CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This map shows the population density in North-Eastern Europe in 2011. This map is extracted from the cartographic atlas made on the occasion of the merger of the Alsace, Champagne-Ardenne and Lorraine Regions in January 2016. It is available on the website of the Grand Est Region. This map was designed for A3 format, landscape.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in European Union was reported at 112 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. European Union - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Available data for gross domestic product (GDP) and population density are useful for defining divisions in socio-economic gradients across Europe, since economic power and human population pressure are recognised as two of the most critical factors causing ecosystem changes. To overcome both the limitations in data availability and in the distortions caused by using administrative regions, we decided to base the socio-economic dimension on an economic density indicator, defined as the income generated per square kilometre (EUR km-2), which can be mapped at a 1km2 spatial resolution. Economic density forms an integrative indicator that is based on two key drivers that were identified above: economic power and human population pressure. The indicator, which has been used to rank countries by their level of development, can be considered a crude measure for impacts on the environment caused by economic activity. An economic density map (EUR km-2) at 1 km2 spatial resolution was constructed by multiplying economic power (EUR person-1) with population density (person km-2). Subsequent logarithmic divisions resulted in an aggregated map of four economic density zones. Although the map has a fine spatial resolution it has to be realised that they form a spatial disaggregation of coarser census statistics. Importantly, the finer resolution discerns regional gradients in human activity that are required for many environmental studies, whilst broad gradients in economic activity is also treated consistently across Europe. GDP and population density data used were for the year 2001. The dataset consists of GeoTiff files of the economic density map and the four economic density zones.
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
This dataset contains the modeling results GIS data (maps) of the study “Sustainable Human Population Density in Western Europe between 560.000 and 360.000 years ago” by Rodríguez et al. (2022). The NPP data (npp.zip) was computed using an empirical formula (the Miami model) from palaeo temperature and palaeo precipitation data aggregated for each timeslice from the Oscillayers dataset (Gamisch, 2019), as defined in Rodríguez et al. (2022, in review). The Population densities file (pop_densities.zip) contains the computed minimum and maximum population densities rasters for each of the defined MIS timeslices. With the population density value Dc in logarithmic form log(Dc). The Species Distribution Model (sdm.7z) includes input data (folder /data), intermediate results (folder /work) and results and figures (folder /results). All modelling steps are included as an R project in the folder /scripts. The R project is subdivided into individual scripts for data preparation (1.x), sampling procedure (2.x), and model computation (3.x). The habitat range estimation (habitat_ranges.zip) includes the potential spatial boundaries of the hominin habitat as binary raster files with 1=presence and 0=absence. The ranges rely on a dichotomic classification of the habitat suitability with a threshold value inferred from the 5% quantile of the presence data. The habitat suitability (habitat_suitability.zip) is the result of the Species Distribution Modelling and describes the environmental suitability for hominin presence based on the sites considered in this study. The values range between 0=low and 1=high suitability. The dataset includes the mean (pred_mean) and standard deviation (pred_std) of multiple model runs.
As of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.
The world's population first reached one billion people in 1803, and reach eight billion in 2023, and will peak at almost 11 billion by the end of the century. Although it took thousands of years to reach one billion people, it did so at the beginning of a phenomenon known as the demographic transition; from this point onwards, population growth has skyrocketed, and since the 1960s the population has increased by one billion people every 12 to 15 years. The demographic transition sees a sharp drop in mortality due to factors such as vaccination, sanitation, and improved food supply; the population boom that follows is due to increased survival rates among children and higher life expectancy among the general population; and fertility then drops in response to this population growth. Regional differences The demographic transition is a global phenomenon, but it has taken place at different times across the world. The industrialized countries of Europe and North America were the first to go through this process, followed by some states in the Western Pacific. Latin America's population then began growing at the turn of the 20th century, but the most significant period of global population growth occurred as Asia progressed in the late-1900s. As of the early 21st century, almost two thirds of the world's population live in Asia, although this is set to change significantly in the coming decades. Future growth The growth of Africa's population, particularly in Sub-Saharan Africa, will have the largest impact on global demographics in this century. From 2000 to 2100, it is expected that Africa's population will have increased by a factor of almost five. It overtook Europe in size in the late 1990s, and overtook the Americas a decade later. In contrast to Africa, Europe's population is now in decline, as birth rates are consistently below death rates in many countries, especially in the south and east, resulting in natural population decline. Similarly, the population of the Americas and Asia are expected to go into decline in the second half of this century, and only Oceania's population will still be growing alongside Africa. By 2100, the world's population will have over three billion more than today, with the vast majority of this concentrated in Africa. Demographers predict that climate change is exacerbating many of the challenges that currently hinder progress in Africa, such as political and food instability; if Africa's transition is prolonged, then it may result in further population growth that would place a strain on the region's resources, however, curbing this growth earlier would alleviate some of the pressure created by climate change.
