U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A listing of each accidental death associated with drug overdose in Connecticut from 2012 to June 2017. A "Y" value under the different substance columns indicates that particular substance was detected.
Data are derived from an investigation by the Office of the Chief Medical Examiner which includes the toxicity report, death certificate, as well as a scene investigation.
The “Morphine (Not Heroin)” values are related to the differences between how Morphine and Heroin are metabolized and therefor detected in the toxicity results. Heroin metabolizes to 6-MAM which then metabolizes to morphine. 6-MAM is unique to heroin, and has a short half-life (as does heroin itself). Thus, in some heroin deaths, the toxicity results will not indicate whether the morphine is from heroin or prescription morphine. In these cases the Medical Examiner may be able to determine the cause based on the scene investigation (such as finding heroin needles). If they find prescription morphine at the scene it is certified as “Morphine (not heroin).” Therefor, the Cause of Death may indicate Morphine, but the Heroin or Morphine (Not Heroin) may not be indicated.
“Any Opioid” – If the Medical Examiner cannot conclude whether it’s RX Morphine or heroin based morphine in the toxicity results, that column may be checked
This digital dataset represents the surface hydrogeology of an approximately 45,000 square-kilometer area of the Death Valley regional ground-water flow system (DVRFS) in southern Nevada and California. Faunt and others (2004) constructed the map by merging mapped lithostratigraphic units into 27 hydrogeologic units (HGUs). The HGUs represent rocks and deposits of considerable lateral extent and distinct hydrologic properties. The hydrogeologic map was fundamental to the development of a hydrogeologic framework model and a transient ground-water flow model of the DVRFS. These models are the most recent in a number of regional-scale models developed by the U.S. Geological Survey (USGS) for the U.S. Department of Energy (DOE) to support investigations at the Nevada Test Site (NTS) and at Yucca Mountain, Nevada (see "Larger Work Citation", Chapter A, page 8).
CITATION:This map developed by the New Mexico Community Data Collaborative. Available online at http://nmcdc.maps.arcgis.com/home/webmap/viewer.html?webmap=e81a9bf839f3444dbc793126d94dd873Source Data: Deaths: NM IBIS - http://ibis.health.state.nm.us/query/selection/mort/MortSelection.html - New Mexico Death Certificate Database, Office of Vital Records and Statistics, New Mexico Department of Health; Population Estimates: University of New Mexico, Bureau of Business and Economic Research, http://www.unm.edu/~bber/ SEE FEATURE SERVICE DETAILS FOR MORE INFORequest excel master files with data dictionary: nmcommunitydatacollaborative@gmail.com NOTE: New Mexico Small Areas are 109 geographic areas across the state with approximately equal population sizes (~20,000) that are just large enough to calculate rates for selected health events. For more information, please visit http://ibis.health.state.nm.us/resources/SmallAreaMethods.html.
The Mayor’s Office utilizes the most recent data to inform decisions about COVID-19 response and policies. The Los Angeles COVID-19 Neighborhood Map visualizes the cases and deaths across 139 neighborhoods in the city. It includes the same data used by the office to spot changes in infection trends in the city, and identify areas where testing resources should be deployed.Data Source:Data are provided on a weekly basis by the LA County Department of Public Health and prepared by the LA Mayor's Office Innovation Team. The data included in this map are on a one-week lag. That means the data shown here are reporting statistics gathered from one week ago. This map will be updated weekly on Mondays. Click on the maps to zoom in, get more details, and see the legends.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This mapping tool enables you to see how COVID-19 deaths in your area may relate to factors in the local population, which research has shown are associated with COVID-19 mortality. It maps COVID-19 deaths rates for small areas of London (known as MSOAs) and enables you to compare these to a number of other factors including the Index of Multiple Deprivation, the age and ethnicity of the local population, extent of pre-existing health conditions in the local population, and occupational data. Research has shown that the mortality risk from COVID-19 is higher for people of older age groups, for men, for people with pre-existing health conditions, and for people from BAME backgrounds. London boroughs had some of the highest mortality rates from COVID-19 based on data to April 17th 2020, based on data from the Office for National Statistics (ONS). Analysis from the ONS has also shown how mortality is also related to socio-economic issues such as occupations classified ‘at risk’ and area deprivation. There is much about COVID-19-related mortality that is still not fully understood, including the intersection between the different factors e.g. relationship between BAME groups and occupation. On their own, none of these individual factors correlate strongly with deaths for these small areas. This is most likely because the most relevant factors will vary from area to area. In some cases it may relate to the age of the population, in others it may relate to the prevalence of underlying health conditions, area deprivation or the proportion of the population working in ‘at risk occupations’, and in some cases a combination of these or none of them. Further descriptive analysis of the factors in this tool can be found here: https://data.london.gov.uk/dataset/covid-19--socio-economic-risk-factors-briefing
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Death rate, crude (per 1,000 people) in United States was reported at 9.2 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. United States - Death rate, crude - actual values, historical data, forecasts and projections were sourced from the World Bank on August of 2025.
