This ethnicity dataset (GREG) is a digital version of the paper Soviet Narodov Mira atlas created in 1964. In 2010 the GREG (Geo-referencing of ethnic groups) project, used maps and data drawn from the Narodov Mira atlas to create a GIS (Geographic Information Systems) version of the atlas (2010). ETH ZurichFirst developed by G.P. Murdock in the 1940s, is an ethnographic classification system on human behavior, social life and customs, material culture, and human-ecological environments (2003). University of California
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by statistical area 2.
The ethnic groups are:
Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Ethnicity concept quality rating
Ethnicity is rated as high quality.
Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
-999 Confidential
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
The manuscript title is "The effects of subsity of Presbyterian Churches", by Henry Hughes Presler, and can be found at Mansueto Library, University of Chicago under the call number BX 10999. These maps have been outlined and vectorized as the originals, and points placed for location of churches as they were in the original. Call number for the maps: G4104.C6E1 1948.H6. Map Collection, Regenstein Library, University of Chicago. Drawn from Map 7 - Location of Presbyterian churches in relation to ethnic groups in the city of Chicago, by Census Tracts, 1920.
This map service summarizes racial and ethnic diversity in the United States in 2012.
The Diversity Index shows the likelihood that two persons chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity). Diversity in the U.S. population is increasing. The diversity score for the entire United States in 2012 is 61.
The data shown is from Esri's 2012 Updated Demographics. The map adds increasing level of detail as you zoom in, from state, to county, to ZIP Code, to tract, to block group data. This map shows Esri's 2012 estimates using Census 2010 geographies.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
According to the 2021 Census, London was the most ethnically diverse region in England and Wales – 63.2% of residents identified with an ethnic minority group.
Ethnic group map illustrates the extent and distribution of the different ethnic groups within Kenya. Major towns are indicated on the map but no further topographic detail is included.
Attribution-ShareAlike 4.0 (CC BY-SA 4.0)https://creativecommons.org/licenses/by-sa/4.0/
License information was derived automatically
This map shows ethnic fractionalization. The Ethnic Fractionalization Index is calculated using data from the 2007 Population and Housing Census. The striped areas show where marginality hotspots are. The map reveals that marginality hotspots are ethnically more homogeneous than non-hotspot areas. Quality/Lineage: This map shows the ethnic fractionalization index as developed by Taylor and Hudson (1970). The index is calculated as 1- sum(gi), where g is the proportion of people belonging to ethnic group i. The sum runs from 1 to n, where n is the number of ethnic groups in the country. The data used is taken from the 2007 Population and Housing Census (CSA, 2008) and is available on woreda (district) level.
This multi-scale map shows the predominant (most numerous) race/ethnicity living within an area. Map opens at the state level, centered on the lower 48 states. Data is from U.S. Census Bureau's 2020 PL 94-171 data for state, county, tract, block group, and block.The map's colors indicate which of the eight race/ethnicity categories have the highest total count.Race and ethnicity highlights from the U.S. Census Bureau:White population remained the largest race or ethnicity group in the United States, with 204.3 million people identifying as White alone. Overall, 235.4 million people reported White alone or in combination with another group. However, the White alone population decreased by 8.6% since 2010.Two or More Races population (also referred to as the Multiracial population) has changed considerably since 2010. The Multiracial population was measured at 9 million people in 2010 and is now 33.8 million people in 2020, a 276% increase.“In combination” multiracial populations for all race groups accounted for most of the overall changes in each racial category.All of the race alone or in combination groups experienced increases. The Some Other Race alone or in combination group (49.9 million) increased 129%, surpassing the Black or African American population (46.9 million) as the second-largest race alone or in combination group.The next largest racial populations were the Asian alone or in combination group (24 million), the American Indian and Alaska Native alone or in combination group (9.7 million), and the Native Hawaiian and Other Pacific Islander alone or in combination group (1.6 million).Hispanic or Latino population, which includes people of any race, was 62.1 million in 2020. Hispanic or Latino population grew 23%, while the population that was not of Hispanic or Latino origin grew 4.3% since 2010.View more 2020 Census statistics highlights on race and ethnicity.