Open Database License (ODbL) v1.0https://www.opendatacommons.org/licenses/odbl/1.0/
License information was derived automatically
The European Copernicus Coastal Flood Awareness System (ECFAS) project aimed at contributing to the evolution of the Copernicus Emergency Management Service (https://emergency.copernicus.eu/) by demonstrating the technical and operational feasibility of a European Coastal Flood Awareness System. Specifically, ECFAS provides a much-needed solution to bolster coastal resilience to climate risk and reduce population and infrastructure exposure by monitoring and supporting disaster preparedness, two factors that are fundamental to damage prevention and recovery if a storm hits.
The ECFAS Proof-of-Concept development ran from January 2021 to December 2022. The ECFAS project was a collaboration between Scuola Universitaria Superiore IUSS di Pavia (Italy, ECFAS Coordinator), Mercator Ocean International (France), Planetek Hellas (Greece), Collecte Localisation Satellites (France), Consorzio Futuro in Ricerca (Italy), Universitat Politecnica de Valencia (Spain), University of the Aegean (Greece), and EurOcean (Portugal), and was funded by the European Commission H2020 Framework Programme within the call LC-SPACE-18-EO-2020 - Copernicus evolution: research activities in support of the evolution of the Copernicus services.
Description of the containing files inside the Dataset.
The ECFAS Coastal Dataset represents a single access point to publicly available Pan-European datasets that provide key information for studying coastal areas. The publicly available datasets listed below have been clipped to the coastal area extent, quality-checked and assessed for completeness and usability in terms of coverage, accuracy, specifications and access. The dataset was divided at European country level, except for the Adriatic area which was extracted as a region and not at the country level due to the small size of the countries. The buffer zone of each data was 10km inland in order to be correlated with the new Copernicus product Coastal Zone LU/LC.
Specifically, the dataset includes the new Coastal LU/LC product which was implemented by the EEA and became available at the end of 2020. Additional information collected in relation to the location and characteristics of transport (road and railway) and utility networks (power plants), population density and time variability. Furthermore, some of the publicly available datasets that were used in CEMS related to the above mentioned assets were gathered such as OpenStreetMap (building footprints, road and railway network infrastructures), GeoNames (populated places but also names of administrative units, rivers and lakes, forests, hills and mountains, parks and recreational areas, etc.), the Global Human Settlement Layer (GHS) and Global Human Settlement Population Grid (GHS-POP) generated by JRC. Also, the dataset contains 2 layers with statistics information regarding the population of Europe per sex and age divided in administrative units at NUTS level 3. The first layer includes information for the whole of Europe and the second layer has only the information regarding the population at the Coastal area. Finally, the dataset includes the global database of Floods protection standards. Below there are tables which present the dataset.
