Facebook
TwitterEach year, the Forecasting and Trends Office (FTO) publishes population estimates and future year projections. The population estimates can be used for a variety of planning studies including statewide and regional transportation plan updates, subarea and corridor studies, and funding allocations for various planning agencies.The 2021 population estimates are based on the population estimates developed by the Bureau of Economic and Business Research (BEBR) at the University of Florida. BEBR uses the decennial census count for April 1, 2020, as the starting point for state-level projections. More information is available from BEBR here.This dataset contains county boundaries in the State of Florida with 2021 population density estimates. All legal boundaries and names in this dataset are from the US Census Bureau’s TIGER/Line Files (2021). Please see the Data Dictionary for more information on data fields. Data Sources:FDOT FTO 2020 and 2021 Population Estimates by CountyUS Census Bureau 2020 Decennial CensusUS Census Bureau’s TIGER/Line Files (2021)Bureau of Economic and Business Research (BEBR) – Florida Estimates of Population 2021 Data Coverage: StatewideData Time Period: 2021 Date of Publication: October 2022 Point of Contact:Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719
Facebook
TwitterThe demographic data displayed in this theme of Florida’s Roadmap to Living Healthy are quantitative measures that exhibit the socioeconomic state of Florida’s communities. The data sets comprising this themed map include topics such as population, race, income level, age, education, housing, and lifestyle data for all of Florida’s 67 counties, and other basic demographic characteristics. The Florida Department of Agriculture and Consumer Services has utilized the most current demographic statistical data from trusted sources such as the U.S. Census Bureau, U.S. Department of Housing and Urban Development, U.S. Department of Labor Bureau of Labor Statistics, Florida Department of Children and Families, and Esri to craft this custom visualization. Demographics provide profound perspective to your data analytics and will help you recognize the distinctive characteristics of a population based on its location. This demographic-themed mapping tool will simplify your ability to identify the specific socioeconomic needs of every community in Florida.
Facebook
Twitterhttps://www.florida-demographics.com/terms_and_conditionshttps://www.florida-demographics.com/terms_and_conditions
A dataset listing Florida counties by population for 2024.
Facebook
TwitterIn 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
Facebook
TwitterThe 2015 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Congressional Districts are the 435 areas from which people are elected to the U.S. House of Representatives. After the apportionment of congressional seats among the states based on census population counts, each state is responsible for establishing congressional districts for the purpose of electing representatives. Each congressional district is to be as equal in population to all other congressional districts in a state as practicable. The 114th Congress is seated from January 2015 to 2017. The cartographic boundary files for the District of Columbia, Puerto Rico, and the Island Areas (American Samoa, Guam, the Commonwealth of the Northern Mariana Islands, and the U.S. Virgin Islands) each contain a single record for the non-voting delegate district in these areas. The boundaries of all other congressional districts are provided to the Census Bureau through the Redistricting Data Program (RDP). The records in this file allow users to map the parts of Urban Areas that overlap a particular county. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the "urban footprint." There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities. The boundaries for counties and equivalent entities are as of January 1, 2010.
Facebook
TwitterThe Florida Fish and Wildlife Conservation Commission (FWC) collected annual trawl data at 27 open-water sites from 1987 to 1991 (Bull et al. 1995). Nearly 37,000 fish were recorded in 438 10-minute open-water trawls (Bull et al. 1995). Seven species accounted for 98% of the total number and total fish biomass. Clustering of sites based on mean catch of the primary species expressed as number and weight produced four distinct groups. The groups were labeled as the northeast shore, northwest shore, south-southwest shore and open water area. Areal fish distribution patterns also were compared using analysis of variance (ANOVA) and Tukey’s HSD post hoc test. Within the four groups there were significant differences in the distribution of certain fish species.
