Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The Mineral Potential web service provides access to digital datasets used in the assessment of mineral potential in Australia. The service includes maps showing the potential for carbonatite-related rare earth element mineral systems in Australia. Maps showing the potential for carbonatite-related rare earth element (REE) mineral systems in Australia. Model 1 integrates three components: sources of metals, energy drivers, and lithospheric architecture. Supporting datasets including the input maps used to generate the mineral potential maps, an assessment criteria table that contains information on the map creation, and data uncertainty maps are available here Uncertainty Maps. The data uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. Map images provided in the extended abstract have the same colour ramp and equalised histogram stretch, plus a gamma correction of 0.5 not present in the web map service maps, which was applied using Esri ArcGIS Pro software. The extended abstract is avalable here Alkaline Rocks Atlas Legend
Currency Date modified: 16 August 2023 Next modification date: As Needed Data extent Spatial extent North: -9° South: -44° East: 154° West: 112° Source Information Catalog entry: Carbonatite-related rare earth element mineral potential maps Lineage Statement Product Created 20 April 2023 Product Published 16 August 2023 A large number of published datasets were individually transformed to summarise our current understanding of the spatial extents of key mineral system mappable criteria. These individual layers were integrated using statistically derived importance weightings combined with expert reliability weightings within a mineral system component framework to produce national-scale mineral potential assessments for Australian carbonatite-related rare earth element mineral systems. Contact Geoscience Australia, clientservices@ga.gov.au
Linear elements of the 2008 Land Use Map. The linear entities represent hydrographic and road elements with a width of less than 25 m. The figure was created following the update of the land use map created in 2003.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The “Protected Small Landscape Element” map is included in the Environment Regulation. On this are the most special, often old landscape features of the province of Utrecht. These elements are protected and should not be cut down. In 2021, this map was updated with elements in the municipality of Vijfheerenlanden and a number of new elements in the rest of the province. The Environment Regulation has been adopted but will only work after the Environment Act enters into force.Until then the map from the Interim Regulation is active.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Legacy product - no abstract available Legacy product - no abstract available
The financially constrained element of Visualize 2045 identifies all the regionally significant capital improvements to the region’s highway and transit systems that transportation agencies expect to make and to be able to afford through 2045.For more information on Visualize 2045, visit https://www.mwcog.org/visualize2045/.To view the web map, visit https://www.mwcog.org/maps/map-listing/visualize-2045-project-map/.* NOTE: the online map shows projects in the current version of the plan (2022 update); this data download is for the 2018 update to the plan.Adding GIS Data to ArcMap from a Map Package:To load the .mpk file if saved locally: From Windows Explorer1. Browse to the location of the .mpk file. 2. Double-click the file to launch ArcMap and unpack all the data in the package. From ArcCatalog1. Browse to the location of the .mpk file. 2. Right-click the file, and select Unpack. This action launches ArcMap and unpacks the data in the package. The process is the same if you are using ArcCatalog from within ArcMap.Note: The .mpk file cannot be opened within ArcMap.Regardless of where the .mpk file is stored originally, the data within the map package when unpacked saves on your hard drive in the Documents and Settings folder:C:\Documents_and_Settings\MyDocuments\ArcGIS\Packages*.gdb
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The cladding elements are entries in relation to a regulatory provision (track width, odds, names of neighbouring municipalities.) or geometrical surface, linear or point indicative elements, covering the graphic documents of the CCs. They are necessary for the paper edition of the graphic documents that are enforceable. These objects have been digitised in accordance with the national requirements of the CNIG2017 standard.
https://www.openstreetmap.org/images/osm_logo.png" alt="" /> OpenStreetMap (openstreetmap.org) is a global collaborative mapping project, which offers maps and map data released with an open license, encouraging free re-use and re-distribution. The data is created by a large community of volunteers who use a variety of simple on-the-ground surveying techniques, and wiki-syle editing tools to collaborate as they create the maps, in a process which is open to everyone. The project originated in London, and an active community of mappers and developers are based here. Mapping work in London is ongoing (and you can help!) but the coverage is already good enough for many uses.