* Adriatic folder contains the countries: Slovenia, Croatia, Montenegro, Albania, Bosnia and Herzegovina
* Malta was added to the dataset
Copernicus Land Monitoring Service:
Coastal LU/LC
Scale 1:10.000; A Copernicus hotspot product to monitor landscape dynamics in coastal zones
EU-Hydro - Coastline
Scale 1:30.000; EU-Hydro is a dataset for all European countries providing the coastline
Natura 2000
Scale 1: 100000; A Copernicus hotspot product to monitor important areas for nature conservation
European Settlement Map
Resolution 10m; A spatial raster dataset that is mapping human settlements in Europe
Imperviousness Density
Resolution 10m; The percentage of sealed area
Impervious Built-up
Resolution 10m; The part of the sealed surfaces where buildings can be found
Grassland 2018
Resolution 10m; A binary grassland/non-grassland product
Tree Cover Density 2018
Resolution 10m; Level of tree cover density in a range from 0-100%
Joint Research Center:
Global Human Settlement Population Grid
GHS-POP)
Resolution 250m; Residential population estimates for target year 2015
GHS settlement model layer
(GHS-SMOD)
Resolution 1km: The GHS Settlement Model grid delineates and classify settlement typologies via a logic of population size, population and built-up area densities
GHS-BUILT
Resolution 10m; Built-up grid derived from Sentinel-2 global image composite for reference year 2018
ENACT 2011 Population Grid
(ENACT-POP R2020A)
Resolution 1km; The ENACT is a population density for the European Union that take into account major daily and monthly population variations
JRC Open Power Plants Database (JRC-PPDB-OPEN)
Europe's open power plant database
GHS functional urban areas
(GHS-FUA R2019A)
Resolution 1km; City and its commuting zone (area of influence of the city in terms of labour market flows)
GHS Urban Centre Database
(GHS-UCDB R2019A)
Resolution 1km; Urban Centres defined by specific cut-off values on resident population and built-up surface
Additional Data:
Open Street Map (OSM)
BF, Transportation Network, Utilities Network, Places of Interest
CEMS
Data from Rapid Mapping activations in Europe
GeoNames
Populated places, Adm. units, Hydrography, Forests, Hills/Mountains, Parks, etc.
Global Administrative Areas
Administrative areas of all countries, at all levels of sub-division
NUTS3 Population Age/Sex Group
Eurostat population by age and sex statistics interescted with the NUTS3 Units
FLOPROS
A global database of FLOod PROtection Standards, which comprises information in the form of the flood return period associated with protection measures, at different spatial scales
Disclaimer:
ECFAS partners provide the data "as is" and "as available" without warranty of any kind. The ECFAS partners shall not be held liable resulting from the use of the information and data provided.
This project has received funding from the Horizon 2020 research and innovation programme under grant agreement No. 101004211
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
With a growing emphasis on the societal benefits gained through recreation outdoors, a method is needed to identify which spaces are most valuable for providing those benefits. Social media platforms offer a wealth of useful information on where people prefer to enjoy the outdoors. We combined geotagged images from Flickr with several environmental metrics in a Maxent model to calculate the probability of a photograph being taken (the potential supply of recreational amenity). We then built a set of population density kernels to express the potential demand of recreational amenity. Linear regression was used to compare supply and demand layers to visitation records from 540 recreation sites across Europe. The result was a map estimating the number of visitors/km2/year. Our analysis showed that natural areas near population centres deliver more recreational benefit than attractive sites in remote locations. The former should therefore be prioritised by planners and policymakers seeking to protect or improve recreational amenity.
The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.
Research data and scientific software related to a study exploring the statistical relations between the concentration of nine heavy metals (As, Cd, Cr, Cu, Hg, Ni, Pb, V, Zn) and N in moss specimens collected in 2010 throughout Europe and a set potential explanatory variables (such as the atmospheric deposition calculated by use of two chemical transport models, distance from emission sources, density of different land uses, population density, elevation, precipitation, clay content of soils). Statistical analysis and modelling relies on Random Forest (RF). RF-models in conjunction with a Geographical Information System (GIS) were then used for mapping spatial patterns of element concentrations in moss across Europe.