https://github.com/nytimes/covid-19-data/blob/master/LICENSEhttps://github.com/nytimes/covid-19-data/blob/master/LICENSE
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since the first reported coronavirus case in Washington State on Jan. 21, 2020, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
This data set contains small-scale base GIS data layers compiled by the National Park Service Servicewide Inventory and Monitoring Program and Water Resources Division for use in a Baseline Water Quality Data Inventory and Analysis Report that was prepared for the park. The report presents the results of surface water quality data retrievals for the park from six of the United States Environmental Protection Agency's (EPA) national databases: (1) Storage and Retrieval (STORET) water quality database management system; (2) River Reach File (RF3) Hydrography; (3) Industrial Facilities Discharges; (4) Drinking Water Supplies; (5) Water Gages; and (6) Water Impoundments. The small-scale GIS data layers were used to prepare the maps included in the report that depict the locations of water quality monitoring stations, industrial discharges, drinking intakes, water gages, and water impoundments. The data layers included in the maps (and this dataset) vary depending on availability, but generally include roads, hydrography, political boundaries, USGS 7.5' minute quadrangle outlines, hydrologic units, trails, and others as appropriate. The scales of each layer vary depending on data source but are generally 1:100,000.
This map depicts global tsunamis from approximately 2000 BC to July 2018. Each layer represents the data using a different attribute. Click on a point for details about that tsunami.Data is from the National Weather Service. The data set contains a lot of attributes. Click here if you have questions about what the attributes mean.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The USA: The number of deaths per 1000 people, per year: The latest value from is deaths per 1000 people, unavailable from deaths per 1000 people in . In comparison, the world average is 0.00 deaths per 1000 people, based on data from countries. Historically, the average for the USA from to is deaths per 1000 people. The minimum value, deaths per 1000 people, was reached in while the maximum of deaths per 1000 people was recorded in .
https://www.usa.gov/government-workshttps://www.usa.gov/government-works
CDC's Division of Population Health provides cross-cutting set of 124 indicators that were developed by consensus and that allows states and territories and large metropolitan areas to uniformly define, collect, and report chronic disease data that are important to public health practice and available for states, territories and large metropolitan areas. In addition to providing access to state-specific indicator data, the CDI web site serves as a gateway to additional information and data resources.
MMWR Surveillance Summary 66 (No. SS-1):1-8 found that nonmetropolitan areas have significant numbers of potentially excess deaths from the five leading causes of death. These figures accompany this report by presenting information on potentially excess deaths in nonmetropolitan and metropolitan areas at the state level. They also add additional years of data and options for selecting different age ranges and benchmarks. Potentially excess deaths are defined in MMWR Surveillance Summary 66(No. SS-1):1-8 as deaths that exceed the numbers that would be expected if the death rates of states with the lowest rates (benchmarks) occurred across all states. They are calculated by subtracting expected deaths for specific benchmarks from observed deaths. Not all potentially excess deaths can be prevented; some areas might have characteristics that predispose them to higher rates of death. However, many potentially excess deaths might represent deaths that could be prevented through improved public health programs that support healthier behaviors and neighborhoods or better access to health care services. Mortality data for U.S. residents come from the National Vital Statistics System. Estimates based on fewer than 10 observed deaths are not shown and shaded yellow on the map. Underlying cause of death is based on the International Classification of Diseases, 10th Revision (ICD-10) Heart disease (I00-I09, I11, I13, and I20–I51) Cancer (C00–C97) Unintentional injury (V01–X59 and Y85–Y86) Chronic lower respiratory disease (J40–J47) Stroke (I60–I69) Locality (nonmetropolitan vs. metropolitan) is based on the Office of Management and Budget’s 2013 county-based classification scheme. Benchmarks are based on the three states with the lowest age and cause-specific mortality rates. Potentially excess deaths for each state are calculated by subtracting deaths at the benchmark rates (expected deaths) from observed deaths. Users can explore three benchmarks: “2010 Fixed” is a fixed benchmark based on the best performing States in 2010. “2005 Fixed” is a fixed benchmark based on the best performing States in 2005. “Floating” is based on the best performing States in each year so change from year to year. SOURCES CDC/NCHS, National Vital Statistics System, mortality data (see http://www.cdc.gov/nchs/deaths.htm); and CDC WONDER (see http://wonder.cdc.gov). REFERENCES Moy E, Garcia MC, Bastian B, Rossen LM, Ingram DD, Faul M, Massetti GM, Thomas CC, Hong Y, Yoon PW, Iademarco MF. Leading Causes of Death in Nonmetropolitan and Metropolitan Areas – United States, 1999-2014. MMWR Surveillance Summary 2017; 66(No. SS-1):1-8. Garcia MC, Faul M, Massetti G, Thomas CC, Hong Y, Bauer UE, Iademarco MF. Reducing Potentially Excess Deaths from the Five Leading Causes of Death in the Rural United States. MMWR Surveillance Summary 2017; 66(No. SS-2):1–7.