American Community Survey (2011-2015 5-Year Estimates) block group data was downloaded from American FactFinder, containing race and ethnicity population numbers. Data Driven Detroit assigned each block group a predominant race/ethnicity. Data was obtained for the Demographic section of Little Caesar's Arena District Needs Assessment.Click here for metadata (descriptions of the fields).
Prior to the civil war in the 1990’s ethnic tension caused many rivalries between groups. This was common between the Temne, with their allies the Limba, and the Mende, with their allies the Sherbro, Kissi, and Gola groups. Even with this history of ethnic conflict it does not appear to be a significant factor that contributed to the civil war as the war focused on control of diamond mines. With the civil war over for more than a decade the country is relatively peaceful. There are no serious ethnic conflicts or rivalries. Limba – Limba populations are found in other West African countries although 90% reside in Sierra Leone. The majority are Muslim, having been introduced to Islam in the late nineteenth century. This is much later than their neighbors. To prevent too much Westernization, the Limba often send their children to Islamic schools. Mande – The Mande are a large ethnic group in West Africa that is comprised of many smaller groups. The Mande people speak a variety of Mande languages. Most practice agriculture, animal husbandry, and trade. They practice a patrilineal society having the eldest male serve as lineage head. With so many Mande groups spread over West Africa there is much variation among language and culture. Mel – The Mel within Sierra Leone are comprised of the Gola and the Kissi. Similar to other West Africa groups, the Gola participate in secret societies. The most important occurs around the age of puberty and these societies seek to socialize youth with Gola culture. The Kissi are increasingly becoming culturally influenced by the Mende people. Soso - The Soso were introduced to Islam in the seventeenth century and they are now overwhelmingly Sunni Muslim, of the Maliki School. Many still perform ritual ceremonies from indigenous religions. They are often influenced by neighboring groups. Temne – The Temne are one of the largest ethnic groups in the country. While the capital of Freetown is home to many groups, the largest number of people belong to the Temne ethnicity. The majority are Muslim, having been introduced to Islam in the seventeenth century. Some Temne still practice indigenous religions or incorporate them into their practice of Islam. Similar to other groups in the country, the Temne also have secret socieites. The Temne use these socieites to learn about the Temne culture. Although many have convertered to Islam or Christianity, it is common to incorporate indigenous religious beliefs. Attribute Table Field DescriptionsISO3-International Organization for Standardization 3-digit country codeADM0_NAME-Administration level zero identification / namePEOPLEGP_1-People Group level 1PEOPLEGP_2-People Group level 2PEOPLEGP_3-People Group level 3PEOPLEGP_4-People Group level 4PEOPLEGP_5-People Group level 5ALT_NAMES-Alternative names or spellings for a people groupCOMMENTS-Comments or notes regarding the people groupSOURCE_DT-Source one creation dateSOURCE-Source oneSOURCE2_DT-Source two creation dateSOURCE2-Source twoCollectionThis feature class was constructed by referencing and combining information from Murdock’s Map of Africa (1959) with other anthropological literature pertaining to Sierra Leone ethnicity. The information was then processed through DigitalGlobe’s AnthropMapper program to generate more accurate ethnic coverage boundaries. Anthromapper uses geographical terrain features, combined with a watershed model, to predict the likely extent of ethnic and linguistic influence.Metadata and data pertaining to the feature class was collected from the review of Murdock’s Map of Africa (1959) in conjunction with information from anthropological research pertaining to ethnicity in northern Africa. While efforts were made to secure the accuracy of the geographic location of existing ethnicities, many are transient in nature and continue to migrate. Further, it should be stressed that ethnic groups listed represent the prominent people groups in Sierra