed on DOGGR's Well Finder website at https://maps.conservation.ca.gov/doggr/wellfinder/. This digital dataset contains 3,505 records for production wells, of which 2,964 wells have a recorded depth to top of perforated intervals and 1,494 wells have a recorded depth to base of freshwater. Wells were attributed with American Petroleum Institute (API) numbers, oil and gas field, and well location, well status and type, and nearest oil and gas field for wells that plotted outside field boundaries using the DOGGR All Wells geospatial data included in this data release. Wells were attributed with land surface elevations using the California National Elevation Dataset. Due to limited time and resources to analyze well records for the most recent well configuration, wells spatially distributed throughout the state and accounting for about 2 percent of the more than 185,000 production wells (new, active, idle, or plugged well status) were attributed with depth data.

  13. w

    Data from: Geology--Offshore of Coal Oil Point, California

    • data.wu.ac.at
    • data.usgs.gov
    • +2more
    Updated Jun 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). Geology--Offshore of Coal Oil Point, California [Dataset]. https://data.wu.ac.at/schema/data_gov/MTljMTU3MDEtN2Q5MS00ZTliLWJhNjYtZjE5ZTUwNzFiNjEw
    Explore at:
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    154a237831d883a97145b5e66c5a939e4addb106, California
    Description

    This part of SIM 3302 presents data for the geologic and geomorphic map (see sheet 10, SIM 3302) of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Geology_OffshoreCoalOilPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. The offshore part of the Offshore of Coal Oil Point map area largely consists of a gently offshore-dipping (less than 1 degree) shelf underlain by sediments derived primarily from relatively small coastal watersheds that drain the Santa Ynez Mountains. Shelf deposits are primarily sand (Qms) at depths less than about 35 to 50 m, and they are finer grained sediment such as very fine sand, silt, and clay (Qmsf) from depths of 35 to 50 m southward to the shelf break at a depth of about 90 m. The boundary between units Qms and Qmsf is based on observations and extrapolation from sediment sampling (see, for example, Reid and others, 2006) and camera ground-truth surveying. It is important to note that the boundary between units Qms and Qmsf should be considered transitional and approximate and is expected to shift as a result of seasonal- to annual- to decadal-scale cycles in wave climate, sediment supply, and sediment transport. Fine-grained deposits that are similar to unit Qmsf also are mapped at water depths greater than 90 m, below the shelf break on the upper slope; however, here they are identified as a separate unit (unit Qmsl) because of their location below the distinct shelf-slope geomorphologic break. Coarser grained, marine deposits (coarse sand to boulders) of units Qmsc, Qmscl, and Qsc are recognized on the basis of their high acoustic backscatter, their ground-truth-survey imagery, and, in some cases, their moderate seafloor relief. This coarse-grained facies is linked either to the mouths of steep coastal watersheds or to adjacent seafloor bedrock outcrops, and the deposits generally represent wave-winnowed lags of deltaic sediment. Two distinct lobes of coarse-grained sediment (unit Qmscl), present in deeper water (about 50 m) near the west edge of the map area, may similarly represent winnowed deltaic deposits that formed at lower sea levels during the latest Pleistocene or early Holocene. An isolated patch of clast-supported cobbles (unit Qsc), which rests on bedrock south of Coal Oil Point at a water depth of 70 m, also may have been deposited at lower sea levels during the late Pleistocene. Offshore bedrock exposures are mapped as either the Miocene Monterey Formation (Tm, Tmu, Tmm), the late Miocene and early Pliocene Sisquoc Formation (Tsq), or the undivided Quaternary and Tertiary bedrock (QTbu) or undivided Tertiary bedrock (Tbu) units on the basis of the confidence in extending the onshore mapping of Minor and others (2009) offshore. Midshelf to outer shelf bedrock exposures are all mapped as undivided units; however, offshore sampling data (see, for example, Kunitomi and others, 1998), as well as regional cross sections that are constrained by petroleum exploration data and sampling (Redin, 2005; Redin and others, 2005), have suggested that these seafloor outcrops predominantly are late Miocene and Pliocene strata. These rocks have been uplifted in a large, regional, internally warped, south-dipping homocline that formed above the blind, north-dipping Pitas Point-North Channel Fault system; the fault tip is inferred to lie beneath the continental slope, about 6 to 7 km offshore. Bedrock is, in some places, overlain by a thin (less than 1 m?) veneer of sediment, recognized on the basis of high backscatter, flat relief, continuity with moderate- to high-relief bedrock outcrops, and (in some cases) high-resolution seismic-reflection data; these areas, which are mapped as composite units Qms/Tu, Qms/Tsq, Qms/Tmu, Qms/Tmm, Qms/Tm, Qms/Tbu, or Qmsf/QTbu, are interpreted as ephemeral sediment layers that may or may not be continuously