This digital geologic and tectonic database of the Death Valley ground-water model area, as well as its accompanying geophysical maps, are compiled at 1:250,000 scale. The map compilation presents new polygon, line, and point vector data for the Death Valley region. The map area is enclosed within a 3 degree X 3 degree area along the border of southern Nevada and southeastern California. In addition to the Death Valley National Park and Death Valley-Furnace Creek fault systems, the map area includes the Nevada Test Site, the southwest Nevada volcanic field, the southern end of the Walker Lane (from southern Esmeralda County, Nevada, to the Las Vegas Valley shear zone and Stateline fault system in Clark County, Nevada), the eastern California shear zone (in the Cottonwood and Panamint Mountains), the eastern end of the Garlock fault zone (Avawatz Mountains), and the southern basin and range (central Nye and western Lincoln Counties, Nevada). This geologic map improves on previous geologic mapping in the area by providing new and updated Quaternary and bedrock geology, new interpretation of mapped faults and regional structures, new geophysical interpretations of faults beneath the basins, and improved GIS coverages. The basic geologic database has tectonic interpretations imbedded within it through attributing of structure lines and unit polygons which emphasize significant and through-going structures and units. An emphasis has been put on features which have important impacts on ground-water flow. Concurrent publications to this one include a new isostatic gravity map (Ponce and others, 2001), a new aeromagnetic map (Ponce and Blakely, 2001), and contour map of depth to basement based on inversion of gravity data (Blakely and Ponce, 2001).
Coronavirus-19 Cases vs. Deaths (Hourly Update)See Detailed graphs and tables describing the COVID-19 crisis in New Mexico, updated daily (includes some county level data not found elsewhere) - https://sites.google.com/view/new-mexico-covid19-tracking/homeCDC's Description of the Social Vulnerability Index (takes into account 15 different selected indicators):https://svi.cdc.gov/
As of March 10, 2023, the death rate from COVID-19 in the state of New York was 397 per 100,000 people. New York is one of the states with the highest number of COVID-19 cases.
The files linked to this reference are the geospatial data created as part of the completion of the baseline vegetation inventory project for the NPS park unit. Current format is ArcGIS file geodatabase but older formats may exist as shapefiles. Cogan Technology, Inc. (CTI) created the digital vegetation map layer for the Death Valley National Park project area that covered 3,430,818 acres (1,389,486 ha). The resulting spatial database and vegetation map layer were created using a combination of 2020 (California) and 2019 (Nevada) National Agriculture Imagery Program (NAIP) basemap data, ground-based verification efforts, and a two-step, or hybrid mapping approach that used both manual and automated techniques. By comparing the vegetation signatures on the imagery to the field data, 90 map units (74 vegetated and 16 land-use/land-cover) were developed and used to delineate the plant communities. The interpreted vegetation polygons were then digitized into a Geographic Information System (GIS) layer that was field-tested, reviewed, and revised. The final DEVA vegetation map layer was assessed for overall thematic accuracy at 82% with a Kappa value of 89%.