Leone; however, numerous subgroups may exist below this tier. The data included herein have not been derived from a registered survey and should be considered approximate unless otherwise defined. While rigorous steps have been taken to ensure the quality of each dataset, DigitalGlobe is not responsible for the accuracy and completeness of data compiled from outside sources.Sources (HGIS)Anthromapper. DigitalGlobe, September 2014.Gonen, Amiram. The Encyclopedia of the Peoples of the World. New York: Henry Holt and Company, 1993.Levinson, David. Encyclopedia of World Cultures: Africa and the Middle East. Boston: G.K. Hall and Co., 1995.Murdock, George Peter. Tribal Map of Africa from Africa: Its Peoples and Their Culture History. New York: McGraw-Hill Book Co., January 1959.Olson, James S. The Peoples of Africa: An Ethnohistorical Dictionary. Westport: Greenworod Press, 1996.The Diagram Group. Encyclopedia African Peoples. London: Diagram Visual Information, 2000.Yakan, Mohamad Z. Almanac of African Peoples and Nations. New Brunswick: Transaction Publishers, 1999.Sources (Metadata)Gonen, Amiram. The Encyclopedia of the Peoples of the World. New York: Henry Holt and Company, 1993.Levinson, David. Encyclopedia of World Cultures: Africa and the Middle East. Boston: G.K. Hall and Co., 1995.Murdock, George Peter. Tribal Map of Africa from Africa: Its Peoples and Their Culture History. New York: McGraw-Hill Book Co., January 1959.Notholt, Stuart A. Fields of Fire: An atlas of ethnic conflict. London: Stuart Notholt Communications Ltd, 2008.Olson, James S. The Peoples of Africa: An Ethnohistorical Dictionary. Westport: Greenworod Press, 1996.The Diagram Group. Encyclopedia African Peoples. London: Diagram Visual Information, 2000.University of Iowa Museum of Art, “Sierra Leone; Gola or Vai peoples, Lansana Ngumoi”. January 2006. Accessed December 2014. http://uima.uiowa.edu.Yakan, Mohamad Z. Almanac of African Peoples and Nations. New Brunswick: Transaction Publishers, 1999.
This map shows which race/ethnicity group has the lowest median income in the United States by tract, county and state, using the latest available data from the U.S. Census Bureau's American Community Survey (ACS).For each group showing a median income figure, the lowest median income determines the color used on the map. This is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. Median income and income source is based on income in past 12 months of survey. The map's topic is shown by tract, county, and state boundaries. This service is updated annually to contain the most currently released American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. To see the full list of attributes available in this map's layers, go to a layer listed under the "Layers" section below and choose the "Data" tab for that layer, and choose "Fields" at the top right on that page.
The statistic shows the share of U.S. population, by race and Hispanic origin, in 2016 and a projection for 2060. As of 2016, about 17.79 percent of the U.S. population was of Hispanic origin. Race and ethnicity in the U.S. For decades, America was a melting pot of the racial and ethnical diversity of its population. The number of people of different ethnic groups in the United States has been growing steadily over the last decade, as has the population in total. For example, 35.81 million Black or African Americans were counted in the U.S. in 2000, while 43.5 million Black or African Americans were counted in 2017.
The median annual family income in the United States in 2017 earned by Black families was about 50,870 U.S. dollars, while the average family income earned by the Asian population was about 92,784 U.S. dollars. This is more than 15,000 U.S. dollars higher than the U.S. average family income, which was 75,938 U.S. dollars.
The unemployment rate varies by ethnicity as well. In 2018, about 6.5 percent of the Black or African American population in the United States were unemployed. In contrast to that, only three percent of the population with Asian origin was unemployed.
http://reference.data.gov.uk/id/open-government-licencehttp://reference.data.gov.uk/id/open-government-licence
A set of tools created by the Census Information Scheme that allows users to explore data from 2011 Census Commissioned Table CT0225: Age by ethnic group by sex.