present, whose presence or absence is a function of the recency and intensity of storm events, seasonal and (or) annual patterns of sediment movement, or longer term climate cycles. The Offshore of Coal Oil Point map area includes the upper part of the large (130 km2), well-documented submarine Goleta landslide complex (Eichhubl and others, 2002; Fisher and others, 2005; Greene and others, 2006). Greene and others (2006) reported that the complex, which measures 14.6 km long and 10.5 km wide and extends from water depths of 90 to 574 m, has displaced about 1.75 km3 of landslide debris during the Holocene; they described it as a compound, multiphase submarine landslide that contains both surficial slump blocks and mud flows, in three distinct segments (west, central, and east lobes). Each segment consists of a distinct headwall scarp (units Qglwh, Qglch, Qgleh), a downdropped head block (units Qglwb, Qglcb, Qgleb), and several composite slide-debris lobes (units Qglw5, Qfglw4, Qglw3, Qglw2, Qglw1, Qglc4, Qglc3, Qglc2a, Qglc2, Qfle5, Qgle4, Qgle3, Qgle2). The geologic map geomorphic map on sheet 10 (SIM 3302) shows the upper approximately 3 km of this landslide complex; in addition, the seismic-reflection profile SB-145 (fig. 3 on sheet 8, SIM 3302), which crosses the east lobe of the landslide complex, illustrates its subsurface characteristics. The landslide source is inferred to be Pleistocene-age, shelf-edge deltaic sediments deposited during Quaternary sea-level lowstands, and Fisher and others (2005) suggested that the youngest landslides formed about 8,000 to 10,000 years ago. The Santa Barbara Channel region, including the map area, has a long history of petroleum production (Barnum, 1998) that began in 1928 with discovery of the Ellwood oil field. Subsequent discoveries in the offshore part of the map area include the South Ellwood offshore oil field, the Coal Oil Point oil field, and the Naples oil and gas field (Brickey, 1998; Galloway, 1998). Oil and gas are mainly sourced by the Miocene Monterey Formation; the reservoirs are in the Vaqueros Formation, the Rincon Shale, and the Monterey Formation. Development of the South Ellwood offshore oil field began in 1966 from platform "Holly," which was the last platform to be installed in California's State Waters. Debris and infrastructure associated with platform "Holly," as well as with seep containment devices ("seep tents"), are mapped as unit pd. Hornafius and others (1999) described "the world's most spectacular marine hydrocarbon seeps" in the Coal Oil Point map area, and these seeps release an estimated 36 metric tons of methane and 17 metric tons reactive organic gas (ethane, propane, butane, and higher hydrocarbons) per day. Areas of grouped to solitary pockmarks (unit Qmp) caused by gas seeps are common features. In addition, numerous asphalt (tar) deposits (unit Qas) associated with hydrocarbon seeps and gas vents are mapped both onshore and offshore. The offshore deposits, which have been confirmed with seafloor video observations, often are localized along bedrock structures such as faults or the crests of anticlines, forming bathymetric features that are morphologically similar to bedrock outcrops but are distinguished from them on the basis of their low acoustic backscatter. Although many such asphalt deposits are too small to be shown on the map, the larger deposits can cover as much as several hundred square meters. References Cited: Barnum, H.P., 1998, Redevelopment of the western portion of the Rincon offshore oil field, Ventura, California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, p. 201-215. Brickey, M.R., 1998, Oil and gas fields of the Santa Barbara Channel area, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, preface (2 p.). Eichhubl, P., Greene, H.G., and Maher, N., 2002, Physiography of an active transpressive margin basin--High-resolution bathymetry of the Santa Barbara basin, southern California continental borderland: Marine Geology, v. 184, p. 95-120. Fisher, M.A., Normark, W.R., Greene, H.G., Lee, H.J., and Sliter, R.W., 2005, Geology and tsunamigenic potential of submarine landslides in Santa Barbara Channel, southern California: Marine Geology, v. 224, p. 1-22. Galloway, J., 1998, Chronology of petroleum exploration and development in the Santa Barbara Channel area, offshore southern California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, p. 1-12, 1 sheet. Greene, H.G., Murai, L.Y., Watts, P., Maher, N.A., Fisher, M.A., and Eichhubl, P., 2006, Submarine landslides in the Santa Barbara channel as potential tsunami sources: Natural Hazards and Earth System Sciences, v. 6, p. 63-88. Hornafius, J.S., Quigley, D.C., and Luyendyk, B.P., 1999, The world's most spectacular marine hydrocarbon seeps (Coal Oil Point, Santa Barbara Channel, California)--Quantification of emissions: Journal of Geophysical Research - Oceans, v. 104, p. 20,703-20,711. Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., 1998, Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, 328 p. Minor, S.A., Kellogg, K.S., Stanley, R.G., Gurrola, L.D., Keller, E.A., and Brandt, T.R., 2009, Geologic map of the Santa Barbara coastal plain area, Santa Barbara County, California: U.S. Geological Survey Scientific Investigations Map 3001, scale

