CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Connecticut Historic Shoreline Wetlands:
1880s NOS T-Sheet Shoreline Features is a 1:10,000-scale, line feature-based layer that includes information depicting historic shoreline features and wetland boundaries for areas of coastal Connecticut during the 1880s. The layer depicts information found on topographic survey sheets (T-sheets) from the US Coast and Geodetic Survey (USC&GS), a predecessor to the National Ocean Service (NOS). The layer represents conditions at a particular point in time. The layer does not depict current conditions. The layer includes ground condition features such as approximate shoreline, shoreline, wetland shoreline, wetland upland boundaries, wetland interior boundaries, man-made shoreline, jetties/breakwaters/groins, and piers/ramps/docks. Semi-submerged marshes, referred to here as "low marshes," ocurring where it is possible to discern marsh-like features waterward of the shoreline are also included. Off shore and riverine islands and rocks may be included depending on the quality of their depiction on the t-sheet. It does not include any non shoreline-centric elements that may have been depicted on the t-sheets such as buildings, roads, bridges, etc., nor does it include other off-shore features like sandbars, mud flats, tidal flats, etc. Features are line locations that represent the approximate location of shoreline features and wetland boundaries. Shoreline, as depicted on the T-sheets that pre-date 1927, reference an approximation of Mean High Water (MHW). Although MHW is technically determined by averaging the height of the high water line, (HWL) the landward extent of the last high tide over a 19 year lunar cycle, USC&GS topographers appoximated MHW by familarizing themselves with the tidal conditions in a given area and noting the assorted physical characteristics of the beach. (For a more complete description of this and other shoreline indicators, the reader is directed to the following article: "Historical Shoreline Change: Error Analysis and Mapping Accuracy," Crowell, M., Leatherman, S., and Buckley, M. Journal of Coastal Research, Vol 7, No. 3, 1991, pp 839-852.) Attribute information is comprised of codes to identify individual features, encode shoreline feature type information, and cartographically represent (symbolize) shoreline features on a map. These codes were derived in part from the National Oceanic & Atmospheric Administration (NOAA) Coastal Services Center (CSC) Historic Digital Shoreline Capture project and modified by the State of Connecticut Department of Environmental Protection to address the inclusion of wetland areas. This data was compiled at 1:10,000 scale. This data is not updated. Purpose: 1880s NOS T-Sheet Shoreline Features is 1:10,000-scale data. It depicts the location of historic shoreline features and wetland boundaries for all of coastal Connecticut with the exception of the area of New Haven Harbor from the West River in West Haven to the New Haven/East Haven town boundary. The features also extend slightly beyond the Connecticut state lines into Rye, New York and Westerly, Rhode Island. Use this layer to display historic shoreline and wetlands. Since this data may be considered a crucial element in land use planning, determination of boundary extents, performing change studies for erosion and accretion examinations and other types of decision making this layer may also be used for analytic purposes. Use this layer with other 1:10,000-scale map data such as any other NOS T-sheet Shoreline or Wetland layers. Not intended for maps printed at map scales greater or more detailed than 1:10,000 scale (1 inch = 833.33 feet.)
1880s NOS T-Sheet Wetland Polygon Features is a 1:10,000-scale, polygon feature-based layer that includes information depicting historic wetlands for areas of coastal Connecticut during the 1880s. The layer depicts information found on topographic survey sheets (T-sheets) from the US Coast and Geodetic Survey (USC&GS), a predecessor to the National Ocean Service (NOS). The layer represents conditions at a particular point in time. The layer does not depict current conditions. The layer includes ground condition features such as wetland areas, interior wetland uplands, and interior wetand waterbodies. Semi-submerged marshes, referred to here as "low marshes," ocurring where it is possible to discern marsh-like features waterward of the shoreline are also included. Off shore and riverine islands and rocks may be included depending on the quality of their depiction on the t-sheet. It does not include any non wetland-centric elements that may have been depicted on the t-sheets such as buildings, roads, bridges, etc., nor does it include other off-shore features like mud flats, tidal flats, etc. Features are polygon locations that represent the approximate location of wetland areas and internal wetland features such as uplands or waterbodies. Shoreline, as depicted on the T-sheets that pre-date 1927, reference an approximation of Mean High Water (MHW). Although MHW is technically determined by averaging the height of the high water line, (HWL) the landward extent of the last high tide over a 19 year lunar cycle, USC&GS topographers appoximated MHW by familarizing themselves with the tidal conditions in a given area and noting the assorted physical characteristics of the beach. (For a more complete description of this and other shoreline indicators, the reader is directed to the following article: "Historical Shoreline Change: Error Analysis and Mapping Accuracy," Crowell, M., Leatherman, S., and Buckley, M. Journal of Coastal Research, Vol 7, No. 3, 1991, pp 839-852.) Attribute information is comprised of codes to identify individual features, encode wetland feature type information, and cartographically represent (symbolize) wetland features on a map. These codes were derived in part from the National Oceanic & Atmospheric Administration (NOAA) Coastal Services Center (CSC) Historic Digital Shoreline Capture project and modified by the State of Connecticut Department of Environmental Protection to address the inclusion of wetland areas. This data was compiled at 1:10,000 scale. This data is not updated. Purpose: 1880s NOS T-Sheet Wetland Polygon Features is 1:10,000-scale data. It depicts the location of historic wetland features for all of coastal Connecticut with the exception of the area of New Haven Harbor from the West River in West Haven to the New Haven/East haven town boundary. The features also extend slightly beyond the Connecticut state lines into Rye, New York and Westerly, Rhode Island. Use this layer to display historic wetlands. Since this data may be considered a crucial element in land use planning, determination of boundary extents, performing change studies for erosion and accretion examinations and other types of decision making this layer may also be used for analytic purposes. Use this layer with other 1:10,000-scale map data such as any other NOS T-sheet Shoreline or Wetland layers. Not intended for maps printed at map scales greater or more detailed than 1:10,000 scale (1 inch = 833.33 feet.)