In addition to the open-water trawl sites, the FWC has utilized electrofishing techniques to collect annual largemouth bass (Micropterous salmodies) (LMB) data from 22 near-shore and interior marsh locations since 1999 (Havens et al. 2004). Although the trawl and electrofishing data provide some baseline information, still there is limited data regarding temporal changes in the community structure, density and condition of the primary sport fish LMB, black crappie (Pomoxis nigromaculatus), bluegill (Lepomis macrochirus) and redear (Lepomis microlophus) sunfish) and other fish species in Lake Okeechobee.
During this study, fish species will be collected from 49 historic sampling locations.
Fish assemblages in the 27 open water regions of the lake will be sampled with an Otter Trawl net. The 22 near-shore and interior marsh sites will be sampled utilizing electrofishing gear. Ancillary data, including water temperature, dissolved oxygen, pH, turbidity, conductivity, and sediment/aquatic plant type will be recorded at the 49 sampling locations.
The two historic sets of non-MAP data will be used to help establish baseline conditions for the near-shore, interior marsh and open-water fishery. It is appropriate to include the non-MAP data in our analysis as current sampling will occur at the historical locations and sampling methods will be similar. We anticipate significant spatial differences in fish abundance and biomass will exist at the near-shore, interior marsh and open water sites. Therefore, similar statistical tests including cluster analysis and analysis of variance should be used to evaluate temporal changes in the near-shore and open water fishery. Detailed statistical analysis should be conducted at a minimum of every three years to evaluate long-term trends and establish relationships between fish distribution, condition, and community structure and environmental conditions including habitat and water depth.
The objectives of this project are to evaluate temporal changes in Lake Okeechobee’s fishery by determining annual changes in the areal distribution, condition, density and community structure (year classes) of all major fish species found in the near-shore, interior marsh and open-water regions of the lake. Ancillary data including water temperature, dissolved oxygen, pH, turbidity, conductivity, and sediment type also will be recorded.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The 2016 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files.
The records in this file allow users to map the parts of Urban Areas that overlap a particular county.
After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the ""urban footprint."" There are two types of urban areas: urbanized areas (UAs) that contain 50,000 or more people and urban clusters (UCs) that contain at least 2,500 people, but fewer than 50,000 people (except in the U.S. Virgin Islands and Guam which each contain urban clusters with populations greater than 50,000). Each urban area is identified by a 5-character numeric census code that may contain leading zeroes.
The primary legal divisions of most states are termed counties. In Louisiana, these divisions are known as parishes. In Alaska, which has no counties, the equivalent entities are the organized boroughs, city and boroughs, municipalities, and for the unorganized area, census areas. The latter are delineated cooperatively for statistical purposes by the State of Alaska and the Census Bureau. In four states (Maryland, Missouri, Nevada, and Virginia), there are one or more incorporated places that are independent of any county organization and thus constitute primary divisions of their states. These incorporated places are known as independent cities and are treated as equivalent entities for purposes of data presentation. The District of Columbia and Guam have no primary divisions, and each area is considered an equivalent entity for purposes of data presentation. The Census Bureau treats the following entities as equivalents of counties for purposes of data presentation: Municipios in Puerto Rico, Districts and Islands in American Samoa, Municipalities in the Commonwealth of the Northern Mariana Islands, and Islands in the U.S. Virgin Islands. The entire area of the United States, Puerto Rico, and the Island Areas is covered by counties or equivalent entities.