  14. w

    Folds--Offshore of Coal Oil Point, California

    • data.wu.ac.at
    • data.usgs.gov
    • +3more
    Updated Jun 8, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Department of the Interior (2018). Folds--Offshore of Coal Oil Point, California [Dataset]. https://data.wu.ac.at/schema/data_gov/NDQ3ZDg1YzgtNzdlYi00ZTg3LTlhNzEtMWU3OGM4Nzc3OTg5
    Explore at:
    Dataset updated
    Jun 8, 2018
    Dataset provided by
    Department of the Interior
    Area covered
    California, d435215f4375434ec9f33b22429b291294fe7d97
    Description

    This part of SIM 3302 presents data for folds for the geologic and geomorphic map (see sheet 10, SIM 3302) of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Folds_OffshoreCoalOilPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. This map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland (Fisher and others, 2009). Significant clockwise rotation--at least 90 degrees--since the Miocene has been proposed for the Western Transverse Ranges province (Luyendyk and others, 1980; Hornafius and others, 1986; Nicholson and others, 1994), and this region is presently undergoing north-south shortening (see, for example, Larson and Webb, 1992). In the eastern part of the map area, cross sections suggest that this shortening is, in part, accommodated by offset on the North Channel, Red Mountain, South Ellwood, and More Creek Fault systems (Bartlett, 1998; Heck, 1998; Redin and others, 2005; Leifer and others, 2010). Crustal deformation in the western part of the Offshore of Coal Oil Point map area apparently is less complex than that in the eastern part (Redin, 2005); the western structure is dominated by a large, south-dipping homocline that extends from the south flank of the Santa Ynez Mountains beneath the continental shelf. References Cited: Bartlett, W.L., 1998, Ellwood oil field, Santa Barbara County, California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, p. 217-237. Fisher, M.A., Sorlien, C.C., and Sliter, R.W., 2009, Potential earthquake faults offshore southern California from the eastern Santa Barbara channel to Dana Point, in Lee, H.J., and Normark, W.R., eds., Earth science in the urban ocean--The Southern California Continental Borderland: Geological Society of America Special Paper 454, p. 271-290. Heck, R.G., 1998, Santa Barbara Channel regional formline map, top Monterey Formation, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, 1 plate. Hornafius, J.S., Luyendyk, B.P., Terres, R.R., and Kamerling, M.J., 1986, Timing and extent of Neogene rotation in the western Transverse Ranges, California: Geological Society of America Bulletin, v. 97, p. 1,476-1,487. Larson, K.M., and Webb, F.H., 1992, Deformation in the Santa Barbara Channel from GPS measurements 1987-1991: Geophysical News Letters, v. 19, p. 1,491-1,494. Leifer, I., Kamerling, M., Luyendyk, B.P., and Wilson, D.S., 2010, Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California: Geo-Marine Letters, v. 30, p. 331-338, doi:10.1007/s00367-010-0188-9. Luyendyk, B.P., Kamerling, M.J., and Terres, R.R., 1980, Geometric model for Neogene crustal rotations in southern California: Geological Society of America Bulletin, v. 91, p. 211-217. Nicholson, C., Sorlien, C., Atwater, T., Crowell, J.C., and Luyendyk, B.P., 1994, Microplate capture, rotation of the western Transverse Ranges, and initiation of the San Andreas transform as a low-angle fault system: Geology, v. 22, p. 491-495. Redin, T., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 36, N-S structure and correlation section, western Santa Ynez Mountains across the Santa Barbara Channel to Santa Rosa Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 36, 1 sheet. Redin, T., Kamerling, M., and Forman, J., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 35, North Ellwood-Coal Oil Point area across the Santa Barbara Channel to the north coast of Santa Cruz Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 35, 1 sheet.

  15. Crude Oil and Natural Gas Resources

    • open.canada.ca
    jp2, zip
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Crude Oil and Natural Gas Resources [Dataset]. https://open.canada.ca/data/en/dataset/cdfd1440-8893-11e0-a55f-6cf049291510
    Explore at:
    zip, jp2Available download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Canada has significant proven reserves of crude oil (178 billion barrels), second only to those of Saudi Arabia. Canadian natural gas reserves were 58 trillion cubic feet as of year-end 2006. These resources are found in the country’s seven major sedimentary basins. The primary petroleum-producing sedimentary basin is the Western Canada Sedimentary Basin (WCSB), which extends from the Canadian Shield to the Rocky Mountains through Manitoba, Saskatchewan, Alberta and northeastern British Columbia. There are also producing basins in southern Ontario, offshore Newfoundland, and the Scotian Shelf. Potential reserves are also found in Northern Canada, where an estimated 30 per cent of Canada’s conventional oil resources are located. The map shows the major petroleum-producing fields (or pools) of conventional natural gas, crude oil and the oil sands, as well as the extensive pipeline network.

  16. d

    Offshore Oil Leases

    • catalog.data.gov
    • s.cnmilf.com
    • +3more
    Updated Mar 30, 2024
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California State Lands Commission (2024). Offshore Oil Leases [Dataset]. https://catalog.data.gov/dataset/offshore-oil-leases-fe3da
    Explore at:
    Dataset updated
    Mar 30, 2024
    Dataset provided by
    California State Lands Commission
    Description

