6 datasets found
  1. a

    Tectonic Plate Boundaries

    • hub.arcgis.com
    Updated May 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Tectonic Plate Boundaries [Dataset]. https://hub.arcgis.com/maps/3e46ebfddc2c4e3cb710cee7508c9d80
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    The Earth’s lithosphere is made up of a series of plates that float on the mantle. Scientists think the convection of the mantle causes these plates to move triggering earthquakes, volcanoes, mountain-building events, or trench formation. These plates creep along at a rate of approximately five to ten centimeters (two to four inches) per year. These plates move in primarily three main ways. They slide past one another along transform (strike-slip) boundaries, they push against each other at convergent boundaries, or pull away in opposite directions at divergent boundaries. Each one of these interactions create different types of landforms. For example, the steady pressure of the Indian Plate and the Eurasian Plate built the Himalaya mountains and the Plateau of Tibet. The divergent boundary between the African Plate and the Arabian formed the Red Sea.Use this plate map layer to explore how the movement of the plates cause earthquakes, volcanoes, or shape Earth’s landscape.

    This map layer features both major and minor plates, but excludes microplates. The data is from the scientific study by Peter Bird published in volume 4, issue 3 of Geochemisty, Geophysics, Geosystems and was translated into geospatial formats by Hugo Ahlenius and updated by Dan Pisut.

  2. a

    Tectonic Plates (NLWv3)

    • hub.arcgis.com
    Updated Jun 10, 2025
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    Living Atlas – Landscape Content (2025). Tectonic Plates (NLWv3) [Dataset]. https://hub.arcgis.com/datasets/de73ebdce1c44f2ea79eb85b04d92968
    Explore at:
    Dataset updated
    Jun 10, 2025
    Dataset authored and provided by
    Living Atlas – Landscape Content
    License

    Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
    License information was derived automatically

    Area covered
    Description

    The NLWv3 Tectonic Plates layer contains features are produced based on assigning each NLWv3 landform feature the topmost tectonic plate and then using ArcGIS's Dissolve geoprocessing tool to create multipart polygons representing the area of each of the topmost plates.Tectonic plates are the building blocks of continents and comprise the Earth's crust. Tectonic plates float, moving slowly in the outer layers of the Earth's mantle. Tectonic plates cover the entire Earth's surface and their respective movements creates three types of boundaries: Divergent: The plates are moving away from each other causing new crust to emerge. Such boundaries are usually referred to as rift zones.Convergent: The plates are colliding in one of two ways. The first is when the edges of both plates uplift to cause mountains to rise and the second is subducting where one plate slides beneath the other, causing it to rise. Transform: These plates slide past each other in opposite directions.The boundaries of tectonic plates are where earthquakes, most volcanoes, and rough mountainous terrain are produced. We evaluated the most recently produced digital tectonic plate boundary datasets. The NLWv3 compilation based is first based on Ahlenius and then we adjusted many of the boundaries to match more recent seafloor rift and landform boundaries. We also added the Sinai and Adriatic Sea plates. Ahlenius, H. 2014. World tectonic plates and boundaries. Accessed December 22, 2021. https://github.com/fraxen/tectonicplatesTectonic map of the world. Accessed April 5, 2022. https://www.datapages.com/gis-map-publishing-program/gis-open-files/global-framework/tectonic-map-of-the-world-2007.Bird, P. 2003. An updated digital model of plate boundaries. Geochemistry, Geophysics, Geosystems 4 (3):1–46. doi: 10.1029/2001GC000252.Gaba, E. 2018. Tectonic plates boundaries World Map Wt 180degE centered-en.svg. Accessed June 2, 2022. https://en.wikipedia.org/wiki/File:Tectonic_plates_boundaries_World_map_Wt_180degE_centered-en.svgHasterok, D., J. A. Halpin, A. S. Collins, M. Hand, C. Kreemer, M. G. Gard, and S. Glorie. 2022. New maps of global geological provinces and tectonic plates. Earth-Science Reviews 231:104069. doi: 10.1016/j.earscirev.2022.104069.