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
Carnivores have life histories that can render them susceptible to roads, such as low population growth rates and great mobility. However, little is known about the effect of roads on population viability. In this study we determined which carnivore species are more affected by roads at the global level, and the spatial match between the number of species affected and road density. We used a reaction-diffusion model describing population dynamics to predict the impact of a road network on a population including the following parameters: dispersal distance, growth rate in favorable natural habitat patches, and growth rate in unfavorable habitats (roads). We applied this approach to 230 carnivore species at a global level. To rank the species most affected by roads we used maximum road density, and the minimum size of the patches between roads, above or below which populations cannot persist. We addressed the following tasks: 1) for each species we computed the maximum road density and the minimum patch size between roads that allow species to occur, using species-specific life histories and road mortality data; 2) we obtained the road density, and the number and size of the patches between roads that are observed within each species range, by intersecting each species IUCN range map with roads (density) map from openstreetmap; 3) we computed for each species the ratio of maximum to observed road density and the number and area of patches that are bigger than the minimum patch size; 4) we selected the species within the 5% percentile for these quantities as the most affected species. We found that family Ursidae has the highest percentage (43%) of species within the 5% most affected species, followed by family Felidae and family Canidae. We also found that 54% of the most affected species are not threatened by roads according to the IUCN, including 10 species that currently have an IUCN “Least Concern” status. The highest numbers of species affected by roads are found in Europe, North and Central America, South of Asia and China, and central-east Africa. However, while in Europe this high number of species is matched by high road density, this is not necessarily the case in the other regions, indicating that species can be affected even at low road densities. Our approach can be extended to any species for which the necessary life history data can be obtained, and can assist in developing conservation and mitigation measures. Furthermore, it can be applied at different spatial or temporal scales, such as projecting the impact of future road network development.
This data set consists of 83 digital maps that were produced by the Food and Agriculture Organization of the United Nations (FAO) for the World Bank as part of a Global Farming Systems Study. The maps are distributed through the FAO-UN GeoNetwork Portal to Spatial Data and Information.
As part of the World Bank's review of its rural development strategy, the Bank sought the assistance of FAO in evaluating how farming systems might change and adapt over the next thirty years. Amongst other objectives, the World Bank asked FAO to provide guidance on priorities for investment in food security, poverty reduction, and economic growth, and in particular to identify promising approaches and technologies that will contribute to these goals. The results of the study are summarized in a set of seven documents, comprising six regional reports and a global overview. The global overview, which synthesizes the results of the six regional analyses as well as discussing global trends, cross-cutting issues and possible implementation modalities, presents an overview of the complete study. The global document is supplemented by two case study reports of development issues of importance to farming systems globally.
The six regions studied include:
East Asia Pacific East Europe and Central Asia Latin America and Caribbean Middle East and North Africa South Asia Sub-Saharan Africa
Map coverages for each region include the following:
Average precipitation Average temperature Elevation Irrigation intensity Land cover Length of growing period Livestock stocking density Major environmental constraints Major farming systems NOAA Satellite imagery (shaded relief imagery and ocean floor bathymetry) Permanent crop and arable land Rural population Slope Total population
The map coverages were prepared by FAO based on the following data sources:
Doll, P. and Siebert, S. 1999. A Digital Global Map of Irrigated Areas, Report No A9901, Centre for Environmental Systems Research, University of Kassel, Kassel, Germany.
Environmental Systems Research Institute (ESRI) Data and Maps 1999, Volume 1. World Worldsat Color Shaded Relief Image. Based on 1996 NOAA weather satellite images, with enhanced shaded relief imagery and ocean floor relief data (bathymetry) to provide a land and undersea topographic view. ESRI, Redlands, California, USA.
Food and Agriculture Organization of the United Nations (FAO), Land and Water Development Division (AGL) with the collaboration of the International Institute for Applied Systems Analysis (IIASA). 2000. Global Agro-Ecological Zones Study. FAO, Rome, Italy.
Gomes, R. 1999. Major Environmental Constraints for Agricultural Production Project. Based on FAOCLIM database, ARTEMIS NDVI imagery, and soil and terrain data provided by Soil Resources Management and Conservation Service. FAO-GIS. Food and Agriculture Organization of the United Nations (FAO), Environment and Natural Resources Service, Rome, Italy.
Leemans, R. and Cramer, W. 1991. The IIASA Database for Mean Monthly Values of Temperature, Precipitation and Cloudiness on a Global Terrestrial Grid. Research Report RR-91-18. November 1991. International Institute of Applied Systems Analyses, Laxenburg, pp. 61.