    California State Lands Commission Offshore Oil Leases in the vicinity of Santa Barbara, Ventura, and Orange County.The polygons in this layer show the position of Offshore Oil Leases as documented by former State Lands Senior Boundary Determination Officer, Cris N. Perez and as reviewed and updated by GIS and Boundary staff.Background: This layer represents active offshore oil and gas agreements in California waters, which are what remain of the more than 60 originally issued. These leases were issued prior to the catastrophic 1969 oil spill from Platform A in federal waters off Santa Barbara County, and some predate the formation of the Commission. Between 2010 and 2014, the bulk of the approximately $300 million generated annually for the state's General Fund from oil and gas agreements was from these offshore leases.In 1921, the Legislature created the first tidelands oil and gas leasing program. Between 1921 and 1929, approximately 100 permits and leases were issued and over 850 wells were drilled in Santa Barbara and Ventura Counties. In 1929, the Legislature prohibited any new leases or permits. In 1933, however, the prohibition was partially lifted in response to an alleged theft of tidelands oil in Huntington Beach. It wasn't until 1938, and again in 1955, that the Legislature would allow new offshore oil and gas leasing. Except for limited circumstances, the Legislature has consistently placed limits on the areas that the Commission may offer for lease and in 1994, placed the entirety of California's coast off-limits to new oil and gas leases. Layer Creation Process:In 1997 Cris N. Perez, Senior Boundary Determination Officer of the Southern California Section of the State Lands Division, prepared a report on the Commission’s Offshore Oil Leases to:A. Show the position of Offshore Oil Leases. B. Produce a hard copy of 1927 NAD Coordinates for each lease. C. Discuss any problems evident after plotting the leases.Below are some of the details Cris included in the report:I have plotted the leases that were supplied to me by the Long Beach Office and computed 1927 NAD California Coordinates for each one. Where the Mean High Tide Line (MHTL) was called for and not described in the deed, I have plotted the California State Lands Commission CB Map Coordinates, from the actual field surveys of the Mean High Water Line and referenced them wherever used. Where the MHTL was called for and not described in the deed and no California State Lands Coordinates were available, I digitized the maps entitled, “Map of the Offshore Ownership Boundary of the State of California Drawn pursuant to the Supplemental Decree of the U.S. Supreme Court in the U.S. V. California, 382 U.S. 448 (1966), Scale 1:10000 Sheets 1-161.” The shore line depicted on these maps is the Mean Lower Low Water (MLLW) Line as shown on the Hydrographic or Topographic Sheets for the coastline. If a better fit is needed, a field survey to position this line will need to be done.The coordinates listed in Cris’ report were retrieved through Optical Character Recognition (OCR) and used to produce GIS polygons using Esri ArcGIS software. Coordinates were checked after the OCR process when producing the polygons in ArcMap to ensure accuracy. Original Coordinate systems (NAD 1927 California State Plane Zones 5 and 6) were used initially, with each zone being reprojected to NAD 83 Teale Albers Meters and merged after the review process.While Cris’ expertise and documentation were relied upon to produce this GIS Layer, certain polygons were reviewed further for any potential updates since Cris’ document and for any unusual geometry. Boundary Determination Officers addressed these issues and plotted leases currently listed as active, but not originally in Cris’ report. On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court United States v. California, 135 S. Ct. 563 (2014). Offshore leases were clipped so as not to exceed the limits of this fixed boundary. Lease Notes:PRC 1482The “lease area” for this lease is based on the Compensatory Royalty Agreement dated 1-21-1955 as found on the CSLC Insider. The document spells out the distinction between “leased lands” and “state lands”. The leased lands are between two private companies and the agreement only makes a claim to the State’s interest as those lands as identified and surveyed per the map Tract 893, Bk 27 Pg 24. The map shows the State’s interest as being confined to the meanders of three sloughs, one of which is severed from the bay (Anaheim) by a Tideland sale. It should be noted that the actual sovereign tide and or submerged lands for this area is all those historic tide and submerged lands minus and valid tide land sales patents. The three parcels identified were also compared to what the Orange County GIS land records system has for their parcels. Shapefiles were downloaded from that site as well as two centerline monuments for 2 roads covered by the Tract 893. It corresponded well, so their GIS linework was held and clipped or extended to make a parcel.MJF Boundary Determination Officer 12/19/16PRC 3455The “lease area” for this lease is based on the Tract No. 2 Agreement, Long Beach Unit, Wilmington Oil Field, CA dated 4/01/1965 and found on the CSLC insider (also recorded March 12, 1965 in Book M 1799, Page 801).Unit Operating Agreement, Long Beach Unit recorded March 12, 1965 in Book M 1799 page 599.“City’s Portion of the Offshore Area” shall mean the undeveloped portion of the Long Beach tidelands as defined in Section 1(f) of Chapter 138, and includes Tract No. 1”“State’s Portion of the Offshore Area” shall mean that portion of the Alamitos Beach Park Lands, as defined in Chapter 138, included within the Unit Area and includes Tract No. 2.”“Alamitos Beach Park Lands” means those tidelands and submerged lands, whether filled or unfilled, described in that certain Judgment After Remittitur in The People of the State of California v. City of Long Beach, Case No. 683824 in the Superior Court of the State of California for the County of Los Angeles, dated May 8, 1962, and entered on May 15, 1962 in Judgment Book 4481, at Page 76, of the Official Records of the above entitled court”*The description for Tract 2 has an EXCEPTING (statement) “therefrom that portion lying Southerly of the Southerly line of the Boundary of Subsidence Area, as shown on Long Beach Harbor Department {LBHD} Drawing No. D-98. This map could not be found in records nor via a PRA request to the LBHD directly. Some maps were located that show the extents of subsidence in this area being approximately 700 feet waterward of the MHTL as determined by SCC 683824. Although the “EXCEPTING” statement appears to exclude most of what would seem like the offshore area (out to 3 nautical miles from the MHTL which is different than the actual CA offshore boundary measured from MLLW) the 1964, ch 138 grant (pg25) seems to reference the lands lying seaward of that MHTL and ”westerly of the easterly boundary of the undeveloped portion of the Long Beach tidelands, the latter of which is the same boundary (NW) of tract 2. This appears to then indicate that the “EXCEPTING” area is not part of the Lands Granted to City of Long Beach and appears to indicate that this portion might be then the “State’s Portion of the Offshore Area” as referenced in the Grant and the Unit Operating Agreement. Section “f” in the CSLC insider document (pg 9) defines the Contract Lands: means Tract No. 2 as described in Exhibit “A” to the Unit Agreement, and as shown on Exhibit “B” to the Unit Agreement, together with all other lands within the State’s Portion of the Offshore Area.Linework has been plotted in accordance with the methods used to produce this layer, with record lines rotated to those as listed in the descriptions. The main boundaries being the MHTL(north/northeast) that appears to be fixed for most of the area (projected to the city boundary on the east/southeast); 3 nautical miles from said MHTL on the south/southwest; and the prolongation of the NWly line of Block 50 of Alamitos Bay Tract.MJF Boundary Determination Officer 12-27-16PRC 4736The “lease area” for this lease is based on the Oil and Gas Lease and Agreement as found on the CSLC insider and recorded August 17, 1973 in BK 10855 PG 432 Official Records, Orange County. The State’s Mineral Interests are confined to Parcels “B-1” and “B-2” and are referred to as “State Mineral Lands” comprising 70.00 Acres. The lessee each has a right to certain uses including but not limited to usage of utility corridors, 110 foot radius parcels surrounding well-sites and roads. The State also has access to those same roads per this agreement/lease. Those uses are allowed in what are termed “State Lands”-Parcel E and “Leased Lands” which are defined as the “South Bolsa Lease Area”-Parcel C (2 parcels) and “North Bolsa Lease Area”-Parcel D. The “State Lands”-Parcel E are actually 3 parcels, 2 of which are within road right-of-ways. MJF Boundary Determination Officer 12-28-16

  17. d

    Data from: Faults--Offshore of Coal Oil Point, California.