Browse the map of London on OpenStreetMap.org
The whole of England updated daily:
For more details of downloads available from OpenStreetMap, including downloading the whole planet, see 'planet.osm' on the wiki.
Download small areas of the map by bounding-box. For example this URL requests the data around Trafalgar Square:
http://api.openstreetmap.org/api/0.6/map?bbox=-0.13062,51.5065,-0.12557,51.50969
Data filtered by "tag". For example this URL returns all elements in London tagged shop=supermarket:
http://www.informationfreeway.org/api/0.6/*[shop=supermarket][bbox=-0.48,51.30,0.21,51.70]
The format of the data is a raw XML represention of all the elements making up the map. OpenStreetMap is composed of interconnected "nodes" and "ways" (and sometimes "relations") each with a set of name=value pairs called "tags". These classify and describe properties of the elements, and ultimately influence how they get drawn on the map. To understand more about tags, and different ways of working with this data format refer to the following pages on the OpenStreetMap wiki.
Rather than working with raw map data, you may prefer to embed maps from OpenStreetMap on your website with a simple bit of javascript. You can also present overlays of other data, in a manner very similar to working with google maps. In fact you can even use the google maps API to do this. See OSM on your own website for details and links to various javascript map libraries.
The OpenStreetMap project aims to attract large numbers of contributors who all chip in a little bit to help build the map. Although the map editing tools take a little while to learn, they are designed to be as simple as possible, so that everyone can get involved. This project offers an exciting means of allowing local London communities to take ownership of their part of the map.
Read about how to Get Involved and see the London page for details of OpenStreetMap community events.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The Niobe Aphrodite Map Area covers over 25% of the surface of Venus and extends from 57N to 57S and 60E to 180E. The structural-element map presented here is derived from the1:10 M-scale geologic maps of Niobe Planitia, U.S. Geological Survey I-2467 and Aphrodite Terra, U.S. Geological Survey I-2476. Both maps are in various stages of review and revision overseen by the U.S. Geological Survey on behalf of NASA.
Here we present a Geographic Information System (GIS) that contain the different structural elements of the area (deformation structures and lithodemic units), that can be used to analyze relationships between and among suites of structural elements across this large portion of Venus’ surface.
Base images and data on which determination of the structural element determination is based can be accessed and downloaded directly in GIS-ready formats through the USGS Map a Planet website (https://astrogeology.usgs.gov/tools/map-a-planet-2).
http://standaarden.overheid.nl/owms/terms/licentieonbekendhttp://standaarden.overheid.nl/owms/terms/licentieonbekend
The map "Protected small landscape element" has been included in the Environmental Ordinance. It contains the most special, often old landscape elements of the province of Utrecht. These elements are protected and may not be cut. In 2021, this map will be updated with elements in the municipality of Vijfheerenlanden and a number of new elements in the rest of the province. The Environmental Ordinance has been adopted, but will only take effect after the Environmental Act enters into force. Until then, the card from the Interim Regulation is active.
https://research.csiro.au/dap/licences/csiro-data-licence/https://research.csiro.au/dap/licences/csiro-data-licence/
This dataset is a series of digital map-posters accompanying the AdaptNRM Guide: Helping Biodiversity Adapt: supporting climate adaptation planning using a community-level modelling approach.
These represent supporting materials and information about the community-level biodiversity models applied to climate change. Map posters are organised by four biological groups (vascular plants, mammals, reptiles and amphibians), two climate change scenario (1990-2050 MIROC5 and CanESM2 for RCP8.5), and five measures of change in biodiversity.
The map-posters present the nationally consistent data at locally relevant resolutions in eight parts – representing broad groupings of NRM regions based on the cluster boundaries used for climate adaptation planning (http://www.environment.gov.au/climate-change/adaptation) and also Nationally.
Map-posters are provided in PNG image format at moderate resolution (300dpi) to suit A0 printing. The posters were designed to meet A0 print size and digital viewing resolution of map detail. An additional set in PDF image format has been created for ease of download for initial exploration and printing on A3 paper. Some text elements and map features may be fuzzy at this resolution.
Each map-poster contains four dataset images coloured using standard legends encompassing the potential range of the measure, even if that range is not represented in the dataset itself or across the map extent.
