Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.
DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.
REGION: Africa
SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)
PROJECTION: Geographic, WGS84
UNITS: Estimated persons per grid square
MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.
FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)
FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
India: Population density, people per square km: The latest value from 2021 is 473 people per square km, an increase from 470 people per square km in 2020. In comparison, the world average is 456 people per square km, based on data from 196 countries. Historically, the average for India from 1961 to 2021 is 305 people per square km. The minimum value, 153 people per square km, was reached in 1961 while the maximum of 473 people per square km was recorded in 2021.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>India population density for 2021 was <strong>475.65</strong>, a <strong>0.83% increase</strong> from 2020.</li>
<li>India population density for 2020 was <strong>471.76</strong>, a <strong>0.98% increase</strong> from 2019.</li>
<li>India population density for 2019 was <strong>467.19</strong>, a <strong>1.05% increase</strong> from 2018.</li>
</ul>Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.
Census data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density (people per sq. km of land area) in India was reported at 479 sq. Km in 2022, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Population density (people per sq. km) - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Analysis of ‘Indian Census Data with Geospatial indexing’ provided by Analyst-2 (analyst-2.ai), based on source dataset retrieved from https://www.kaggle.com/sirpunch/indian-census-data-with-geospatial-indexing on 13 February 2022.
--- Dataset description provided by original source is as follows ---
Dataset Description:
Example Analysis:
The complete code for calculating the centroids and web scraping for the data is shared on GitHub.
The purpose of this project was to map population density center for each state.
You can also read about the complete project here: https://medium.com/@sumit.arora/plotting-weighted-mean-population-centroids-on-a-country-map-22da408c1397
Output Screenshots:
Indian districts mapped as polygons
https://i.imgur.com/UK1DCGW.png" alt="Indian districts mapped as polygons">
Mapping centroids for each district
https://i.imgur.com/KCAh7Jj.png" alt="Mapping centroids for each district">
Mean centers of population by state, 2001 vs. 2011
https://i.imgur.com/TLHPHjB.png" alt="Mean centers of population by state, 2001 vs. 2011">
National center of population
https://i.imgur.com/yYxE4Hc.png" alt="National center of population">
--- Original source retains full ownership of the source dataset ---
Monaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Additional file 1: Basic Information of India. Table S1. List of Indian States and Union Territories. Figure S1. Map of Indian States and Union Territories. Figure S2. Map of Indian population density. Figure S3. Averaged annual rainfall map of India (2013-2016). The red arrows are monsoon move directions during summer.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Rural population (% of total population) in India was reported at 63.13 % in 2024, according to the World Bank collection of development indicators, compiled from officially recognized sources. India - Rural population - actual values, historical data, forecasts and projections were sourced from the World Bank on July of 2025.
This map is part of an interactive Story Map series about global change in the US.With the global human population expected to exceed 8 billion people by 2030, our species is already irreversibly changing the future of our planet. The US itself is expected to grow by 16.5% to over 360 million people, making it the third largest country in the world, behind India and China. This population increase isn’t distributed evenly - 81% of people will live in cities, urban, and suburban areas, which will continue to shape how resources are produced, transported, and consumed. The percent of foreign-born and second-generation immigrants in the US is also expected to rise in the future, contributing to an increasingly diverse population. Across the globe, immigration will likely account for significant population changes in the near future, as climate change fuels drought, crop failures, and political instability, creating climate refugees particularly among countries who do not have the infrastructure to mitigate or adapt to global change. Numbers aren’t the only thing that matter: people of different socioeconomic backgrounds use resources differently, both within and between countries.If the rest of the world used energy as intensely as the United States does, the world population would need more than 4 entire Earths to provide us with the resources to feed this rate consumption. This unfortunately means that even regions of the US that contribute less towards the problems of global change will still feel their impacts. To ensure a high quality of life for all citizens, we must address not only population growth, but also excess consumption of and reliance on resources across different regions. Geographic, population, and economic differences among regions can provide opportunities for success in the face of global change. Renewable energy sources have created entrepreneurial economic ventures, and communities have found environmental solutions through forming sustainable local food systems. Environmental justice movements are working now to ensure that all citizens have access to nature, recreational areas, and a healthy future for all.