    • datadiscoverystudio.org
    • data.usgs.gov
    • +2more
    Updated May 20, 2018
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    (2018). Faults--Offshore of Coal Oil Point, California. [Dataset]. http://datadiscoverystudio.org/geoportal/rest/metadata/item/8fbd064859a3461cafcfeeee6b15236d/html
    Explore at:
    Dataset updated
    May 20, 2018
    Area covered
    California
    Description

    description: This part of SIM 3302 presents data for faults for the geologic and geomorphic map (see sheet 10, SIM 3302) of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Faults_OffshoreCoalOilPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. This map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland (Fisher and others, 2009). Significant clockwise rotation--at least 90 degrees--since the early Miocene has been proposed for the Western Transverse Ranges province (Luyendyk and others, 1980; Hornafius and others, 1986; Nicholson and others, 1994), and this region is presently undergoing north-south shortening (see, for example, Larson and Webb, 1992). In the eastern part of the map area, cross sections suggest that this shortening is, in part, accommodated by offset on the North Channel, Red Mountain, South Ellwood, and More Creek Fault systems (Bartlett, 1998; Heck, 1998; Redin and others, 2005; Leifer and others, 2010). Crustal deformation in the western part of the Offshore of Coal Oil Point map area apparently is less complex than that in the eastern part (Redin, 2005); the western structure is dominated by a large, south-dipping homocline that extends from the south flank of the Santa Ynez Mountains beneath the continental shelf. References Cited: Bartlett, W.L., 1998, Ellwood oil field, Santa Barbara County, California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, p. 217-237. Fisher, M.A., Sorlien, C.C., and Sliter, R.W., 2009, Potential earthquake faults offshore southern California from the eastern Santa Barbara channel to Dana Point, in Lee, H.J., and Normark, W.R., eds., Earth science in the urban ocean--The Southern California Continental Borderland: Geological Society of America Special Paper 454, p. 271-290. Heck, R.G., 1998, Santa Barbara Channel regional formline map, top Monterey Formation, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, 1 plate. Hornafius, J.S., Luyendyk, B.P., Terres, R.R., and Kamerling, M.J., 1986, Timing and extent of Neogene rotation in the western Transverse Ranges, California: Geological Society of America Bulletin, v. 97, p. 1,476-1,487. Larson, K.M., and Webb, F.H., 1992, Deformation in the Santa Barbara Channel from GPS measurements 1987-1991: Geophysical News Letters, v. 19, p. 1,491-1,494. Leifer, I., Kamerling, M., Luyendyk, B.P., and Wilson, D.S., 2010, Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California: Geo-Marine Letters, v. 30, p. 331-338, doi:10.1007/s00367-010-0188-9. Luyendyk, B.P., Kamerling, M.J., and Terres, R.R., 1980, Geometric model for Neogene crustal rotations in southern California: Geological Society of America Bulletin, v. 91, p. 211-217. Nicholson, C., Sorlien, C., Atwater, T., Crowell, J.C., and Luyendyk, B.P., 1994, Microplate capture, rotation of the western Transverse Ranges, and initiation of the San Andreas transform as a low-angle fault system: Geology, v. 22, p. 491-495. Redin, T., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 36, N-S structure and correlation section, western Santa Ynez Mountains across the Santa Barbara Channel to Santa Rosa Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 36, 1 sheet. Redin, T., Kamerling, M., and Forman, J., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 35, North Ellwood-Coal Oil Point area across the Santa Barbara Channel to the north coast of Santa Cruz Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 35, 1 sheet.; abstract: This part of SIM 3302 presents data for faults for the geologic and geomorphic map (see sheet 10, SIM 3302) of the Offshore of Coal Oil Point map area, California. The vector data file is included in "Faults_OffshoreCoalOilPoint.zip," which is accessible from http://pubs.usgs.gov/ds/781/OffshoreCoalOilPoint/data_catalog_OffshoreCoalOilPoint.html. This map area is in the Ventura Basin, in the southern part of the Western Transverse Ranges geologic province, which is north of the California Continental Borderland (Fisher and others, 2009). Significant clockwise rotation--at least 90 degrees--since the early Miocene has been proposed for the Western Transverse Ranges province (Luyendyk and others, 1980; Hornafius and others, 1986; Nicholson and others, 1994), and this region is presently undergoing north-south shortening (see, for example, Larson and Webb, 1992). In the eastern part of the map area, cross sections suggest that this shortening is, in part, accommodated by offset on the North Channel, Red Mountain, South Ellwood, and More Creek Fault systems (Bartlett, 1998; Heck, 1998; Redin and others, 2005; Leifer and others, 2010). Crustal deformation in the western part of the Offshore of Coal Oil Point map area apparently is less complex than that in the eastern part (Redin, 2005); the western structure is dominated by a large, south-dipping homocline that extends from the south flank of the Santa Ynez Mountains beneath the continental shelf. References Cited: Bartlett, W.L., 1998, Ellwood oil field, Santa Barbara County, California, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, p. 217-237. Fisher, M.A., Sorlien, C.C., and Sliter, R.W., 2009, Potential earthquake faults offshore southern California from the eastern Santa Barbara channel to Dana Point, in Lee, H.J., and Normark, W.R., eds., Earth science in the urban ocean--The Southern California Continental Borderland: Geological Society of America Special Paper 454, p. 271-290. Heck, R.G., 1998, Santa Barbara Channel regional formline map, top Monterey Formation, in Kunitomi, D.S., Hopps, T.E., and Galloway, J.M., eds., Structure and petroleum geology, Santa Barbara Channel, California: American Association of Petroleum Geologists, Pacific Section, and Coast Geological Society, Miscellaneous Publication 46, 1 plate. Hornafius, J.S., Luyendyk, B.P., Terres, R.R., and Kamerling, M.J., 1986, Timing and extent of Neogene rotation in the western Transverse Ranges, California: Geological Society of America Bulletin, v. 97, p. 1,476-1,487. Larson, K.M., and Webb, F.H., 1992, Deformation in the Santa Barbara Channel from GPS measurements 1987-1991: Geophysical News Letters, v. 19, p. 1,491-1,494. Leifer, I., Kamerling, M., Luyendyk, B.P., and Wilson, D.S., 2010, Geologic control of natural marine hydrocarbon seep emissions, Coal Oil Point seep field, California: Geo-Marine Letters, v. 30, p. 331-338, doi:10.1007/s00367-010-0188-9. Luyendyk, B.P., Kamerling, M.J., and Terres, R.R., 1980, Geometric model for Neogene crustal rotations in southern California: Geological Society of America Bulletin, v. 91, p. 211-217. Nicholson, C., Sorlien, C., Atwater, T., Crowell, J.C., and Luyendyk, B.P., 1994, Microplate capture, rotation of the western Transverse Ranges, and initiation of the San Andreas transform as a low-angle fault system: Geology, v. 22, p. 491-495. Redin, T., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 36, N-S structure and correlation section, western Santa Ynez Mountains across the Santa Barbara Channel to Santa Rosa Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 36, 1 sheet. Redin, T., Kamerling, M., and Forman, J., 2005, Santa Barbara Channel structure and correlation sections--Correlation Section no. 35, North Ellwood-Coal Oil Point area across the Santa Barbara Channel to the north coast of Santa Cruz Island: American Association of Petroleum Geologists, Pacific Section, Publication CS 35, 1 sheet.