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Coastal Boundary layer is a 1:24,000-scale, polygon feature-based layer of the legal mylar-based maps adopted by the Commissioner of the Department of Environmental Protection (DEP) (i.e., maps were adopted on a town by town basis) showing the extent of lands and coastal waters as defined by Connecticut General Statute (C.G.S.) 22a-93(5)) within Connecticut's coastal area (defined by C.G.S. 22a-94(c)). The coastal boundary is a hybrid of the original 1:24,000 version maps prepared by DEP consistent with C.G.S. 22a-94(d) (Coastal Area) and the revised boundary mapping undertaken by twenty-two coastal towns prepared pursuant to C.G.S. 22a-94(f). This layer therefore does not replace the legal maps and may not be used for legal determinations. The Coastal Boundary layer includes a single polygon feature that represents the coastal boundary. No other features are included in this layer. Data is compiled at 1:24,000 scale. Attribute information is comprised of an Av_Legend attribute and a CoastB_Flg attribute to denote the coastal boundary. Other attributes include automatically calculated Shape_Length and Shape_Area fields. This data is not updated. Any regulated activity conducted within the coastal boundary by a municipal agency (i.e., plans of development, zoning regulations, municipal coastal programs and coastal site plan review (i.e., site plans submitted to zoning commission, subdivision or resubdivision plans submitted to planning commission, application for special permit or exception to the zoning or planning commissions or zoning board of appeals, variance submitted to zoning board of appeals and a referral of a municipal project)) must be conducted in a manner consistent with the requirements of the Connecticut Coastal Management Act (CMA; C.G.S. 22a-90 to 22a-113). As the Coastal Boundary is a hybrid of the Coastal Area, all state and federal agency activities must be consistent with the requirements of the CMA. As defined in C.G.S. 22a-94(b) the coastal boundary is a "continuous line delineated on the landward side by the interior contour elevation of the one hundred year frequency coastal flood zone, as defined and determined by the National Flood Insurance Act, as amended (USC 42 Section 4101, P.L. 93-234), or a one thousand foot linear setback measured from the mean high water mark in coastal waters, or a one thousand foot linear setback measured from the inland boundary of tidal wetlands mapped under section 22a-20, whichever is farthest inland; and shall be delineated on the seaward side by the seaward extent of the jurisdiction of the state." The original boundary maps were created in 1979 on stable mylar overlay using the 1:24,000-scale US Geological Survey topographic quadrangle maps (mylar film format). The source for tidal wetland maps were the legal 1:24,000 maps (mylar format) adopted by the Commissioner of DEP and transformed to 1:24,000 mylar-scale maps by the Office of Policy and Management (OPM) using an accurate pantograph. OPM similarly converted FEMA's flood insurance maps (various scales) to a 1:24,000 mylar overlay. The inland extent of coastal waters was plotted on 1:24,000 USGS topographic maps following the procedures and sources described in The Boundary Between Saltwater and Freshwater in Connecticut, December 1978 prepared by the State of Connecticut, Department of Environmental Protection, Coastal Area Management Program. The following twenty-two towns have adopted municipal coastal boundaries: Chester, Clinton, Darien, Deep River, East Haven, Essex, Fairfield, Greenwich, Groton, Guilford, Hamden, Ledyard, Madison, Milford, New Haven, New London, North Haven, Norwalk, Old Lyme, Old Saybrook, Stamford and Waterford. The coastal boundary maps for these towns may be at different scales than the original DEP draft maps and may contain minor adjustments to the boundary as permitted in C.G.S. 22a-94(f).
These data were automated to provide an accurate high-resolution historical shoreline of Stamford, Connecticut suitable as a geographic information system (GIS) data layer. These data are derived from shoreline maps that were produced by the NOAA National Ocean Service including its predecessor agencies which were based on an office interpretation of imagery and/or field survey. The NGS attribution scheme 'Coastal Cartographic Object Attribute Source Table (C-COAST)' was developed to conform the attribution of various sources of shoreline data into one attribution catalog. C-COAST is not a recognized standard, but was influenced by the International Hydrographic Organization's S-57 Object-Attribute standard so the data would be more accurately translated into S-57. This resource is a member of https://www.fisheries.noaa.gov/inport/item/39808
Coastal Area & Boundary Polygon:
The Coastal Area layer is a 1:24,000-scale, polygon feature-based layer that includes the land and waters that lie within the Coastal Area as defined by Connecticut General Statute (C.G.S.) 22a-94(a). Activities and actions conducted within the coastal area by Federal and State Agencies (i.e., U.S. Army Corps of Engineers (USACOE), DEP regulatory programs, and state plans and actions) must be consistent with all of the applicable standards and criteria contained in the Connecticut Coastal Management Act (C.G.S. 22a-90 to 22a-113). A subset of the Coastal Area, the Coastal Boundary, represents an area within which activities regulated or conducted by coastal municipalities must be consistent with the Coastal Management Act. As defined in this section of the statutes, the Coastal Area includes the land and water within the area delineated by the following: the westerly, southerly and easterly limits of the state's jurisdiction in Long Island Sound; the towns of Greenwich, Stamford, Darien, Norwalk, Westport, Fairfield, Bridgeport, Stratford, Shelton, Milford, Orange, West Haven, New Haven, Hamden, North Haven, East Haven, Branford, Guilford, Madison, Clinton, Westbrook, Deep River, Chester, Essex, Old Saybrook, Lyme, Old Lyme, East Lyme, Waterford, New London, Montville, Norwich, Preston, Ledyard, Groton and Stonington. This layer includes a single polygon feature defined by the boundaries described above. Attribute information is comprised of an Av_Legend to denote the coastal area. Data is compiled at 1:24,000 scale. This data is not updated.