In the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
In 1800, the population of the region of present-day India was approximately 169 million. The population would grow gradually throughout the 19th century, rising to over 240 million by 1900. Population growth would begin to increase in the 1920s, as a result of falling mortality rates, due to improvements in health, sanitation and infrastructure. However, the population of India would see it’s largest rate of growth in the years following the country’s independence from the British Empire in 1948, where the population would rise from 358 million to over one billion by the turn of the century, making India the second country to pass the billion person milestone. While the rate of growth has slowed somewhat as India begins a demographics shift, the country’s population has continued to grow dramatically throughout the 21st century, and in 2020, India is estimated to have a population of just under 1.4 billion, well over a billion more people than one century previously. Today, approximately 18% of the Earth’s population lives in India, and it is estimated that India will overtake China to become the most populous country in the world within the next five years.
https://spdx.org/licenses/CC0-1.0.htmlhttps://spdx.org/licenses/CC0-1.0.html
This data package includes spatial environmental and social layers for Shivamogga District, Karnataka, India that were considered as potential predictors of patterns in human cases of Kyasanur Forest Disease (KFD). KFD is a fatal tick-borne viral haemorrhagic disease of humans, that is spreading across degraded forest ecosystems in India. The layers encompass a range of fifteen metrics of topography, land use and land use change, livestock and human population density and public health resources for Shivamogga District across 1km and 2km study grids. These spatial proxies for risk factors for KFD that had been jointly identified between cross-sectoral stakeholders and researchers through a co-production approach. Shivamogga District is the District longest affected by KFD in south India. The layers are distributed as 1km and 2km GeoTiffs in Albers equal area conic projection. For KFD, spatial models incorporating these layers identified characteristics of forest-plantation landscapes at higher risk for human KFD. These layers will be useful for modelling spatial patterns in other environmentally sensitive infectious diseases and biodiversity within the district.
Methods Processing of environmental predictors of Kyasanur Forest Disease distribution
This file details the sources and processing of environmental predictors offered to the statistical analysis in the paper. All processing was performed in the raster package [1] of the R program [2] unless otherwise specified, with function names as specified below.
Topography predictors
Elevation data was extracted in tiles from Shuttle Radar Topography Mission data version 4 [3] an original resolution of 0.000833 degrees Latitude and Longitude resolution (approximately 90m by 90m grid cells). Tiles were mosaicked across the study region using the merge function. A slope value for each pixel was calculated (in degrees) using the terrain function of the raster package, and a focal window of 3 by 3 cells. Both the resulting elevation and slope rasters were cropped to the administrative boundaries of the Shivamogga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”bilinear”). Mean elevation and slope values were then calculated across the study 1km and 2km grid cells, using the aggregate function to average values across the appropriate number of ~90m grid cells and then the resample function to align the resulting grid to the study grids.
Landscape predictors
Metrics of the current availability (and fragmentation) of forest, agricultural and built-up land use types as well as that of water-bodies were extracted from the MonkeyFeverRisk Land Use Land Cover map of Shimoga. The latter was produced from classification of earth observation data from 2016 to 2018 using the methods described in the Supplementary information S3 file of the paper linked to this dataset. The LULC map had an original grid square resolution of 0.000269 degrees Latitude and Longitude resolution (or 30m x 28m grid cells) and nine different LULC classes. It was cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to the equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb” for categorical data). The agriculture and fallow land classes were combined before landscape analysis (due to the difficulty of separating them accurately in the classification process).