The excel tool allows users to explore the data in four different ways:
The tableau tool allows users to explore the distribution people born in a selected country using an interactive map.
https://datafinder.stats.govt.nz/license/attribution-4-0-international/https://datafinder.stats.govt.nz/license/attribution-4-0-international/
Dataset contains ethnic group census usually resident population counts from the 2013, 2018, and 2023 Censuses, as well as the percentage change in the ethnic group population count between the 2013 and 2018 Censuses, and between the 2018 and 2023 Censuses. Data is available by territorial authority and Auckland local board.
The ethnic groups are:
Map shows percentage change in the census usually resident population count for ethnic groups between the 2018 and 2023 Censuses.
Download lookup file from Stats NZ ArcGIS Online or embedded attachment in Stats NZ geographic data service. Download data table (excluding the geometry column for CSV files) using the instructions in the Koordinates help guide.
Footnotes
Geographical boundaries
Statistical standard for geographic areas 2023 (updated December 2023) has information about geographic boundaries as of 1 January 2023. Address data from 2013 and 2018 Censuses was updated to be consistent with the 2023 areas. Due to the changes in area boundaries and coding methodologies, 2013 and 2018 counts published in 2023 may be slightly different to those published in 2013 or 2018.
Subnational census usually resident population
The census usually resident population count of an area (subnational count) is a count of all people who usually live in that area and were present in New Zealand on census night. It excludes visitors from overseas, visitors from elsewhere in New Zealand, and residents temporarily overseas on census night. For example, a person who usually lives in Christchurch city and is visiting Wellington city on census night will be included in the census usually resident population count of Christchurch city.
Caution using time series
Time series data should be interpreted with care due to changes in census methodology and differences in response rates between censuses. The 2023 and 2018 Censuses used a combined census methodology (using census responses and administrative data), while the 2013 Census used a full-field enumeration methodology (with no use of administrative data).
About the 2023 Census dataset
For information on the 2023 dataset see Using a combined census model for the 2023 Census. We combined data from the census forms with administrative data to create the 2023 Census dataset, which meets Stats NZ's quality criteria for population structure information. We added real data about real people to the dataset where we were confident the people who hadn’t completed a census form (which is known as admin enumeration) will be counted. We also used data from the 2018 and 2013 Censuses, administrative data sources, and statistical imputation methods to fill in some missing characteristics of people and dwellings.
Data quality
The quality of data in the 2023 Census is assessed using the quality rating scale and the quality assurance framework to determine whether data is fit for purpose and suitable for release. Data quality assurance in the 2023 Census has more information.
Quality rating of a variable
The quality rating of a variable provides an overall evaluation of data quality for that variable, usually at the highest levels of classification. The quality ratings shown are for the 2023 Census unless stated. There is variability in the quality of data at smaller geographies. Data quality may also vary between censuses, for subpopulations, or when cross tabulated with other variables or at lower levels of the classification. Data quality ratings for 2023 Census variables has more information on quality ratings by variable.
Ethnicity concept quality rating
Ethnicity is rated as high quality.
Ethnicity – 2023 Census: Information by concept has more information, for example, definitions and data quality.
Using data for good
Stats NZ expects that, when working with census data, it is done so with a positive purpose, as outlined in the Māori Data Governance Model (Data Iwi Leaders Group, 2023). This model states that "data should support transformative outcomes and should uplift and strengthen our relationships with each other and with our environments. The avoidance of harm is the minimum expectation for data use. Māori data should also contribute to iwi and hapū tino rangatiratanga”.
Confidentiality
The 2023 Census confidentiality rules have been applied to 2013, 2018, and 2023 data. These rules protect the confidentiality of individuals, families, households, dwellings, and undertakings in 2023 Census data. Counts are calculated using fixed random rounding to base 3 (FRR3) and suppression of ‘sensitive’ counts less than six, where tables report multiple geographic variables and/or small populations. Individual figures may not always sum to stated totals. Applying confidentiality rules to 2023 Census data and summary of changes since 2018 and 2013 Censuses has more information about 2023 Census confidentiality rules.