A depth to basement map of the Death Valley groundwater model area was prepared using over 40,0000 gravity stations as part of an interagency effort by the U.S. Geological Survey and the U.S. Department of Energy to help characterize the geology and hydrology of southwest Nevada and parts of California.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Death rate, crude (per 1,000 people) in World was reported at 7.5788 % in 2023, according to the World Bank collection of development indicators, compiled from officially recognized sources. World - Death rate, crude - actual values, historical data, forecasts and projections were sourced from the World Bank on September of 2025.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This map shows the percentage of premature deaths of individuals less than 75 years old by county. Counties are shaded based on quartile distribution. The lighter shaded counties have a lower percentage of premature deaths. The darker shaded counties have a higher percentage of premature deaths. New York State Community Health Indicator Reports (CHIRS) were developed in 2012, and are updated annually to consolidate and improve data linkages for the health indicators included in the County Health Assessment Indicators (CHAI) for all communities in New York. The CHIRS present data for more than 300 health indicators that are organized by 15 different health topics. Data if provided for all 62 New York State counties, 11 regions (including New York City), the State excluding New York City, and New York State. For more information, check out: http://www.health.ny.gov/statistics/chac/indicators/. The "About" tab contains additional details concerning this dataset.
This map shows the age-standardized mortality rate attributed to air pollution by countries. The rate is shown as deaths per 100,000 people. The global average is 95 deaths per 100,000 people. Any areas in the map above this rate are shown in red. 2016 figures for pollution-caused mortality rate are offered by the World Health Organization (WHO). Values are offered as a mean, upper value, lower value, and also offered as age standardized. Values are for deaths caused by all possible air pollution related diseases, for both sexes, and all age groups. For more information visit this page, and here for methodology. According to WHO, the world average was 95 deaths per 100,000 people.PM 2.5 is fine particulate matter that is 2.5 microns or less in diameter. These particles can cause the air to be hazy, and can get into human lungs and the bloodstream causing major health concerns. To learn more about PM 2.5 and its global/human impacts, visit this World Health Organization page about ambient air pollution.The PM 2.5 data in this map is aggregated from NASA Socioeconomic Data and Applications Center (SEDAC) gridded data into country boundaries, administrative 1 boundaries, and 50 km hex bins. The unit of measurement for PM 2.5 concentrations is micrograms per cubic meter. For full metadata and methodology documentation about the layer used in this map, visit this Living Atlas layer. For metadata and methodology about the data used to generate the layer, visit the NASA SEDAC gridded PM 2.5 documentation page.To learn the techniques used in the analysis that generated this layer, visit the Learn ArcGIS lesson Investigate Pollution Patterns with Space-Time Analysis by Esri's Kevin Bulter and Lynne Buie. Citations:van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2018. Global Annual PM2.5 Grids from MODIS, MISR and SeaWiFS Aerosol Optical Depth (AOD) with GWR, 1998-2016. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). https://doi.org/10.7927/H4ZK5DQS. Accessed 1 April 2020van Donkelaar, A., R. V. Martin, M. Brauer, N. C. Hsu, R. A. Kahn, R. C. Levy, A. Lyapustin, A. M. Sayer, and D. M. Winker. 2016. Global Estimates of Fine Particulate Matter Using a Combined Geophysical-Statistical Method with Information from Satellites. Environmental Science & Technology 50 (7): 3762-3772. https://doi.org/10.1021/acs.est.5b05833.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
A listing of each accidental death associated with drug overdose in Connecticut from 2012 to June 2017. A "Y" value under the different substance columns indicates that particular substance was detected.
Data are derived from an investigation by the Office of the Chief Medical Examiner which includes the toxicity report, death certificate, as well as a scene investigation.
The “Morphine (Not Heroin)” values are related to the differences between how Morphine and Heroin are metabolized and therefor detected in the toxicity results. Heroin metabolizes to 6-MAM which then metabolizes to morphine. 6-MAM is unique to heroin, and has a short half-life (as does heroin itself). Thus, in some heroin deaths, the toxicity results will not indicate whether the morphine is from heroin or prescription morphine. In these cases the Medical Examiner may be able to determine the cause based on the scene investigation (such as finding heroin needles). If they find prescription morphine at the scene it is certified as “Morphine (not heroin).” Therefor, the Cause of Death may indicate Morphine, but the Heroin or Morphine (Not Heroin) may not be indicated.
“Any Opioid” – If the Medical Examiner cannot conclude whether it’s RX Morphine or heroin based morphine in the toxicity results, that column may be checked