  18. d

    Fluid levels in the Oxnard Oil Field, Ventura County, California

    • catalog.data.gov
    • data.usgs.gov
    • +1more
    Updated Jul 6, 2024
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    U.S. Geological Survey (2024). Fluid levels in the Oxnard Oil Field, Ventura County, California [Dataset]. https://catalog.data.gov/dataset/fluid-levels-in-the-oxnard-oil-field-ventura-county-california
    Explore at:
    Dataset updated
    Jul 6, 2024
    Dataset provided by
    United States Geological Surveyhttp://www.usgs.gov/
    Area covered
    Ventura County, Oxnard, California
    Description

    The U.S. Geological Survey (USGS), in cooperation with the California State Water Resources Control Board (SWRCB), compiled Fall 2017 fluid level elevation data from idle oil and gas wells in the Oxnard Oil Field to estimate vertical hydraulic head difference between oil production and overlying groundwater aquifer zones. Fluid elevations came from two sources, measurements in idle oil and gas wells and groundwater elevations in water wells in the overlying aquifer estimated at the points of idle well measurements using geographic information system (GIS) procedures. The fluid elevations from idle oil and gas wells were compiled by the California Geologic Energy Management Division (CalGEM) as part of their Idle Well Program; oil producers take the measurements and submit the data to CalGEM. These oil wells are perforated in the oil producing zones which includes the Vaca Tar Sands. Fluid elevations from the shallower groundwater system were extracted using GIS procedures at the locations of these idle oil and gas wells from a groundwater elevation contour map for Fall 2017 provided by the United Water Conservation District (UWCD). Groundwater elevation contours were calculated by UWCD from water-level measurements in groundwater wells monitored seasonally in the Oxnard Plain groundwater sub-basin and adjacent sub-basins. The groundwater elevation contours represent the lower aquifer system in the Oxnard Plain groundwater sub-basin and overlie the oil zone including Vaca Tar Sands. The fluid elevations in idle oil wells and calculated groundwater level elevations at the same location were compared to estimate vertical differences in groundwater head to assess potential fluid flow direction. Of the 65 idle well locations where vertical head differences were calculated, 43 had head differences indicating upward fluid gradients (head higher in oil wells than groundwater), 21 had head differences indicating downward fluid gradients (head lower in oil wells than groundwater), and 1 had head differences too small to discern vertical differences (within +/- 2 m). These data were analyzed in an accompanying manuscript as part of the SWRCB oil and gas Regional Monitoring Program and the USGS California Oil, Gas, and Groundwater (COGG) Program to assess regional groundwater quality overlying and adjacent to the Oxnard Oil Field.