Oak Ridge National Laboratory, LandScan Global Population 1998 Database. Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee, USA.
Slingenbergh, J. Livestock Distribution, Production and Diseases: Towards a Global Livestock Atlas. Food and Agriculture Organization of the United Nations (FAO), AGAH, Rome, Italy. (aka Global Livestock Production and Health Atlas (GLiPHA))
U.S. Geological Survey, EROS Data Center. 1996. GTOPO30 Digital Data Set. EDC, Sioux Falls, South Dakota, USA.
In 1938, the year before the outbreak of the Second world War, the countries with the largest populations were China, the Soviet Union, and the United States, although the United Kingdom had the largest overall population when it's colonies, dominions, and metropole are combined. Alongside France, these were the five Allied "Great Powers" that emerged victorious from the Second World War. The Axis Powers in the war were led by Germany and Japan in their respective theaters, and their smaller populations were decisive factors in their defeat. Manpower as a resource In the context of the Second World War, a country or territory's population played a vital role in its ability to wage war on such a large scale. Not only were armies able to call upon their people to fight in the war and replenish their forces, but war economies were also dependent on their workforce being able to meet the agricultural, manufacturing, and logistical demands of the war. For the Axis powers, invasions and the annexation of territories were often motivated by the fact that it granted access to valuable resources that would further their own war effort - millions of people living in occupied territories were then forced to gather these resources, or forcibly transported to work in manufacturing in other Axis territories. Similarly, colonial powers were able to use resources taken from their territories to supply their armies, however this often had devastating consequences for the regions from which food was redirected, contributing to numerous food shortages and famines across Africa, Asia, and Europe. Men from annexed or colonized territories were also used in the armies of the war's Great Powers, and in the Axis armies especially. This meant that soldiers often fought alongside their former-enemies. Aftermath The Second World War was the costliest in human history, resulting in the deaths of between 70 and 85 million people. Due to the turmoil and destruction of the war, accurate records for death tolls generally do not exist, therefore pre-war populations (in combination with other statistics), are used to estimate death tolls. The Soviet Union is believed to have lost the largest amount of people during the war, suffering approximately 24 million fatalities by 1945, followed by China at around 20 million people. The Soviet death toll is equal to approximately 14 percent of its pre-war population - the countries with the highest relative death tolls in the war are found in Eastern Europe, due to the intensity of the conflict and the systematic genocide committed in the region during the war.
In 2025, the Ile-de-France region, sometimes called the Paris region, was the most populous in France. It is located in the northern part of France, divided into eight departments and crossed by the Seine River. The region contains Paris, its large suburbs, and several rural areas. The total population in metropolitan France was estimated at around ** million inhabitants. In the DOM (Overseas Department), France had more than *** million citizens spread over the islands of Guadeloupe, Martinique, Reunion, Mayotte, and the South American territory of French Guiana. Ile-de-France: the most populous region in France According to the source, more than ** million French citizens lived in the Ile-de-France region. Ile-de-France was followed by Auvergne-Rhône-Alpes and Occitanie region which is in the Southern part of the country. Ile-de-France is not only the most populated region in France, it is also the French region with the highest population density. In 2020, there were ******* residents per square kilometer in Ile-de-France compared to ***** for Auvergne-Rhône-Alpes, the second most populated region in France. More than two million people were living in the city of Paris in 2025. Thus, the metropolitan area outside the city of Paris, called the suburbs or banlieue in French, had more than ten million inhabitants. Ile-de-France concentrates the majority of the country’s economic and political activities. An urban population In 2024, the total population of France amounted to over 68 million. The population in the country has increased since the mid-2000s. As well as the other European countries, France is experiencing urbanization. In 2023, more than ** percent of the French population lived in cities. This phenomenon shapes France’s geography.
Not seeing a result you expected?
Learn how you can add new datasets to our index.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This map shows the population density in North-Eastern Europe in 2011. This map is extracted from the cartographic atlas made on the occasion of the merger of the Alsace, Champagne-Ardenne and Lorraine Regions in January 2016. It is available on the website of the Grand Est Region. This map was designed for A3 format, landscape.