  3. a

    Techtonic Plate Boundaries relationship with Major City

    • hub.arcgis.com
    Updated Nov 3, 2015
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    nina_galeotalanza (2015). Techtonic Plate Boundaries relationship with Major City [Dataset]. https://hub.arcgis.com/datasets/b14ff429cb2149ad9f0e2bc175d10a3d
    Explore at:
    Dataset updated
    Nov 3, 2015
    Dataset authored and provided by
    nina_galeotalanza
    Area covered
    Description

    This map shows the relationship between major cites with a population greater than 1.5 million people and the plate tectonics which include convergent,divergent, transform, and unknown boundaries. To make this map easier for people to read I made the major city have a filter so that only cities with over 1.5 million people will show up on the map. I also made the major city dot bigger, red and a transparency of 40% so it is easier for people to see. I made it 40% transparent so people can still see the plate boundaries that cross paths with the major city dots. I changed the plate tectonic boundary lines to a darker color, a thicker line, and also made the lines 25% transparent so people can still see the map and cities under it. I also added arrows pointing to major cities that cross paths with transform boundaries. Most major cites are right on top of a transform plate tectonic boundaries which can cause a great effect to the people who live in those popular cities. Transform plates are mostly likely to cause damage and have a effect with major populated cities. Transform plate boundaries are more likely to have a great effect than the over boundaries like convergent and divergent because more cities seem to fall right on top of transform boundaries than the other boundaries. The pattern that seems to be present is that transform boundaries have a strong relationship with cities over 1.5 million people, while other plate boundaries do not have as many cities on them as the transform boundary does.

  4. a

    Plate Boundaries

    • hub.arcgis.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Plate Boundaries [Dataset]. https://hub.arcgis.com/datasets/mpmkr::tectonic-plate-boundaries?layer=0&uiVersion=content-views
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    The Earth’s lithosphere is made up of a series of plates that float on the mantle. Scientists think the convection of the mantle causes these plates to move triggering earthquakes, volcanoes, mountain-building events, or trench formation. These plates creep along at a rate of approximately five to ten centimeters (two to four inches) per year. These plates move in primarily three main ways. They slide past one another along transform (strike-slip) boundaries, they push against each other at convergent boundaries, or pull away in opposite directions at divergent boundaries. Each one of these interactions create different types of landforms. For example, the steady pressure of the Indian Plate and the Eurasian Plate built the Himalaya mountains and the Plateau of Tibet. The divergent boundary between the African Plate and the Arabian formed the Red Sea.Use this plate map layer to explore how the movement of the plates cause earthquakes, volcanoes, or shape Earth’s landscape.

    This map layer features both major and minor plates, but excludes microplates. The data is from the scientific study by Peter Bird published in volume 4, issue 3 of Geochemisty, Geophysics, Geosystems and was translated into geospatial formats by Hugo Ahlenius and updated by Dan Pisut.

  5. a

    Data from: Tectonic Plates

    • hub.arcgis.com
    Updated May 10, 2023
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Tectonic Plates [Dataset]. https://hub.arcgis.com/datasets/mpmkr::tectonic-plates-1/explore?layer=1&showTable=true
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    The Earth’s lithosphere is made up of a series of plates that float on the mantle. Scientists think the convection of the mantle causes these plates to move triggering earthquakes, volcanoes, mountain-building events, or trench formation. These plates creep along at a rate of approximately five to ten centimeters (two to four inches) per year.There are two compositions of a tectonic plate, oceanic and continental. Oceanic plates or sections of plates are denser and occur below the ocean as its name implies. The Pacific Plate is an example of an oceanic plate. Continental crust supports land above water and is thought to be less dense and thicker than oceanic crust. Most plates are a mix of both oceanic and continental crust such as the African Plate. The African Plate has continental crust along most of the eastern edge and oceanic crust to the west along the Mid-Atlantic Ridge. These plates move in primarily three main ways. They slide past one another along transform (strike-slip) boundaries, they push against each other at convergent boundaries, or pull away in opposite directions at divergent boundaries. Each one of these interactions create different types of landforms. For example, the steady pressure of the Indian Plate and the Eurasian Plate built the Himalaya mountains and the Plateau of Tibet. The divergent boundary between the African Plate and the Arabian formed the Red Sea.Use this plate map layer to explore how the movement of the plates cause earthquakes, volcanoes, or shape Earth’s landscape.