Symbol
-998 Not applicable
Percentages
To calculate percentages, divide the figure for the category of interest by the figure for ‘Total stated’ where this applies.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The stereotype content model (SCM), originating in the United States and generalized across nearly 50 countries, has yet to address ethnic relations in one of the world’s most influential nations. Russia and the United States are somewhat alike (large, powerful, immigrant-receiving), but differ in other ways relevant to intergroup images (culture, religions, ideology, and history). Russian ethnic stereotypes are understudied, but significant for theoretical breadth and practical politics. This research tested the SCM on ethnic stereotypes in a Russian sample (N = 1115). Study 1 (N = 438) produced an SCM map of the sixty most numerous domestic ethnic groups (both ethnic minorities and immigrants). Four clusters occupied the SCM warmth-by-competence space. Study 2 (N = 677) compared approaches to ethnic stereotypes in terms of status and competition, cultural distance, perceived region, and four intergroup threats. Using the same Study 1 groups, the Russian SCM map showed correlated warmth and competence, with few ambivalent stereotypes. As the SCM predicts, status predicted competence, and competition negatively predicted warmth. Beyond the SCM, status and property threat both were robust antecedents for both competence and warmth for all groups. Besides competition, cultural distance also negatively predicted warmth for all groups. The role of the other antecedents, as expected, varied from group to group. To examine relative impact, a network analysis demonstrated that status, competition, and property threat centrally influence many other variables in the networks. The SCM, along with antecedents from other models, describes Russian ethnic-group images. This research contributes: (1) a comparison of established approaches to ethnic stereotypes (from acculturation and intergroup relations) showing the stability of the main SCM predictions; (2) network structures of the multivariate dependencies of the considered variables; (3) systematically cataloged images of ethnic groups in Russia for further comparisons, illuminating the Russian historical, societal, and interethnic context.
The CMS Office of Minority Health has designed an interactive map, the Mapping Medicare Disparities Tool, to identify areas of disparities between subgroups of Medicare beneficiaries (e.g., racial and ethnic groups) in health outcomes, utilization, and spending. This information may be used to inform policy decisions and to target populations and geographies for potential interventions.
Use this application to view the pattern of concentrations of people by race and Hispanic or Latino ethnicity. Data are provided at the U.S. Census block group level, one of the smallest Census geographies, to provide a detailed picture of these patterns. The data is sourced from the U.S Census Bureau, 2020 Census Redistricting Data (Public Law 94-171) Summary File. Definitions: Definitions of the Census Bureau’s categories are provided below. This interactive map shows patterns for all categories except American Indian or Alaska Native and Native Hawaiian or Other Pacific Islander. The total population countywide for these two categories is small (1,582 and 263 respectively). The Census Bureau uses the following race categories:Population by RaceWhite – A person having origins in any of the original peoples of Europe, the Middle East, or North Africa.Black or African American – A person having origins in any of the Black racial groups of Africa.American Indian or Alaska Native – A person having origins in any of the original peoples of North and South America (including Central America) and who maintains tribal affiliation or community attachment.Asian – A person having origins in any of the original peoples of the Far East, Southeast Asia, or the Indian subcontinent including, for example, Cambodia, China, India, Japan, Korea, Malaysia, Pakistan, the Philippine Islands, Thailand, and Vietnam.Native Hawaiian or Other Pacific Islander – A person having origins in any of the original peoples of Hawaii, Guam, Samoa, or other Pacific Islands.Some Other Race - this category is chosen by people who do not identify with any of the categories listed above. People can identify with more than one race. These people are included in the Two or More Races Hispanic or Latino PopulationThe Hispanic/Latino population is an ethnic group. Hispanic/Latino people may be of any race.Other layers provided in this tool included the Loudoun County Census block groups, towns and Dulles airport, and the Loudoun County 2021 aerial imagery.