The Coastal Boundary layer is a 1:24,000-scale, polygon feature-based layer of the legal mylar-based maps adopted by the Commissioner of the Department of Environmental Protection (DEP) (i.e., maps were adopted on a town by town basis) showing the extent of lands and coastal waters as defined by Connecticut General Statute (C.G.S.) 22a-93(5)) within Connecticut's coastal area (defined by C.G.S. 22a-94(c)). The coastal boundary is a hybrid of the original 1:24,000 version maps prepared by DEP consistent with C.G.S. 22a-94(d) (Coastal Area) and the revised boundary mapping undertaken by twenty-two coastal towns prepared pursuant to C.G.S. 22a-94(f). This layer therefore does not replace the legal maps and may not be used for legal determinations. The Coastal Boundary layer includes a single polygon feature that represents the coastal boundary. No other features are included in this layer. Data is compiled at 1:24,000 scale. Attribute information is comprised of an Av_Legend attribute and a CoastB_Flg attribute to denote the coastal boundary. Other attributes include automatically calculated Shape_Length and Shape_Area fields. This data is not updated. Any regulated activity conducted within the coastal boundary by a municipal agency (i.e., plans of development, zoning regulations, municipal coastal programs and coastal site plan review (i.e., site plans submitted to zoning commission, subdivision or resubdivision plans submitted to planning commission, application for special permit or exception to the zoning or planning commissions or zoning board of appeals, variance submitted to zoning board of appeals and a referral of a municipal project)) must be conducted in a manner consistent with the requirements of the Connecticut Coastal Management Act (CMA; C.G.S. 22a-90 to 22a-113). As the Coastal Boundary is a hybrid of the Coastal Area, all state and federal agency activities must be consistent with the requirements of the CMA. As defined in C.G.S. 22a-94(b) the coastal boundary is a "continuous line delineated on the landward side by the interior contour elevation of the one hundred year frequency coastal flood zone, as defined and determined by the National Flood Insurance Act, as amended (USC 42 Section 4101, P.L. 93-234), or a one thousand foot linear setback measured from the mean high water mark in coastal waters, or a one thousand foot linear setback
This dataset displays the boundary of the State of Connecticut's coastal area.View Dataset on the Gateway
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Coastal Area layer is 1:24,000-scale data. It depicts the location of the Connecticut Coastal Area as defined by Connecticut General Statute C.G.S. 22a-94(a). Use this layer to show the Coastal Area. Use this layer with other 1:24,000-scale map data such as the Coastal Boundary, Town Boundaries, Roads and Trails, Airports, Railroads and other base map data derived from the USGS 7.5 minute topographic quadrangle maps and compiled at a 1:24000 scale. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)
The NOAA Coastal Services Center purchased digital ADS40 imagery and digital elevation models of the Connecticut coastline in 2004. The Coastal Connecticut project area is comprised of approximately 930 square miles. A total of 244 orthos (122 natural color and 122 color infrared) were produced to cover this area. Aerial imagery was collected in panchromatic, Red, Green, Blue and Near Infrared which yielded a natural color and false color infrared version of the completed digital orthophotography. Imagery was collected at an approximate altitude of 15,750 feet above mean terrain. These data are the infrared orthoimagery in Geotiff format with associated browse graphics and metadata. RGB orthoimagery associated with these data are archived at the NODC under accession 0086893.
This data consists of a composite inundation hazards layer for counties from TX to ME, which have a flood exposure snapshot. The dataset was developed from a union of FEMA flood hazard, USACE hurricane evacuation study, NOAA sea level rise of 3-ft above MHHW, and NOAA Shallow Coastal flooding georeferenced digital data. The source and date have been preserved for each source dataset in the attribution. A unique identifier for each hazard, a total number of hazards and hazard description list in the attribution provide coastal risk exposure for each polygon
This layer is sourced from maps.coast.noaa.gov.
This map service presents spatial information developed as part of the National Oceanic and Atmospheric Administration (NOAA) Office for Coastal Management’s Coastal Flood Exposure Mapper. The purpose of the online mapping tool is to provide coastal managers, planners, and stakeholders a preliminary look at exposures to coastal flooding hazards. The Mapper is a screening-level tool that uses nationally consistent data sets and analyses. Data and maps provided can be used at several scales to help communities initiate resilience planning efforts. Currently the extent of the Coastal Flood Exposure Mapper covers U.S. coastal areas along the Gulf of Mexico and Atlantic Ocean. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© NOAA Office for Coastal Management
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Connecticut Historic Shoreline Wetlands:
1880s NOS T-Sheet Shoreline Features is a 1:10,000-scale, line feature-based layer that includes information depicting historic shoreline features and wetland boundaries for areas of coastal Connecticut during the 1880s. The layer depicts information found on topographic survey sheets (T-sheets) from the US Coast and Geodetic Survey (USC&GS), a predecessor to the National Ocean Service (NOS). The layer represents conditions at a particular point in time. The layer does not depict current conditions. The layer includes ground condition features such as approximate shoreline, shoreline, wetland shoreline, wetland upland boundaries, wetland interior boundaries, man-made shoreline, jetties/breakwaters/groins, and piers/ramps/docks. Semi-submerged marshes, referred to here as "low marshes," ocurring where it is possible to discern marsh-like features waterward of the shoreline are also included. Off shore and riverine islands and rocks may be included depending on the quality of their depiction on the t-sheet. It does not include any non shoreline-centric elements that may have been depicted on the t-sheets such as buildings, roads, bridges, etc., nor does it include other off-shore features like sandbars, mud flats, tidal flats, etc. Features are line locations that represent the approximate location of shoreline features and wetland boundaries. Shoreline, as depicted on the T-sheets that pre-date 1927, reference an approximation of Mean High Water (MHW). Although MHW is technically determined by averaging the height of the high water line, (HWL) the landward extent of the last high tide over a 19 year lunar cycle, USC&GS topographers appoximated MHW by familarizing themselves with the tidal conditions in a given area and noting the assorted physical characteristics of the beach. (For a more complete description of this and other shoreline indicators, the reader is directed to the following article: "Historical Shoreline Change: Error Analysis and Mapping Accuracy," Crowell, M., Leatherman, S., and Buckley, M. Journal of Coastal Research, Vol 7, No. 3, 1991, pp 839-852.) Attribute information is comprised of codes to identify individual features, encode shoreline feature type information, and cartographically represent (symbolize) shoreline features on a map. These codes were derived in part from the National Oceanic & Atmospheric Administration (NOAA) Coastal Services Center (CSC) Historic Digital Shoreline Capture project and modified by the State of Connecticut Department of Environmental Protection to address the inclusion of wetland areas. This data was compiled at 1:10,000 scale. This data is not updated. Purpose: 1880s NOS T-Sheet Shoreline Features is 1:10,000-scale data. It depicts the location of historic shoreline features and wetland boundaries for all of coastal Connecticut with the exception of the area of New Haven Harbor from the West River in West Haven to the New Haven/East Haven town boundary. The features also extend slightly beyond the Connecticut state lines into Rye, New York and Westerly, Rhode Island. Use this layer to display historic shoreline and wetlands. Since this data may be considered a crucial element in land use planning, determination of boundary extents, performing change studies for erosion and accretion examinations and other types of decision making this layer may also be used for analytic purposes. Use this layer with other 1:10,000-scale map data such as any other NOS T-sheet Shoreline or Wetland layers. Not intended for maps printed at map scales greater or more detailed than 1:10,000 scale (1 inch = 833.33 feet.)