An algorithm was developed in R to identify which of the pixels in the LULC map coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell landscape that was made up of a particular land class, as well patch density and edge density metrics for the forest classes as indicators of fragmentation and forest-agriculture interface habitat respectively (Fig. S2B). The proportional area values (pi) of the n different forest classes (wet evergreen forest, moist deciduous forest, dry deciduous forest and plantation) were used to calculate an index of forest type diversity per grid cell as follows, after Shannon & Weaver (1949) [5]:
H'= -1npi(lognpi)
Metrics of longer term forest changes in Shimoga since 2000 were derived from a global product by Hansen et al. (2013) [6] available at a spatial resolution of 1 arc-second per pixel, (~ 30 meters per pixel at equator). Forest loss during the period 2000–2014, is defined as a stand-replacement disturbance, or a change from a forest to non-forest state, encoded as either 1 (loss) or 0 (no loss). Forest gain during the period 2000–2012, is defined as a non-forest to forest change entirely within the study period, encoded as either 1 (gain) or 0 (no gain).These layers were again cropped to the administrative boundaries of the Shimoga District (raster package: crop function) and re-projected to an equal area projection (Albers equal area conic projection) using the projectRaster function (method=”ngb”) in R. An algorithm was developed in R to identify which of the pixels in the loss and gain rasters coincided with each 1km and 2km grid cell of the study area. The ClassStat function of the SDM Tools package [4] was used to calculate the proportional area of each 1km or 2km grid cell that was made up of loss pixels or gain pixels. Forest gain and loss are very highly correlated (r=0.986) and occur in similar places in the landscape (Fig. S2C). Forest loss was a much more common transition than a forest gain affecting 1.2% of land pixels rather than 0.16% of land pixels for forest gain.
To assess how forest loss or gain from a global product like Hansen et al. (2013) should be interpreted locally in south India, we analysed how the loss and gain pixels from Hansen et al. 2013 coincided with classes in the MonkeyFeverRisk LULC map (by extracting the value of the LULC map for the centroids of loss or gain pixels).
The distribution of loss and gain pixels across forest classes from the MonkeyFeverRisk LULC map is shown in Table 1. Locations categorised as a loss by Hansen et al. were most commonly classified currently as plantation, followed by moist evergreen forest, followed by
moist or dry deciduous forest by the MonkeyFeverRisk LULC map. The pattern was similar for the gain pixels. Since not all forest loss pixels were non-forest in the current day and not all forest gain pixels were forest in the current day, the precise meaning of the Hansen et al. (2013) forest loss layer was unclear for south India, though we expect that it is at least indicative of areas where the forest has undergone a larger degree of change since 2000.
Table 1: Percentage of loss (n= 108398) and gain (n= 14646) land pixels from the global Hansen et al. (2013) product that fall into different forest classes according to the MonkeyFeverRisk LULC map
Land use class
Gain
Loss
moist evergreen
30.4
26.1
moist deciduous
6.5
16.2
dry deciduous
3.0
9.7
plantation
46.2
37.2
Non-forest classes
14.0
10.9
Host and public health predictors
Livestock host density data, namely buffalo and indigenous cattle densities in units of total head per village were obtained from Department of Animal Husbandry, Dairying and Fisheries, Government of India Census from 2011 at village level. These were linked to village boundaries from the Survey of India using the village census codes in R. The village areas were calculated from the spatial polygons dataframe of villages using the rgeos package in R, so that the total head per village metrics could be convert into an areal density of buffalo and indigenous cattle per km and then rasterized at 1km and 2km using the rasterize function of the raster package.
The human population size and public health metrics were obtained from the Government of India Population Census 2011. The human population size (census field TOT_P) was again linked to the spatial polygon village boundaries using the census village code (census field VCT_2011) and converted to an areal metric of population density per km and rasterized at 1km and 2km as above. The number of medics per head of population was derived by summing all doctors and para-medicals “in position” across all types of health centres, clinics and dispensaries per village and dividing by the total population of the village (TOT_P) and then linked to village boundaries and rasterized as above. The proximity to health centres was a categorical variable derived from the “Primary.Health.Centre..Numbers” field, where 1 = Primary Health Centre (PHC) within village boundary, 2 = PHC within 5km of village, 3=PHC within 5-10km of village, 4= PHC further than 10km from village. It was linked to village boundaries and rasterized as above.
The resulting raster layers for all predictors were saved in GeoTiff format.
References
Robert J. Hijmans (2017). raster: Geographic Data Analysis and Modeling. R package version 2.6-7. https://CRAN.R-project.org/package=raster
R Core Team (2018). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.URL https://www.R-project.org/
Jarvis, A., Reuter, I., Nelson, A., Guevara, E. Hole-filled SRTM for the globe Version 4. 2008.