Tabular data of population by age groups, race and gender, and the poverty by race is attached to the split tract geography to create this split tract with population and poverty data. Split tract data is the product of 2020 census tracts split by 2022 incorporated city boundaries and unincorporated community/countywide statistical areas (CSA) boundaries. The census tract boundaries have been altered and aligned where necessary with legal city boundaries and unincorporated areas, including shoreline/coastal areas. Census Tract:Every 10 years the Census Bureau counts the population of the United States as mandated by Constitution. The Census Bureau (https://www.census.gov/) released 2020 geographic boundaries data including census tracts for the analysis and mapping of demographic information across the United States. City Boundary:City Boundary data is the base map information for the County of Los Angeles. These City Boundaries are based on the Los Angeles County Seamless Cadastral Landbase. The Landbase is jointly maintained by the Los Angeles County Assessor and the Los Angeles County Department of Public Works (DPW). This layer represents current city boundaries within Los Angeles County. The DPW provides the most current shapefiles representing city boundaries and city annexations. True, legal boundaries are only determined on the ground by surveyors licensed in the State of California.Countywide Statistical Areas (CSA): The countywide Statistical Area (CSA) was defined to provide a common geographic boundary for reporting departmental statistics for unincorporated areas and incorporated Los Angeles city to the Board of Supervisors. The CSA boundary and CSA names are established by the CIO and the LA County Enterprise GIS group worked with the Los Angeles County Board of Supervisors Unincorporated Area and Field Deputies that reflect as best as possible the general name preferences of residents and historical names of areas. This data is primarily focused on broad statistics and reporting, not mapping of communities. This data is not designed to perfectly represent communities, nor jurisdictional boundaries such as Angeles National Forest. CSA represent board approved geographies comprised of Census block groups split by cities.Data Field:CT20: 2020 Census tractFIP22: 2022 City FIP CodeCITY: City name for incorporated cities and “Unincorporated” for unincorporated areas (as of July 1, 2022) CSA: Countywide Statistical Area (CSA) - Unincorporated area community names and LA City neighborhood names.CT20FIP22CSA: 2020 census tract with 2022 city FIPs for incorporated cities and unincorporated areas and LA neighborhoods. SPA22: 2022 Service Planning Area (SPA) number.SPA_NAME: Service Planning Area name.HD22: 2022 Health District (HD) number: HD_NAME: Health District name.POP22_AGE_0_4: 2022 population 0 to 4 years oldPOP22_AGE_5_9: 2022 population 5 to 9 years old POP22_AGE_10_14: 2022 population 10 to 14 years old POP22_AGE_15_17: 2022 population 15 to 17 years old POP22_AGE_18_19: 2022 population 18 to 19 years old POP22_AGE_20_44: 2022 population 20 to 24 years old POP22_AGE_25_29: 2022 population 25 to 29 years old POP22_AGE_30_34: 2022 population 30 to 34 years old POP22_AGE_35_44: 2022 population 35 to 44 years old POP22_AGE_45_54: 2022 population 45 to 54 years old POP22_AGE_55_64: 2022 population 55 to 64 years old POP22_AGE_65_74: 2022 population 65 to 74 years old POP22_AGE_75_84: 2022 population 75 to 84 years old POP22_AGE_85_100: 2022 population 85 years and older POP22_WHITE: 2022 Non-Hispanic White POP22_BLACK: 2022 Non-Hispanic African AmericanPOP22_AIAN: 2022 Non-Hispanic American Indian or Alaska NativePOP22_ASIAN: 2022 Non-Hispanic Asian POP22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific IslanderPOP22_HISPANIC: 2022 HispanicPOP22_MALE: 2022 Male POP22_FEMALE: 2022 Female POV22_WHITE: 2022 Non-Hispanic White below 100% Federal Poverty Level POV22_BLACK: 2022 Non-Hispanic African American below 100% Federal Poverty Level POV22_AIAN: 2022 Non-Hispanic American Indian or Alaska Native below 100% Federal Poverty Level POV22_ASIAN: 2022 Non-Hispanic Asian below 100% Federal Poverty Level POV22_HNPI: 2022 Non-Hispanic Hawaiian Native or Pacific Islander below 100% Federal Poverty Level POV22_HISPANIC: 2022 Hispanic below 100% Federal Poverty Level POV22_TOTAL: 2022 Total population below 100% Federal Poverty Level POP22_TOTAL: 2022 Total PopulationAREA_SQMil: Area in square mile.POP22_DENSITY: Population per square mile.POV22_PERCENT: Poverty rate/percentage.How this data created?The tabular data of population by age groups, by ethnic groups and by gender, and the poverty by ethnic groups is attributed to the split tract geography to create this data. Split tract polygon data is created by intersecting 2020 census tract polygons, LA Country City Boundary polygons and Countywide Statistical Areas (CSA) polygon data. The resulting polygon boundary aligned and matched with the legal city boundary whenever possible. Note:1. Population and poverty data estimated as of July 1, 2022. 2. 2010 Census tract and 2020 census tracts are not the same. Similarly, city and community boundary are not the same because boundary is reviewed and updated annually.