1880s NOS T-Sheet Wetland Polygon Features is a 1:10,000-scale, polygon feature-based layer that includes information depicting historic wetlands for areas of coastal Connecticut during the 1880s. The layer depicts information found on topographic survey sheets (T-sheets) from the US Coast and Geodetic Survey (USC&GS), a predecessor to the National Ocean Service (NOS). The layer represents conditions at a particular point in time. The layer does not depict current conditions. The layer includes ground condition features such as wetland areas, interior wetland uplands, and interior wetand waterbodies. Semi-submerged marshes, referred to here as "low marshes," ocurring where it is possible to discern marsh-like features waterward of the shoreline are also included. Off shore and riverine islands and rocks may be included depending on the quality of their depiction on the t-sheet. It does not include any non wetland-centric elements that may have been depicted on the t-sheets such as buildings, roads, bridges, etc., nor does it include other off-shore features like mud flats, tidal flats, etc. Features are polygon locations that represent the approximate location of wetland areas and internal wetland features such as uplands or waterbodies. Shoreline, as depicted on the T-sheets that pre-date 1927, reference an approximation of Mean High Water (MHW). Although MHW is technically determined by averaging the height of the high water line, (HWL) the landward extent of the last high tide over a 19 year lunar cycle, USC&GS topographers appoximated MHW by familarizing themselves with the tidal conditions in a given area and noting the assorted physical characteristics of the beach. (For a more complete description of this and other shoreline indicators, the reader is directed to the following article: "Historical Shoreline Change: Error Analysis and Mapping Accuracy," Crowell, M., Leatherman, S., and Buckley, M. Journal of Coastal Research, Vol 7, No. 3, 1991, pp 839-852.) Attribute information is comprised of codes to identify individual features, encode wetland feature type information, and cartographically represent (symbolize) wetland features on a map. These codes were derived in part from the National Oceanic & Atmospheric Administration (NOAA) Coastal Services Center (CSC) Historic Digital Shoreline Capture project and modified by the State of Connecticut Department of Environmental Protection to address the inclusion of wetland areas. This data was compiled at 1:10,000 scale. This data is not updated. Purpose: 1880s NOS T-Sheet Wetland Polygon Features is 1:10,000-scale data. It depicts the location of historic wetland features for all of coastal Connecticut with the exception of the area of New Haven Harbor from the West River in West Haven to the New Haven/East haven town boundary. The features also extend slightly beyond the Connecticut state lines into Rye, New York and Westerly, Rhode Island. Use this layer to display historic wetlands. Since this data may be considered a crucial element in land use planning, determination of boundary extents, performing change studies for erosion and accretion examinations and other types of decision making this layer may also be used for analytic purposes. Use this layer with other 1:10,000-scale map data such as any other NOS T-sheet Shoreline or Wetland layers. Not intended for maps printed at map scales greater or more detailed than 1:10,000 scale (1 inch = 833.33 feet.)
description: This data set contains vector polygons representing the boundaries of the U.S. Geological Survey 1:24,000 topographic maps and other map and digital data boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Rhode Island, Connecticut, New York, and New Jersey.This data set comprises a portion of the ESI data for Rhode Island, Connecticut, New York, and New Jersey. ESI data characterize the marine and coastal environments and wildlife by their sensitivity to spilled oil. The ESI data include information for three main components: shoreline habitats, sensitive biological resources, and human-use resources.; abstract: This data set contains vector polygons representing the boundaries of the U.S. Geological Survey 1:24,000 topographic maps and other map and digital data boundaries used in the creation of the Environmental Sensitivity Index (ESI) for Rhode Island, Connecticut, New York, and New Jersey.This data set comprises a portion of the ESI data for Rhode Island, Connecticut, New York, and New Jersey. ESI data characterize the marine and coastal environments and wildlife by their sensitivity to spilled oil. The ESI data include information for three main components: shoreline habitats, sensitive biological resources, and human-use resources.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Connecticut Mainland Line includes the line features of a layer named Connecticut Mainland. Connecticut Mainland is a 1:24,000-scale, polygon and line feature-based layer that depicts the geographic area encompassed by and the boundary for the State of Connecticut with an additional linear shoreline feature separating the Connecticut mainland from the waters of Long Island Sound. The layer includes a polygon feature representing the Connecticut mainland, a polygon feature representing Connecticut waters in Long Island Sound and approximately 700 polygon features representing Connecticut islands in Long Island Sound. The layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 and latitude and longitude coordinates that define the boundary between the states of Connecticut and New York in Long Island Sound. Feature length and geographic area are encoded for linear and polygon features, respectively. This layer was originally published in 2005. Connecticut Mainland Polygon includes the polygon features of a layer named Connecticut Mainland. Connecticut Mainland is a 1:24,000-scale, polygon and line feature-based layer that depicts the geographic area encompassed by and the boundary for the State of Connecticut with an additional linear shoreline feature separating the Connecticut mainland from the waters of Long Island Sound. The layer includes a polygon feature representing the Connecticut mainland, a polygon feature representing Connecticut waters in Long Island Sound and approximately 700 polygon features representing Connecticut islands in Long Island Sound. The layer is based on information from USGS topographic quadrangle maps published between 1969 and 1984 and latitude and longitude coordinates that define the boundary between the states of Connecticut and New York in Long Island Sound. Feature length and geographic area are encoded for linear and polygon features, respectively. This layer was originally published in 2005.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Eelgrass Beds Historic Set:
Historic Eelgrass Points is a 1:24,000-scale, point feature-based layer that depicts the locations of historic eelgrass beds (Zostera marina) in Long Island Sound, the Connecticut River, the Quinnipiac River and other bays, harbors and waterbodies in Connecticut's coastal area. It also includes several points located along the north shore of Long Island. There are a total of 131 point features, the majority of which are located east of the Connecticut River. Point features in this layer are compiled from two major sources: 1) the polygon feature label points in the Historic Eelgrass Beds polygon layer representing sources with a mapping component; and 2) additional points that were based on historic literature review that had no mapping component. Source information including source description and collection date for each point is described in the layer's table data. Feature locations are inexact. Because of the variety of source maps and methods used for their automation, this coverage should be considered to have limited spatial accuracy and is appropriate for general uses only. Actual data collection ranged from 1873 through 1996. This layer was published in 1997 and is not updated. It does not represent current conditions.