VanDerWal, J., Falconi, L., Januchowski, S., Shoo, L., & Storlie, C. (2014). SDMTools: Species Distribution Modelling Tools: Tools for processing data associated with species distribution modelling exercises. R
The 2019 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. Census tracts are small, relatively permanent statistical subdivisions of a county or equivalent entity, and were defined by local participants as part of the 2010 Census Participant Statistical Areas Program. The Census Bureau delineated the census tracts in situations where no local participant existed or where all the potential participants declined to participate. The primary purpose of census tracts is to provide a stable set of geographic units for the presentation of census data and comparison back to previous decennial censuses. Census tracts generally have a population size between 1,200 and 8,000 people, with an optimum size of 4,000 people. When first delineated, census tracts were designed to be homogeneous with respect to population characteristics, economic status, and living conditions. The spatial size of census tracts varies widely depending on the density of settlement. Physical changes in street patterns caused by highway construction, new development, and so forth, may require boundary revisions. In addition, census tracts occasionally are split due to population growth, or combined as a result of substantial population decline. Census tract boundaries generally follow visible and identifiable features. They may follow legal boundaries such as minor civil division (MCD) or incorporated place boundaries in some states and situations to allow for census tract-to-governmental unit relationships where the governmental boundaries tend to remain unchanged between censuses. State and county boundaries always are census tract boundaries in the standard census geographic hierarchy. In a few rare instances, a census tract may consist of noncontiguous areas. These noncontiguous areas may occur where the census tracts are coextensive with all or parts of legal entities that are themselves noncontiguous. For the 2010 Census, the census tract code range of 9400 through 9499 was enforced for census tracts that include a majority American Indian population according to Census 2000 data and/or their area was primarily covered by federally recognized American Indian reservations and/or off-reservation trust lands; the code range 9800 through 9899 was enforced for those census tracts that contained little or no population and represented a relatively large special land use area such as a National Park, military installation, or a business/industrial park; and the code range 9900 through 9998 was enforced for those census tracts that contained only water area, no land area.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Chart and table of population level and growth rate for the Jaipur, India metro area from 1950 to 2025.
Nigeria has the largest population in Africa. As of 2025, the country counted over 237.5 million individuals, whereas Ethiopia, which ranked second, has around 135.5 million inhabitants. Egypt registered the largest population in North Africa, reaching nearly 118.4 million people. In terms of inhabitants per square kilometer, Nigeria only ranked seventh, while Mauritius had the highest population density on the whole African continent in 2023. The fastest-growing world region Africa is the second most populous continent in the world, after Asia. Nevertheless, Africa records the highest growth rate worldwide, with figures rising by over two percent every year. In some countries, such as Niger, the Democratic Republic of Congo, and Chad, the population increase peaks at over three percent. With so many births, Africa is also the youngest continent in the world. However, this coincides with a low life expectancy. African cities on the rise The last decades have seen high urbanization rates in Asia, mainly in China and India. However, African cities are currently growing at larger rates. Indeed, most of the fastest-growing cities in the world are located in Sub-Saharan Africa. Gwagwalada, in Nigeria, and Kabinda, in the Democratic Republic of the Congo, ranked first worldwide. By 2035, instead, Africa's fastest-growing cities are forecast to be Bujumbura, in Burundi, and Zinder, Nigeria.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Full journal article published hereDesignating Airsheds in India for Urban and Regional Air Quality Managementhttps://doi.org/10.3390/air2030015
[Summary presentation download]
Datasets used for proposing India's 15 regional airsheds for air quality management are the following
PM2.5 DatasetsRaw data source: https://sites.wustl.edu/acag/datasets/surface-pm2-5
Gridded 0.1 degree resolution source apportionment results from WUSTL's global model simulationsFile: india_data_pm25_wustl_source_cont_0p1deg.xlsxAggregated Source definitions used in this presentation
DUST = Anthropogenic dust = AFCID
WINDUST = Wind erosion (dust storms) = WDUST