The generalized boundaries for counties and equivalent entities are as of January 1, 2010.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Historically occurring throughout the southeastern United States, the Florida panther is now restricted to less than 5% of its historic range in one breeding population located in southern Florida. Using radio-telemetry data from 87 prime-aged (≥3 years old) adult panthers (35 males and 52 females) during the period 2004 through 2013 (28,720 radio-locations), we analyzed the characteristics of the occupied area and used those attributes in a random forest model to develop a predictive distribution map for resident breeding panthers in southern Florida. Using 10-fold cross validation, the model was 87.5 % accurate in predicting presence or absence of panthers in the 16,678 km2 study area. Analysis of variable importance indicated that the amount of forests and forest edge, hydrology, and human population density were the most important factors determining presence or absence of panthers. Sensitivity analysis showed that the presence of human populations, roads, and agriculture (other than pasture) had strong negative effects on the probability of panther presence. Forest cover and forest edge had strong positive effects. The median model-predicted probability of presence for panther home ranges was 0.81 (0.82 for females and 0.74 for males). The model identified 5579 km2 of suitable breeding habitat remaining in southern Florida; 1399 km2 (25%) of this habitat is in non-protected private ownership. Because there is less panther habitat remaining than previously thought, we recommend that all remaining breeding habitat in south Florida should be maintained, and the current panther range should be expanded into south-central Florida. This model should be useful for evaluating the impacts of future development projects, in prioritizing areas for panther conservation, and in evaluating the potential impacts of sea-level rise and changes in hydrology.
Facebook
TwitterAim. Mapping the geographic distribution of non-native aquatic species is a critically important precursor to understanding the anthropogenic and environmental factors that drive freshwater biological invasions. Such efforts are often limited to local scales and/or to single species, due to the challenges of data acquisition at larger scales. Here we map the distribution of exotic freshwater species richness across the continental United States and investigate the role of human activity in driving macroscale patterns of aquatic invasion. Location. The continental United States. Methods. We assembled maps of non-native aquatic species richness by compiling occurrence data on exotic animal and plant species from publicly accessible databases. Using a dasymetric model of human population density and a spatially explicit model of recreational freshwater fishing demand we analyzed the effect of these metrics of human influence on the degree of invasion at the watershed scale, while controlling for spatial and sampling bias. We also assessed the effects that a temporal mismatch between occurrence data (collected since 1815) and cross-sectional predictors (developed using 2010 data) may have on model fit. Results. Non-native aquatic species richness exhibits a highly patchy distribution, with hotspots in the Northeast, Great Lakes, Florida, and human population centers on the Pacific coast. These richness patterns are correlated with population density, but are much more strongly predicted by patterns of recreational fishing demand. These relationships are strengthened by temporal matching of datasets and are robust to corrections for sampling effort. Main Conclusions. Distributions of aquatic invasive species across the continental US are better predicted by freshwater recreational fishing than by human population density. This suggests that observed patterns are driven by a mechanistic link between recreational activity and aquatic invasive species richness, and are not merely the outcome of sampling bias associated with human population density. This dataset is associated with the following publication: Davis, A., and J. Darling. Recreational freshwater fishing drives non-native aquatic species richness patterns at a continental scale (journal). Diversity and Distributions. Blackwell Publishing Limited, Oxford, UK, 23(6): 692-702, (2017).
Not seeing a result you expected?
Learn how you can add new datasets to our index.
Facebook
TwitterEach year, the Forecasting and Trends Office (FTO) publishes population estimates and future year projections. The population estimates can be used for a variety of planning studies including statewide and regional transportation plan updates, subarea and corridor studies, and funding allocations for various planning agencies.The 2021 population estimates are based on the population estimates developed by the Bureau of Economic and Business Research (BEBR) at the University of Florida. BEBR uses the decennial census count for April 1, 2020, as the starting point for state-level projections. More information is available from BEBR here.This dataset contains county boundaries in the State of Florida with 2021 population density estimates. All legal boundaries and names in this dataset are from the US Census Bureau’s TIGER/Line Files (2021). Please see the Data Dictionary for more information on data fields. Data Sources:FDOT FTO 2020 and 2021 Population Estimates by CountyUS Census Bureau 2020 Decennial CensusUS Census Bureau’s TIGER/Line Files (2021)Bureau of Economic and Business Research (BEBR) – Florida Estimates of Population 2021 Data Coverage: StatewideData Time Period: 2021 Date of Publication: October 2022 Point of Contact:Dana Reiding, ManagerForecasting and Trends OfficeFlorida Department of TransportationDana.Reiding@dot.state.fl.us605 Suwannee Street, Tallahassee, Florida 32399850-414-4719