Historic Eelgrass Bed Polygons is a 1:24,000-scale, polygon feature-based layer that depicts the locations of historic eelgrass beds (Zostera marina) in Long Island Sound and the Niantic River, as well as in other bays, harbors and waterbodies in Connecticut's coastal area. It also includes several points located along the north shore of Long Island. There are a total of 52 polygon features, all of which (except the Long Island points), are located within or east of the Niantic River. This layer can be used with Historic Eelgrass Points. This layer does not represent current conditions. Rather, it depicts historic eelgrass bed locations that were observed and defined either cartographically or narratively over the course of many years and from various sources. The dates of each source's data collection are noted in the attribute table. Feature locations are inexact. Because of the variety of source maps and methods used for their automation, this information should be considered to have limited spatial accuracy and is appropriate for general uses only. The data was taken from maps of various scales and projections that were drawn between 1905 and 1996. These maps were reduced to approximately 1:24,000 scale and adjusted for best fit; eelgrass areas were redrafted onto USGS Topographic Quadrangle maps for digitizing. In order to create a single polygon coverage, areas were considered to represent a maximum extent of eelgrass beds. This layer was published in 1997 and is not updated.
This data set is the 1994-2006-era classification for Connecticut, a subset of zone 65. This data set utilized 41 full or partial Landsat 5 Thematic Mapper scenes which were analyzed according to the Coastal Change Analysis Program (C-CAP) protocol to determine land cover.
This Coastal Barrier Resources System (CBRS) data set, produced by the U.S. Fish and Wildlife Service (Service), contains areas designated as undeveloped coastal barriers in accordance with the Coastal Barrier Resources Act (CBRA), 16 U.S.C. 3501 et seq., as amended. The boundaries used to create the polygons herein were compiled between 12/6/2013 and 12/16/2016 from the official John H. Chafee Coastal Barrier Resources System CBRS maps. The boundaries of the CBRS Units in Connecticut, Massachusetts, Rhode Island, and the Long Island portion of New York, were digitized from the official paper maps according to the guidelines in a notice published in the Federal Register on August 29, 2013 (see the â Georeferencing and Boundary Interpretationâ and â Boundary Transcriptionâ sections of 78 FR 53467; available at https://www.federalregister.gov/d/2013-21167). In all other cases where the official map was created through digital methods, the digital boundary was used. These digital polygons are only representations of the CBRS boundaries shown on the official CBRS maps and are not to be considered authoritative. The Service is not responsible for any misuse or misinterpretation of this digital data set, including use of the data to determine eligibility for federal financial assistance such as federal flood insurance. CBRS maps are either enacted by Congress or adopted administratively by the Secretary of the Interior (Secretary), and are maintained by the Service. As maps are revised, this data set will be updated with the new boundaries. Copies of the official CBRS maps are available for viewing at Serviceâ s Headquarters office and are also available to view or download at https://www.fws.gov/ecological-services/habitat-conservation/cbra/Maps/index.html. CBRS boundaries viewed using the CBRS Mapper or the shapefile are subject to misrepresentations beyond the Serviceâ s control, including misalignments of the boundaries with third party base layers and misprojections of spatial data. The official CBRS map is the controlling document and should be consulted for all official determinations. Official determinations are recommended for all properties that are in close proximity (within 20 feet) of a CBRS boundary. For an official determination of whether or not an area or specific property is located within the CBRS, please follow the procedures found at https://www.fws.gov/ecological-services/habitat-conservation/cbra/Determinations.html. For any questions regarding the CBRS, please contact your local Service field office or email CBRA@fws.gov. Contact information for Service field offices can be found at http://www.fws.gov/offices.
Eelgrass Beds 93-95 Set: Eelgrass Sample Points is a 1:24,000-scale, point feature-based layer that depicts the locations where eelgrass (Zostera marina) was either observed or where a _location would be potentially favorable for future eelgrass growth. Sample points were taken along Connecticut's coast in Long Island Sound, and in major bays, harbors and rivers along the shoreline. The point features in this layer were compiled from field research using global positioning system (GPS) equipment. Feature locations were not always exact due to equipment failure or lack of satellite reception. In those cases, points were estimated from field notes. Some point locations were corrected based on field notes or hydrography and bathymetry conditions at the sample point _location. The number of field points that were altered were as follows: In 1993, 32 of 290 points (11%); in 1994, 93 of 454 points (20%); in 1995, 37 of 105 points (35%). Data compilation occurred on 17 days between 7/21/1993 and 11/16/1995; exact dates of each source's data collection are noted in the attribute table. A total of 849 point locations were surveyed. The westernmost point is Frash Pond in Stratford, Connecticut and the easternmost point is the Pawcatuck River on the Connecticut/Rhode Island Border. Eelgrass was found at 484 locations and was described as either high, medium, or low density, or simply as present or absent. Eelgrass was absent at 365 locations. Publication of the datalayer was in 1997. This layer is not updated. This layer does not represent current conditions. Observed Eelgrass Beds is a 1:24,000 scale, polygon feature-based layer that depicts the locations of observed eelgrass beds in Long Island Sound, in major rivers, and within bays, harbors and other waterbodies along Connecticut's coast. The layer is based on information from the Eelgrass Sample Points layer. It represents conditions at a particular point in time (1993 to 1995). During the 1993-95 field seasons a team of researchers from the University of Connecticut Dept. of Ecology and Evolutionary Biology led by Charles Yarish, equipped with a Global Positioning System (GPS), SCUBA, and a 20' boat surveyed over 800 potential eelgrass locations. Their GPS coordinates and field notes were used to create a point coverage entitled Eelgrass Sample Points, which was plotted and checked on a 1:24000 scale base map of the Connecticut shore. These point locations, observations, and the nearshore bathymetry were then used to delineate areas representing both observed and potential eelgrass beds. Eelgrass beds were initially digitized at 1:24,000 scale, but have been edited and revised on screen at higher resolution. Keeping in mind the temporal and spatial variability of eelgrass, beds may vary in size, shape, and density from