  19. Mineral Fuels, Pipelines and Refineries

    • open.canada.ca
    • datasets.ai
    • +1more
    jpg, pdf
    Updated Mar 14, 2022
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Natural Resources Canada (2022). Mineral Fuels, Pipelines and Refineries [Dataset]. https://open.canada.ca/data/en/dataset/724b0b84-ab07-5733-bf53-bd316e5cbca7
    Explore at:
    pdf, jpgAvailable download formats
    Dataset updated
    Mar 14, 2022
    Dataset provided by
    Ministry of Natural Resources of Canadahttps://www.nrcan.gc.ca/
    License

    Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
    License information was derived automatically

    Description

    Contained within the 3rd Edition (1957) of the Atlas of Canada is a map that shows the location and direction of flow of oil and gas pipelines along with the location of oil refineries. The daily crude oil capacity in barrels per day is indicated for refining centres by means of proportional circles. The source data for refineries is for the end of 1955 and pipeline source data is for the end of 1957. An additional map shows the location of coal, oil and gas fields. The coal fields shown are the major ones which were being worked in 1955 and the oil and gas fields shown were proven fields by the end of 1955. These maps are accompanied by three pie charts showing the provincial proportion of Canada's 1955 production of crude oil, natural gas and coal.

  20. C

    Offshore Oil Leases

    • data.ca.gov
    • data.cnra.ca.gov
    • +6more
    Updated Jun 4, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    California State Lands Commission (2025). Offshore Oil Leases [Dataset]. https://data.ca.gov/dataset/offshore-oil-leases
    Explore at:
    arcgis geoservices rest api, kml, txt, csv, zip, html, geojson, gdb, gpkg, xlsxAvailable download formats
    Dataset updated
    Jun 4, 2025
    Dataset authored and provided by
    California State Lands Commission
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Description

    The polygons in this layer show the position of Offshore Oil Leases as documented by former State Lands Senior Boundary Determination Officer, Cris N. Perez and as reviewed and updated by GIS and Boundary staff.

    Background:

    This layer represents active offshore oil and gas agreements in California waters, which are what remain of the more than 60 originally issued. These leases were issued prior to the catastrophic 1969 oil spill from Platform A in federal waters off Santa Barbara County, and some predate the formation of the Commission. Between 2010 and 2014, the bulk of the approximately $300 million generated annually for the state's General Fund from oil and gas agreements was from these offshore leases.

    In 1921, the Legislature created the first tidelands oil and gas leasing program. Between 1921 and 1929, approximately 100 permits and leases were issued and over 850 wells were drilled in Santa Barbara and Ventura Counties. In 1929, the Legislature prohibited any new leases or permits. In 1933, however, the prohibition was partially lifted in response to an alleged theft of tidelands oil in Huntington Beach. It wasn't until 1938, and again in 1955, that the Legislature would allow new offshore oil and gas leasing. Except for limited circumstances, the Legislature has consistently placed limits on the areas that the Commission may offer for lease and in 1994, placed the entirety of California's coast off-limits to new oil and gas leases.

    Layer Creation Process:

    In 1997 Cris N. Perez, Senior Boundary Determination Officer of the Southern California Section of the State Lands Division, prepared a report on the Commission’s Offshore Oil Leases to:

    A. Show the position of Offshore Oil Leases.

    B. Produce a hard copy of 1927 NAD Coordinates for each lease.

    C. Discuss any problems evident after plotting the leases.

    Below are some of the details Cris included in the report:

    I have plotted the leases that were supplied to me by the Long Beach Office and computed 1927 NAD California Coordinates for each one. Where the Mean High Tide Line (MHTL) was called for and not described in the deed, I have plotted the California State Lands Commission CB Map Coordinates, from the actual field surveys of the Mean High Water Line and referenced them wherever used.

    Where the MHTL was called for and not described in the deed and no California State Lands Coordinates were available, I digitized the maps entitled, “Map of the Offshore Ownership Boundary of the State of California Drawn pursuant to the Supplemental Decree of the U.S. Supreme Court in the U.S. V. California, 382 U.S. 448 (1966), Scale 1:10000 Sheets 1-161.” The shore line depicted on these maps is the Mean Lower Low Water (MLLW) Line as shown on the Hydrographic or Topographic Sheets for the coastline. If a better fit is needed, a field survey to position this line will need to be done.

    The coordinates listed in Cris’ report were retrieved through Optical Character Recognition (OCR) and used to produce GIS polygons using Esri ArcGIS software. Coordinates were checked after the OCR process when producing the polygons in ArcMap to ensure accuracy. Original Coordinate systems (NAD 1927 California State Plane Zones 5 and 6) were used initially, with each zone being reprojected to NAD 83 Teale Albers Meters and merged after the review process.

    While Cris’ expertise and documentation were relied upon to produce this GIS Layer, certain polygons were reviewed further for any potential updates since Cris’ document and for any unusual geometry. Boundary Determination Officers addressed these issues and plotted leases currently listed as active, but not originally in Cris’ report.

    On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court United States v. California, 135 S. Ct. 563 (2014). Offshore leases were clipped so as not to exceed the limits of this fixed boundary.

    Lease Notes:

    PRC 1482

    The “lease area” for this lease is based on the Compensatory Royalty Agreement dated 1-21-1955 as found on the CSLC Insider. The document spells out the distinction between “leased lands” and “state lands”. The leased lands are between two private companies and the agreement only makes a claim to the State’s interest as those lands as identified and surveyed per the map Tract 893, Bk 27 Pg 24. The map shows the State’s interest as being confined to the meanders of three sloughs, one of which is severed from the bay (Anaheim) by a Tideland sale. It should be noted that the actual sovereign tide and or submerged lands for this area is all those historic tide and submerged lands minus and valid tide land sales patents. The three parcels identified were also compared to what the Orange County GIS land records system has for their parcels. Shapefiles were downloaded from that site as well as two centerline monuments for 2 roads covered by the Tract 893. It corresponded well, so their GIS linework was held and clipped or extended to make a parcel.