    This map layer features both major and minor plates, but excludes microplates. The data is from the scientific study by Peter Bird published in volume 4, issue 3 of Geochemisty, Geophysics, Geosystems and was translated into geospatial formats by Hugo Ahlenius and updated by Dan Pisut.

  6. a

    Data from: Tectonic Plates

    • arc-gis-hub-home-arcgishub.hub.arcgis.com
    Updated May 10, 2023
    + more versions
    Share
    FacebookFacebook
    TwitterTwitter
    Email
    Click to copy link
    Link copied
    Close
    Cite
    MapMaker (2023). Tectonic Plates [Dataset]. https://arc-gis-hub-home-arcgishub.hub.arcgis.com/maps/mpmkr::tectonic-plates
    Explore at:
    Dataset updated
    May 10, 2023
    Dataset authored and provided by
    MapMaker
    License

    Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
    License information was derived automatically

    Area covered
    Description

    The Earth’s lithosphere is made up of a series of plates that float on the mantle. Scientists think the convection of the mantle causes these plates to move triggering earthquakes, volcanoes, mountain-building events, or trench formation. These plates creep along at a rate of approximately five to ten centimeters (two to four inches) per year. These plates move in primarily three main ways. They slide past one another along transform (strike-slip) boundaries, they push against each other at convergent boundaries, or pull away in opposite directions at divergent boundaries. Each one of these interactions create different types of landforms. For example, the steady pressure of the Indian Plate and the Eurasian Plate built the Himalaya mountains and the Plateau of Tibet. The divergent boundary between the African Plate and the Arabian formed the Red Sea.Use this plate map layer to explore how the movement of the plates cause earthquakes, volcanoes, or shape Earth’s landscape.

    This map layer features both major and minor plates, but excludes microplates. The data is from the scientific study by Peter Bird published in volume 4, issue 3 of Geochemisty, Geophysics, Geosystems and was translated into geospatial formats by Hugo Ahlenius and updated by Dan Pisut.

  7. Not seeing a result you expected?
    Learn how you can add new datasets to our index.

Share
FacebookFacebook
TwitterTwitter
Email
Click to copy link
Link copied
Close
Cite
MapMaker (2023). Tectonic Plate Boundaries [Dataset]. https://hub.arcgis.com/maps/3e46ebfddc2c4e3cb710cee7508c9d80

Tectonic Plate Boundaries

Explore at:
Dataset updated
May 10, 2023
Dataset authored and provided by
MapMaker
License

Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically

Area covered
Description

The Earth’s lithosphere is made up of a series of plates that float on the mantle. Scientists think the convection of the mantle causes these plates to move triggering earthquakes, volcanoes, mountain-building events, or trench formation. These plates creep along at a rate of approximately five to ten centimeters (two to four inches) per year. These plates move in primarily three main ways. They slide past one another along transform (strike-slip) boundaries, they push against each other at convergent boundaries, or pull away in opposite directions at divergent boundaries. Each one of these interactions create different types of landforms. For example, the steady pressure of the Indian Plate and the Eurasian Plate built the Himalaya mountains and the Plateau of Tibet. The divergent boundary between the African Plate and the Arabian formed the Red Sea.Use this plate map layer to explore how the movement of the plates cause earthquakes, volcanoes, or shape Earth’s landscape.

This map layer features both major and minor plates, but excludes microplates. The data is from the scientific study by Peter Bird published in volume 4, issue 3 of Geochemisty, Geophysics, Geosystems and was translated into geospatial formats by Hugo Ahlenius and updated by Dan Pisut.

Search
Clear search
Close search
Google apps
Main menu