year to year. Feature locations may not always be exact due to equipment failure or lack of satellite reception. In those cases, points were estimated from field notes. It should be noted that the Observed Eelgrass Beds layer is not a complete dataset of all observed eelgrass sites in Connecticut and/or Long Island Sound. This layer was published in 1997 and is not updated. It does not represent current conditions. There are 101 polygon features representing observed eelgrass beds in this layer. Geographic locations are as follows: westernmost areas: Clinton Harbor; easternmost areas: Little Narragansett Bay, Rhode Island waters. Observed beds range in size from .003 acre (131 sq. ft.) to 49 acres (2,136,608 sq. ft.). The total area of observed beds is 632.6 acres. Potential Eelgrass Beds is a 1:24,000 scale, polygon feature-based layer that depicts the locations of potential eelgrass beds in Long Island Sound, in major rivers, and within bays, harbors and other waterbodies along Connecticut's coast. The layer is based on information from the Observed Eelgrass Beds and Eelgrass Sample Points layers. It represents conditions at a particular point in time (1993 to 199
This data set contains the Submerged Lands Act (SLA)boundary line (also known as the State Seaward Boundary (SSB) and Fed State Boundary) for the BOEM Pacific Region in ESRI ArcGIS shape file format. The SLA defines the seaward limit of a state owned submerged lands and the landward boundary of federally managed Outer Continental Shelf (OCS) lands. In the BOEM Pacific Region the SLA is projected 3 nautical miles offshore from the coastal baseline. Further information on the SLA and development of this line from baseline points can be found in OCS Report BOEM 99-0006: Boundary Development on the Outer Continental Shelf. The SLA boundary was developed using nautical charts, topographic maps, and hydrographic surveys to identify coastal baseline points. For California, there was a wide range of map scales used (1:200 – 1:100,000). The Minerals Management Service (MMS - the predecessor bureau to BOEM) used mapping software that was developed in-house to mathematically project the SLA boundary 3 nautical miles seaward from the baseline. For purposes of the SLA, all coordinates are assumed as absolute values with a precision of three decimals of a meter. For purposes other than the SLA, the actual positional precision for a scale of 1:40,000 is approximately 23 meters. In 1992, MMS adopted NADCON v.2.00 or better as the bureau standard horizontal datum transformation software, and reiterated that, for its purposes, “the World Geodetic System of 1984 (WGS 84) is considered equivalent to NAD 83 offshore of Alaska and the conterminous United States.” 57 Fed. Reg. 5168 (February 12, 1992). On December 24, 2014, the SLA boundary offshore of California was fixed (permanently immobilized) by a decree issued by the U.S. Supreme Court. United States v. California, 135 S. Ct. 563 (2014). For a detailed discussion on the fixing of the SLA boundary for California, please see http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Multi-Purpose-Marine-Cadastre-Map-Viewer/Court-Decisions.aspx Because GIS projection and topology functions can change or generalize coordinates, these GIS shape files are NOT an OFFICIAL record for the exact Submerged Lands Act Boundary.The official record is reflected through the coordinates listed in the decree, and the boundary shown on the BOEM Supplemental Official Block Diagrams, which are available at http://www.boem.gov/Oil-and-Gas-Energy-Program/Mapping-and-Data/Pacific.aspx
description: The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey H12013 offshore of the entrance to the Connecticut River, and during November 2009 and April 2010 bottom photographs and surficial sediment data were acquired as part of two ground-truth reconnaissance surveys of this area. Two interpretive data layers were derived from the multibeam echo-sounder and the ground-truth data used to verify them. For more information on the ground-truth surveys see: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2009-059-FA and http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2010-010-FA; abstract: The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey H12013 offshore of the entrance to the Connecticut River, and during November 2009 and April 2010 bottom photographs and surficial sediment data were acquired as part of two ground-truth reconnaissance surveys of this area. Two interpretive data layers were derived from the multibeam echo-sounder and the ground-truth data used to verify them. For more information on the ground-truth surveys see: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2009-059-FA and http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2010-010-FA
The U.S. Geological Survey, in cooperation with the National Oceanographic and Atmospheric Administration and the Connecticut Department of Environmental Protection, has produced detailed geologic maps of the sea floor in Long Island Sound, a major East Coast estuary surrounded by the most densely populated region of the United States. These studies have built upon cooperative research with the State of Connecticut that was initiated in 1982. The current phase of this research program is directed toward studies of sea-floor sediment distribution, processes that control sediment distribution, nearshore environmental concerns, and the relation of benthic community structures to the sea-floor geology. Anthropogenic wastes, toxic chemicals, and changes in land-use patterns resulting from residential, commercial, and recreational development have stressed the environment of the Sound, causing degradation and potential loss of benthic habitats (Koppelman and others, 1976; Long Island Sound Study, 1994). Detailed maps of the sea floor are needed to help evaluate the extent of adverse impacts and to help manage resources wisely in the future. Therefore, in a continuing effort to better understand Long Island Sound, we have constructed and interpreted sidescan sonar mosaics (complete-coverage acoustic images of the sea floor) within specific areas of special interest. The mosaic presented herein covers a section of the sea floor in west-central Long Island Sound off Milford, Connecticut. The mosaics and their interpretations serve many purposes, including: (1) defining the geological variability of the sea floor, which is one of the primary controls of benthic habitat diversity; (2) improving our understanding of the processes that control the distribution and transport of bottom sediments and the distribution of benthic habitats and associated infaunal community structures; and (3) providing a detailed framework for future research, monitoring, and management activities. The sidescan sonar mosaics also serve as base maps for subsequent sedimentological, geochemical, and biological observations, because precise information on environmental setting is important for selection of sampling sites and for accurate interpretation of point measurements.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