Most map series are provided in two parts: part 1 shows the two climate scenarios for vascular plants and mammals and part 2 shows reptiles and amphibians. Eight cluster maps for each series have a different colour theme and map extent. A national series is also provided. Annotation briefly outlines the topics presented in the Guide so that each poster stands alone for quick reference.
An additional 77 National maps presenting the probability distributions of each of 77 vegetation types – NVIS 4.1 major vegetation subgroups (NVIS subgroups) - are currently in preparation.
Example citations:
Williams KJ, Raisbeck-Brown N, Prober S, Harwood T (2015) Generalised projected distribution of vegetation types – NVIS 4.1 major vegetation subgroups (1990 and 2050), A0 map-poster 8.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
Williams KJ, Raisbeck-Brown N, Harwood T, Prober S (2015) Revegetation benefit (cleared natural areas) for vascular plants and mammals (1990-2050), A0 map-poster 9.1 - East Coast NRM regions. CSIRO Land and Water Flagship, Canberra. Available online at www.AdaptNRM.org and https://data.csiro.au/dap/.
This dataset has been delivered incrementally. Please check that you are accessing the latest version of the dataset. Lineage: The map posters show case the scientific data. The data layers have been developed at approximately 250m resolution (9 second) across the Australian continent to incorporate the interaction between climate and topography, and are best viewed using a geographic information system (GIS). Each data layers is 1Gb, and inaccessible to non-GIS users. The map posters provide easy access to the scientific data, enabling the outputs to be viewed at high resolution with geographical context information provided.
Maps were generated using layout and drawing tools in ArcGIS 10.2.2
A check list of map posters and datasets is provided with the collection.
Map Series: 7.(1-77) National probability distribution of vegetation type – NVIS 4.1 major vegetation subgroup pre-1750 #0x
8.1 Generalised projected distribution of vegetation types (NVIS subgroups) (1990 and 2050)
9.1 Revegetation benefit (cleared natural areas) for plants and mammals (1990-2050)
9.2 Revegetation benefit (cleared natural areas) for reptiles and amphibians (1990-2050)
10.1 Need for assisted dispersal for vascular plants and mammals (1990-2050)
10.2 Need for assisted dispersal for reptiles and amphibians (1990-2050)
11.1 Refugial potential for vascular plants and mammals (1990-2050)
11.1 Refugial potential for reptiles and amphibians (1990-2050)
12.1 Climate-driven future revegetation benefit for vascular plants and mammals (1990-2050)
12.2 Climate-driven future revegetation benefit for vascular reptiles and amphibians (1990-2050)
The surveys were carried out as part of the Regional Geological Cartography project with elements of geomorphology, with reference to the L.R. no. 7/1989 - Coverage: Corresponding to squad n. 229.1 - Origin: Geological survey scale 1:10000
Australia crustal elements map based on the distribution of geophysical domains
Vector data collection DPK 500V is an object-oriented cartographic database at 1: 500 000 scale. Elements on the map are divided into eight object groups: mathematical elements, settlements and objects, communications, relief, hydrography, land cover, boundaries and dividing line, geographical names. The data set is used for "rough" geo-orientation and for the needs of large scale and thematic displaying.
The surveys were carried out as part of the Regional Geological Cartography project with elements of geomorphology, with reference to the L.R. no. 7/1989 - Coverage: Corresponding to squad n. 214.3 - Origin: Geological survey scale 1:10000
An educational product describing each of the elements on a geological map. Elements include symbols, grid references, cross-section, scale, geological reliability diagram and the geological time scale.