WASTE = Waste burning = WST
RESI = All commercial and residential cooking, lighting, and heating = RCOC + RCOO + RCORbiofuel + RCORcoal + RCORother
TRANS = All transport (excluding aviation) = ROAD + NRTR + SHP
POWER = Energy generation = ENEcoal + ENEother
INDUS = All industries and product use = INDcoal + INDother + SLV
BIOB = Biomass burning, including forest fires and agricultural waste burning = GFEDoburn + GFEDagburn
AGR = Agricultural activities (excluding agricultural waste burning) = AGR
OTHER = All others = OTHER
Gridded 0.1 degree resolution, reanalysis data from WUSTL's global model simulationsFile: india_data_pm25_wustl_reanalysis_0p1deg.xlsxTime period: 1998 to 2022, annual averages
Gridded 0.1 degree achive for monthly averages from WUSTL's global model simulationsFile: Download-44MB
Population DatasetsRaw data source: https://landscan.ornl.gov
Gridded 0.1 degree resolution population density dataFile: india_data_population_2021_0p1deg.xlsx
GIS databases used in this study
ESRI shapefile of 0.1 x 0.1 degree mesh file for the Indian Subcontinent covering longitudes from 67E to 99E and latitudes from 7N to 39NFile: india_gis_grids-0.1x0.1deg.rar
ESRI shapefile of India administrative level 2 data - 28 states and 8 union territories (as of December 2023)File: india_gis_states28+8_2023.rar
ESRI shapefile of India administrative level 3 data - 755 districts (as of December 2023): district23 and states23 codes are re-designed for emissions and pollution mapping and data tracking purposesFile: India_gis_districts755_2023.rar (original source: https://projects.datameet.org/maps)
ESRI shapefile of India's Agro-Climatic zonesFile: india_gis_agroclimatic_zones.rar (original source: https://karnataka.data.gov.in/resource/boundaries-agro-climatic-regions
ESRI shapefile of India's meteorological sub-divisionsFile: india_gis_meteo_subdivisions.rar (original source: https://mausam.imd.gov.in)
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Values without references indicate that have been determined for this article (see S1 Fig).
The earliest point where scientists can make reasonable estimates for the population of global regions is around 10,000 years before the Common Era (or 12,000 years ago). Estimates suggest that Asia has consistently been the most populated continent, and the least populated continent has generally been Oceania (although it was more heavily populated than areas such as North America in very early years). Population growth was very slow, but an increase can be observed between most of the given time periods. There were, however, dips in population due to pandemics, the most notable of these being the impact of plague in Eurasia in the 14th century, and the impact of European contact with the indigenous populations of the Americas after 1492, where it took almost four centuries for the population of Latin America to return to its pre-1500 level. The world's population first reached one billion people in 1803, which also coincided with a spike in population growth, due to the onset of the demographic transition. This wave of growth first spread across the most industrially developed countries in the 19th century, and the correlation between demographic development and industrial or economic maturity continued until today, with Africa being the final major region to begin its transition in the late-1900s.
There were over one million registered Indians in Canada as of December 2020. The region with the largest Indian population was Ontario, with 222 thousand, followed by Manitoba, which counted 164 thousand Indians. The regions with the smallest Indian populations were Yukon, and Northwest Territories.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Population density per pixel at 100 metre resolution. WorldPop provides estimates of numbers of people residing in each 100x100m grid cell for every low and middle income country. Through ingegrating cencus, survey, satellite and GIS datasets in a flexible machine-learning framework, high resolution maps of population counts and densities for 2000-2020 are produced, along with accompanying metadata.
DATASET: Alpha version 2010 and 2015 estimates of numbers of people per grid square, with national totals adjusted to match UN population division estimates (http://esa.un.org/wpp/) and remaining unadjusted.
REGION: Africa
SPATIAL RESOLUTION: 0.000833333 decimal degrees (approx 100m at the equator)
PROJECTION: Geographic, WGS84
UNITS: Estimated persons per grid square
MAPPING APPROACH: Land cover based, as described in: Linard, C., Gilbert, M., Snow, R.W., Noor, A.M. and Tatem, A.J., 2012, Population distribution, settlement patterns and accessibility across Africa in 2010, PLoS ONE, 7(2): e31743.
FORMAT: Geotiff (zipped using 7-zip (open access tool): www.7-zip.org)
FILENAMES: Example - AGO10adjv4.tif = Angola (AGO) population count map for 2010 (10) adjusted to match UN national estimates (adj), version 4 (v4). Population maps are updated to new versions when improved census or other input data become available.