See full Data Guide here. This layer includes polygon features that depict protected open space for towns of the Protected Open Space Mapping (POSM) project, which is administered by the Connecticut Department of Energy and Environmental Protection, Land Acquisition and Management. Only parcels that meet the criteria of protected open space as defined in the POSM project are in this layer. Protected open space is defined as: (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non-facility-based outdoor recreation, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities. Includes protected open space data for the towns of Andover, Ansonia, Ashford, Avon, Beacon Falls, Canaan, Clinton, Berlin, Bethany, Bethel, Bethlehem, Bloomfield, Bridgewater, Bolton, Brookfield, Brooklyn, Canterbury, Canton, Chaplin, Cheshire, Colchester, Colebrook, Columbia, Cornwall, Coventry, Cromwell, Danbury, Derby, East Granby, East Haddam, East Hampton, East Hartford, East Windsor, Eastford, Ellington, Enfield, Essex, Farmington, Franklin, Glastonbury, Goshen, Granby, Griswold, Groton, Guilford, Haddam, Hampton, Hartford, Hebron, Kent, Killingworth, Lebanon, Ledyard, Lisbon, Litchfield, Madison, Manchester, Mansfield, Marlborough, Meriden, Middlebury, Middlefield, Middletown, Monroe, Montville, Morris, New Britain, New Canaan, New Fairfield, New Milford, New Hartford, Newington, Newtown, Norfolk, North, Norwich, Preston, Ridgefield, Shelton, Stonington, Oxford, Plainfield, Plainville, Pomfret, Portland, Prospect, Putnam, Redding, Rocky Hill, Roxbury, Salem, Salisbury, Scotland, Seymour, Sharon, Sherman, Simsbury, Somers, South Windsor, Southbury, Southington, Sprague, Sterling, Suffield, Thomaston, Thompson, Tolland, Torrington, Union, Vernon, Wallingford, Windham, Warren, Washington, Waterbury, Watertown, West Hartford, Westbrook, Weston, Wethersfield, Willington, Wilton, Windsor, Windsor Locks, Wolcott, Woodbridge, Woodbury, and Woodstock. Additional towns are added to this list as they are completed. The layer is based on information from various sources collected and compiled during the period from March 2005 through the present. These sources include but are not limited to municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions as of the date of research at each city or town hall. The Protected Open Space layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town Assessor's lot numbering system, and system-defined (automatically generated) fields. The Protected Open Space layer has an accompanying table containing more detailed information about each feature (parcel). This table is called Protected Open Space Dat, and can be joined to Protected Open Space in ArcMap using the parcel ID (PAR_ID) field. Detailed information in the Protected Open Space Data attribute table includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the unique parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, and acreage. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygons that represent the best available locational information, and are "best fit" to the land base available for each.
The Connecticut Department of Environmental Protection's (CTDEP) Permanently Protected Open Space Phase Mapping Project Phase 1 (Protected Open Space Phase1) layer includes permanently protected open space parcels in towns in Phase 1 that meet the CTDEP's definition for this project, the Permanently Protected Open Space Mapping (CT POSM) Project. The CTDEP defines permanently protected open space as (1) Land or interest in land acquired for the permanent protection of natural features of the state's landscape or essential habitat for endangered or threatened species; or (2) Land or an interest in land acquired to permanently support and sustain non facility-based outdoor recreations, forestry and fishery activities, or other wildlife or natural resource conservation or preservation activities.
Towns in Phase 1 of the CT POSM project are situated along the CT coast and portions of the Thames River and are the following: Branford, Bridgeport, Chester, Clinton, Darien, Deep River, East Haven, East Lyme, Essex, Fairfield, Greenwich, Groton, Guilford, Hamden, Ledyard, Lyme, Madison, Milford, Montville, New Haven, New London, North Branford, North Haven, Norwalk, Norwich, Old Lyme, Old Saybrook, Orange, Preston, Shelton, Stamford, Stonington, Stratford, Waterford, West Haven, Westbrook, Westport.
For the purposes of the project a number of categories or classifications of open space have also been created. These include: Land Trust, Land Trust with buidlings, Private, Private with buildings, Utility Company, Utility Company with buildings, Federal, State, Municipal, Municipal with buildings, Conservation easement, and non-DEP State land. The layer is based on information from various sources collected and compiled during the period from August 2002 trhough October 2003. These sources include municipal Assessor's records (the Assessor's database, hard copy maps and deeds) and existing digital parcel data. The layer represents conditions on the date of research at each city or town hall.
The Protected Open Space Phase1 layer includes the parcel shape (geometry), a project-specific parcel ID based on the Town and Town's Assessor lot numbering system, and system-defined (automatically generated) fields. In addition, the Protected_Open_Space_Phase1 layer has an accompanying table containing more detailed information about each parcel's collection, standardization and storage. This table is called Protected Open Space Phase1 Data and can be joined to Protected Open Space Phase1 in ArcMap using the parcel ID (PAR_ID) field. Detailed information includes the Assessor's Map, Block and Lot numbers (the Assessor's parcel identification numbering system), the official name of the parcel (such as the park or forest name if it has one), address and owner information, the deed volume and page numbers, survey information, open space type, the project-specific parcel ID number (Par_ID), comments collected by researchers during city/town hall visits, acreage collected during site reconaissance and the data source. This layer does not include parcels that do not meet the definition of open space as defined above. Features are stored as polygon feature type that represent the best available locational information, i.e. "best fit" to the land base available for each.
Phase 1 of the Protected Open Space Mapping (POSM) Project was accomplished by a contractor using only a querying process to identify open space. The contractor obtained assessor's data from the various towns and created programs to cull open space parcels strictly by query processes. We have found many errors and omissions in the data, but at this point in the project we cannot revisit all the coastal towns. Therefore, this data is being sent with a disclaimer for accuracy. You are welcome to use it but not to publish it. Please note that we do not include any water company parcels despite them being listed as part of our criteria because we must first obtain written clarification and clearance from the U.S. Department of Homeland Security.
We have since changed our data collection method for Phase 2 of this project. DEP staff now visit each town hall and thoroughly research the land records. The project is expected to be complete by 2010.