BioMap is the result of an ongoing collaboration between MassWildlife and the Massachusetts Chapter of The Nature Conservancy (TNC). Since its inception in 2001, this comprehensive tool has become a trusted source of information to guide conservation that is used by a wide spectrum of conservation practitioners. Today’s BioMap builds on previous iterations with the continuing goal of protecting the diversity of species and natural ecosystems within the Commonwealth. BioMap is an important tool to guide strategic protection and stewardship of lands and waters that are most important for conserving biological diversity in Massachusetts.More details...Map service also available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Legacy product - no abstract available
Representation of the structural features and in particular faults and thrusts.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract This research investigates subjective user preference for using Floor Plans and Schematic Maps in an indoor environment, and how users locate and orient themselves when using these representations. We sought to verify the efficiency of these two kinds of digital maps and evaluate which elements found in physical environments and which elements found in the representations influence the user spatial orientation process. Users answered questions and performed orientation tasks which indicated their level of familiarity with the area being studied, their understanding of the symbology used, and their identification of Points of Interest (POI) in the environment. The initial results indicated a preference for the Schematic Map, because users thought that the symbology used on the map adopted was easy to understand.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This entry provides access to surficial geology maps that have been published by the Geological survey of Canada. Two series of maps are available: "A Series" maps, published from 1909 to 2010 and "Canadian Geoscience Maps", published since 2010. Three types of CGM-series maps are available: 1)Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, Digital Elevation Models (DEM)), incorporating field data and ground truthing resulting from extensive, systematic fieldwork across the entire map area. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 2)Reconnaissance Surficial Geology: based on expert-knowledge full air photo interpretation (may include interpretive satellite imagery, DEMs), with limited or no fieldwork. Air photo interpretation includes map unit/deposit genesis, texture, thickness, structure, morphology, depositional or erosional environment, ice flow or meltwater direction, age/cross-cutting relationships, landscape evolution and associated geological features, complemented by additional overlay modifiers, points and linear features, selected from over 275 different geological elements in the Surficial Data Model. Wherever possible, legacy data is also added to the map. 3)Predictive Surficial Geology: derived from one or more methods of remote predictive mapping (RPM) using different satellite imagery, spectral characteristics of vegetation and surface moisture, machine processing, algorithms etc., DEMs, where raster data are converted to vector, with some expert-knowledge air photo interpretation (training areas or post-verification areas), varying degrees of non-systematic fieldwork, and the addition of any legacy data available. Each map is based on a version of the Geological Survey of Canada's Surficial Data Model (https://doi.org/10.4095/315021), thus providing an easily accessible national surficial geological framework and context in a standardized format to all users. "A series" maps were introduced in 1909 and replaced by CGM maps in 2010. The symbols and vocabulary used on those maps was not as standardized as they are in the CGM maps. Some "A series" maps were converted into, or redone, as CGM maps, Both versions are available whenever that is the case. In addition to CGM and "A series" maps, some surficial geology maps are published in the Open File series. Those maps are not displayed in this entry, but can be found and accessed using the NRCan publications website, GEOSCAN:(https://geoscan.nrcan.gc.ca).
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Abstract The Mineral Potential web service provides access to digital datasets used in the assessment of mineral potential in Australia. The service includes maps showing the potential for carbonatite-related rare earth element mineral systems in Australia. Maps showing the potential for carbonatite-related rare earth element (REE) mineral systems in Australia. Model 1 integrates three components: sources of metals, energy drivers, and lithospheric architecture. Supporting datasets including the input maps used to generate the mineral potential maps, an assessment criteria table that contains information on the map creation, and data uncertainty maps are available here Uncertainty Maps. The data uncertainty values range between 0 and 1, with higher uncertainty values being located in areas where more input maps are missing data or have unknown values. Map images provided in the extended abstract have the same colour ramp and equalised histogram stretch, plus a gamma correction of 0.5 not present in the web map service maps, which was applied using Esri ArcGIS Pro software. The extended abstract is avalable here Alkaline Rocks Atlas Legend
Currency Date modified: 16 August 2023 Next modification date: As Needed Data extent Spatial extent North: -9° South: -44° East: 154° West: 112° Source Information Catalog entry: Carbonatite-related rare earth element mineral potential maps Lineage Statement Product Created 20 April 2023 Product Published 16 August 2023 A large number of published datasets were individually transformed to summarise our current understanding of the spatial extents of key mineral system mappable criteria. These individual layers were integrated using statistically derived importance weightings combined with expert reliability weightings within a mineral system component framework to produce national-scale mineral potential assessments for Australian carbonatite-related rare earth element mineral systems. Contact Geoscience Australia, clientservices@ga.gov.au