    MJF Boundary Determination Officer 12/19/16

    PRC 3455

    The “lease area” for this lease is based on the Tract No. 2 Agreement, Long Beach Unit, Wilmington Oil Field, CA dated 4/01/1965 and found on the CSLC insider (also recorded March 12, 1965 in Book M 1799, Page 801).

    Unit Operating Agreement, Long Beach Unit recorded March 12, 1965 in Book M 1799 page 599.

    “City’s Portion of the Offshore Area” shall mean the undeveloped portion of the Long Beach tidelands as defined in Section 1(f) of Chapter 138, and includes Tract No. 1”

    “State’s Portion of the Offshore Area” shall mean that portion of the Alamitos Beach Park Lands, as defined in Chapter 138, included within the Unit Area and includes Tract No. 2.”

    “Alamitos Beach Park Lands” means those tidelands and submerged lands, whether filled or unfilled, described in that certain Judgment After Remittitur in The People of the State of California v. City of Long Beach, Case No. 683824 in the Superior Court of the State of California for the County of Los Angeles, dated May 8, 1962, and entered on May 15, 1962 in Judgment Book 4481, at Page 76, of the Official Records of the above entitled court”

    *The description for Tract 2 has an EXCEPTING (statement) “therefrom that portion lying Southerly of the Southerly line of the Boundary of Subsidence Area, as shown on Long Beach Harbor Department {LBHD} Drawing No. D-98. This map could not be found in records nor via a PRA request to the LBHD directly. Some maps were located that show the extents of subsidence in this area being approximately 700 feet waterward of the MHTL as determined by SCC 683824. Although the “EXCEPTING” statement appears to exclude most of what would seem like the offshore area (out to 3 nautical miles from the MHTL which is different than the actual CA offshore boundary measured from MLLW) the 1964, ch 138 grant (pg25) seems to reference the lands lying seaward of that MHTL and ”westerly of the easterly boundary of the undeveloped portion of the Long Beach tidelands, the latter of which is the same boundary (NW) of tract 2. This appears to then indicate that the “EXCEPTING” area is not part of the Lands Granted to City of Long Beach and appears to indicate that this portion might be then the “State’s Portion of the Offshore Area” as referenced in the Grant and the Unit Operating Agreement. Section “f” in the CSLC insider document (pg 9) defines the Contract Lands: means Tract No. 2 as described in Exhibit “A” to the Unit Agreement, and as shown on Exhibit “B” to the Unit Agreement, together with all other lands within the State’s Portion of the Offshore Area.

    Linework has been plotted in accordance with the methods used to produce this layer, with record lines rotated to those as listed in the descriptions. The main boundaries being the MHTL(north/northeast) that appears to be fixed for most of the area (projected to the city boundary on the east/southeast); 3 nautical miles from said MHTL on the south/southwest; and the prolongation of the NWly line of Block 50 of Alamitos Bay Tract.

    MJF Boundary Determination Officer 12-27-16

    PRC 4736

    The “lease area” for this lease is based on the Oil and Gas Lease and Agreement as found on the CSLC insider and recorded August 17, 1973 in BK 10855 PG 432 Official Records, Orange County.

    The State’s Mineral Interests are confined to Parcels “B-1” and “B-2” and are referred to as “State Mineral Lands” comprising 70.00 Acres.

    The lessee each has a right to certain uses including but not limited to usage of utility corridors, 110 foot radius parcels surrounding well-sites and roads. The State also has access to those same roads per this agreement/lease. Those uses are allowed in what are termed “State Lands”-Parcel E

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
U.S. Geological Survey (2024). All Wells, District Boundaries, and Field Boundaries from the California Division of Oil, Gas, and Geothermal Resources (DOGGR) [Dataset]. https://catalog.data.gov/dataset/all-wells-district-boundaries-and-field-boundaries-from-the-california-division-of-oil-gas

All Wells, District Boundaries, and Field Boundaries from the California Division of Oil, Gas, and Geothermal Resources (DOGGR)

Explore at:
Dataset updated
Jul 6, 2024
Dataset provided by
United States Geological Surveyhttp://www.usgs.gov/
Area covered
California
Description

There are 487 onshore oil and gas fields in California encompassing 3,392 square miles of aggregated area. The California State Water Resources Control Board (State Water Board) initiated a Regional Monitoring Program (RMP) in July 2015, intended to determine where and to what degree groundwater quality may be at potential risk to contamination related to oil and gas development activities including well stimulation, well integrity issues, produced water ponds, and underground injection. The first step in monitoring groundwater in and near oil and gas fields is to prioritize the 487 fields using consistent statewide analysis of available data that indicate potential risk of groundwater to oil and gas development. There were limited existing data on potential groundwater risk factors available for oil and gas fields across the state. During 2014-2016, the U.S. Geological Survey (USGS) extracted and compiled data from various sources, including the California Division of Oil, Gas, and Geothermal Resources (DOGGR) and the Department of Water Resources (DWR). Geospatial data from the DOGGR were used in the prioritization analysis. Dataset include geospatial data for 222,637 petroleum wells, administrative boundaries for 514 oil, gas, and geothermal fields, and boundaries for DOGGR's 6 juristictional districts. The data were downloaded from DOGGR's Geographic Information System (GIS) Mapping website at http://www.conservation.ca.gov/dog/maps. The DOGGR GIS Mapping website is periodally updated, and the datasets downloaded by the U.S. Geological Survey in 2014 may no longer be available on the DOGGR website.

Search
Clear search
Close search
Google apps
Main menu