Mekong Development Research Institute (MDRI) would like to present to you the second edition of the book "54 Ethnic Groups: Why the Difference?" The book is the updated version of the previous book published in 2014 based on our knowledge and experience while working with donors, NGOs, and multiple ethnic groups in an effort to provide additional information and insight into all 54 ethnic groups of Vietnam. Data from 4 censuses are used in this book including the 53 Ethnic Minorities Census 2015, Population Census 2009, and Viet Nam Rural, Agriculture and Fishery Census 2011 and 2016 to analyze and calculate key indicators for each minority and majority. In the 2018 edition, 54 Ethnic Groups: Why the Difference? consists of four main sections. The first presents the main findings on demography, education, health, living conditions, gender equality, land, and agriculture and the rankings of the 54 groups by indicator. The second section provides detailed information on location, language and writing, history, beliefs, religion, and social and family organization. Each ethnic group’s household characteristics and the main changes in each aspect of life from 2009 to 2016 are also mentioned in this section. The third section analyses some critical issues which negatively affect ethnic minorities. The fourth and final part of the book provides 54 sets of maps illustrating changes in the population distribution of the 54 groups and poverty rates by district in 2009 and 2015.
This statistic shows the share of ethnic groups in Australia in the total population. 33 percent of the total population of Australia are english.
Australia’s population
Australia’s ethnic diversity can be attributed to their history and location. The country’s colonization from Europeans is a significant reason for the majority of its population being Caucasian. Additionally, being that Australia is one of the most developed countries closest to Eastern Asia; its Asian population comes as no surprise.
Australia is one of the world’s most developed countries, often earning recognition as one of the world’s economical leaders. With a more recent economic boom, Australia has become an attractive country for students and workers alike, who seek an opportunity to improve their lifestyle. Over the past decade, Australia’s population has slowly increased and is expected to continue to do so over the next several years. A beautiful landscape, many work opportunities and a high quality of life helped play a role in the country’s development. In 2011, Australia was considered to have one of the highest life expectancies in the world, with the average Australian living to approximately 82 years of age.
From an employment standpoint, Australia has maintained a rather low employment rate compared to many other developed countries. After experiencing a significant jump in unemployment in 2009, primarily due to the world economic crisis, Australia has been able to remain stable and slightly increase employment year-over-year.
This ethnicity dataset (GREG) is a digital version of the paper Soviet Narodov Mira atlas created in 1964. In 2010 the GREG (Geo-referencing of ethnic groups) project, used maps and data drawn from the Narodov Mira atlas to create a GIS (Geographic Information Systems) version of the atlas (2010). ETH ZurichFirst developed by G.P. Murdock in the 1940s, is an ethnographic classification system on human behavior, social life and customs, material culture, and human-ecological environments (2003). University of California