description: The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey H12013 offshore of the entrance to the Connecticut River, and during November 2009 and April 2010 bottom photographs and surficial sediment data were acquired as part of two ground-truth reconnaissance surveys of this area. Two interpretive data layers were derived from the multibeam echo-sounder and the ground-truth data used to verify them. For more information on the ground-truth surveys see: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2009-059-FA and http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2010-010-FA; abstract: The U.S. Geological Survey (USGS), in cooperation with the National Oceanic and Atmospheric Administration (NOAA) and the Connecticut Department of Energy and Environmental Protection (CT DEEP), is producing detailed geologic maps of the coastal sea floor. Bathymetry and sidescan-sonar imagery, originally collected by NOAA for charting purposes, provide a fundamental framework for research and management activities in Long Island Sound, shows the composition and terrain of the seabed, and provides information on sediment transport and benthic habitat. During April-May 2009 NOAA completed hydrographic survey H12013 offshore of the entrance to the Connecticut River, and during November 2009 and April 2010 bottom photographs and surficial sediment data were acquired as part of two ground-truth reconnaissance surveys of this area. Two interpretive data layers were derived from the multibeam echo-sounder and the ground-truth data used to verify them. For more information on the ground-truth surveys see: http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2009-059-FA and http://woodshole.er.usgs.gov/operations/ia/public_ds_info.php?fa=2010-010-FA
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Connecticut Historic Shoreline Wetlands:
1880s NOS T-Sheet Shoreline Features is a 1:10,000-scale, line feature-based layer that includes information depicting historic shoreline features and wetland boundaries for areas of coastal Connecticut during the 1880s. The layer depicts information found on topographic survey sheets (T-sheets) from the US Coast and Geodetic Survey (USC&GS), a predecessor to the National Ocean Service (NOS). The layer represents conditions at a particular point in time. The layer does not depict current conditions. The layer includes ground condition features such as approximate shoreline, shoreline, wetland shoreline, wetland upland boundaries, wetland interior boundaries, man-made shoreline, jetties/breakwaters/groins, and piers/ramps/docks. Semi-submerged marshes, referred to here as "low marshes," ocurring where it is possible to discern marsh-like features waterward of the shoreline are also included. Off shore and riverine islands and rocks may be included depending on the quality of their depiction on the t-sheet. It does not include any non shoreline-centric elements that may have been depicted on the t-sheets such as buildings, roads, bridges, etc., nor does it include other off-shore features like sandbars, mud flats, tidal flats, etc. Features are line locations that represent the approximate location of shoreline features and wetland boundaries. Shoreline, as depicted on the T-sheets that pre-date 1927, reference an approximation of Mean High Water (MHW). Although MHW is technically determined by averaging the height of the high water line, (HWL) the landward extent of the last high tide over a 19 year lunar cycle, USC&GS topographers appoximated MHW by familarizing themselves with the tidal conditions in a given area and noting the assorted physical characteristics of the beach. (For a more complete description of this and other shoreline indicators, the reader is directed to the following article: "Historical Shoreline Change: Error Analysis and Mapping Accuracy," Crowell, M., Leatherman, S., and Buckley, M. Journal of Coastal Research, Vol 7, No. 3, 1991, pp 839-852.) Attribute information is comprised of codes to identify individual features, encode shoreline feature type information, and cartographically represent (symbolize) shoreline features on a map. These codes were derived in part from the National Oceanic & Atmospheric Administration (NOAA) Coastal Services Center (CSC) Historic Digital Shoreline Capture project and modified by the State of Connecticut Department of Environmental Protection to address the inclusion of wetland areas. This data was compiled at 1:10,000 scale. This data is not updated. Purpose: 1880s NOS T-Sheet Shoreline Features is 1:10,000-scale data. It depicts the location of historic shoreline features and wetland boundaries for all of coastal Connecticut with the exception of the area of New Haven Harbor from the West River in West Haven to the New Haven/East Haven town boundary. The features also extend slightly beyond the Connecticut state lines into Rye, New York and Westerly, Rhode Island. Use this layer to display historic shoreline and wetlands. Since this data may be considered a crucial element in land use planning, determination of boundary extents, performing change studies for erosion and accretion examinations and other types of decision making this layer may also be used for analytic purposes. Use this layer with other 1:10,000-scale map data such as any other NOS T-sheet Shoreline or Wetland layers. Not intended for maps printed at map scales greater or more detailed than 1:10,000 scale (1 inch = 833.33 feet.)
1880s NOS T-Sheet Wetland Polygon Features is a 1:10,000-scale, polygon feature-based layer that includes information depicting historic wetlands for areas of coastal Connecticut during the 1880s. The layer depicts information found on topographic survey sheets (T-sheets) from the US Coast and Geodetic Survey (USC&GS), a predecessor to the National Ocean Service (NOS). The layer represents conditions at a particular point in time. The layer does not depict current conditions. The layer includes ground condition features such as wetland areas, interior wetland uplands, and interior wetand waterbodies. Semi-submerged marshes, referred to here as "low marshes," ocurring where it is possible to discern marsh-like features waterward of the shoreline are also included. Off shore and riverine islands and rocks may be included depending on the quality of their depiction on the t-sheet. It does not include any non wetland-centric elements that may have been depicted on the t-sheets such as buildings, roads, bridges, etc., nor does it include other off-shore features like mud flats, tidal flats, etc. Features are polygon locations that represent the approximate location of wetland areas and internal wetland features such as uplands or waterbodies. Shoreline, as depicted on the T-sheets that pre-date 1927, reference an approximation of Mean High Water (MHW). Although MHW is technically determined by averaging the height of the high water line, (HWL) the landward extent of the last high tide over a 19 year lunar cycle, USC&GS topographers appoximated MHW by familarizing themselves with the tidal conditions in a given area and noting the assorted physical characteristics of the beach. (For a more complete description of this and other shoreline indicators, the reader is directed to the following article: "Historical Shoreline Change: Error Analysis and Mapping Accuracy," Crowell, M., Leatherman, S., and Buckley, M. Journal of Coastal Research, Vol 7, No. 3, 1991, pp 839-852.) Attribute information is comprised of codes to identify individual features, encode wetland feature type information, and cartographically represent (symbolize) wetland features on a map. These codes were derived in part from the National Oceanic & Atmospheric Administration (NOAA) Coastal Services Center (CSC) Historic Digital Shoreline Capture project and modified by the State of Connecticut Department of Environmental Protection to address the inclusion of wetland areas. This data was compiled at 1:10,000 scale. This data is not updated. Purpose: 1880s NOS T-Sheet Wetland Polygon Features is 1:10,000-scale data. It depicts the location of historic wetland features for all of coastal Connecticut with the exception of the area of New Haven Harbor from the West River in West Haven to the New Haven/East haven town boundary. The features also extend slightly beyond the Connecticut state lines into Rye, New York and Westerly, Rhode Island. Use this layer to display historic wetlands. Since this data may be considered a crucial element in land use planning, determination of boundary extents, performing change studies for erosion and accretion examinations and other types of decision making this layer may also be used for analytic purposes. Use this layer with other 1:10,000-scale map data such as any other NOS T-sheet Shoreline or Wetland layers. Not intended for maps printed at map scales greater or more detailed than 1:10,000 scale (1 inch = 833.33 feet.)