Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use inlandscape-scale analysis. Dataset SummaryThis layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in the Global Lithological Map and the Global Landcover Map. The layer was created by Esri in 2014. Analysis: Restricted single source analysis. Maximum size of analysis is 16,000 x 16,000 pixels. What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometerson a side or an area approximately the size of Europe.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many otherbeautiful and authoritative maps on hundreds of topics. Geonetis a good resource for learning more aboutlandscape layers and the Living Atlas of the World. To get started see theLiving Atlas Discussion Group. TheEsri Insider Blogprovides an introduction to the Ecophysiographic Mapping project.
Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use in landscape-scale analysis.Dataset SummaryThis layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in the Global Lithological Map and the Global Landcover Map. The layer was created by Esri in 2014.What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometers on a side or an area approximately the size of Europe. This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics.Geonet is a good resource for learning more about landscape layers and the Living Atlas of the World. To get started see the Living Atlas Discussion Group.The Esri Insider Blog provides an introduction to the Ecophysiographic Mapping project.
The SRTM Water Body Data files are a by-product of the data editing performed by the National Geospatial-Intelligence Agency (NGA) to produce the finished SRTM Digital Terrain Elevation Data Level 2 (DTED® 2). In accordance with the DTED® 2 specification, the terrain elevation data have been edited to portray water bodies that meet minimum capture criteria. Ocean, lake and river shorelines were identified and delineated. Lake elevations were set to a constant value. Ocean elevations were set to zero. Rivers were stepped down monotonically to maintain proper flow. After this processing was done, the shorelines from the one arc second (approx. 30-meter) DTED® 2 were saved as vectors in ESRI 3-D Shapefile format.
In most cases, two orthorectified image mosaics (one for ascending passes and one for descending passes) at a one arc second resolution were available for identifying water bodies and delineating shorelines in each 1 x1 cell. These were used as the primary source for water body editing. The guiding principle for this editing was that water must be depicted as it was in February 2000 at the time of the shuttle flight. A Landcover water layer and medium-scale maps and charts were used as supplemental data sources, generally as supporting evidence for water identified in the image mosaics. Since the Landcover water layer was derived mostly from Landsat 5 data collected a decade earlier than the Shuttle mission and the map sources had similar currency problems, there were significant seasonal and temporal differences between the depiction of water in the ancillary sources and the actual extent of water bodies in February 2000 in many instances. In rare cases, where the SRTM image mosaics were missing or unusable, Landcover was used to delineate the water in the SRTM cells. The DTED® header records for those cells are documented accordingly.
The Hydrology Feature Dataset contains photogrammetrically compiled water drainage features and structures including rivers, streams, drainage canals, locks, dams, lakes, ponds, reservoirs and mooring cells. Rivers, Lakes, Ponds, Reservoirs, Hidden Lakes, Reservoirs or Ponds: If greater than 25 feet and less than 30 feet wide, is captured as a double line stream. If greater than 30 feet wide it is captured as a river. Lakes are large standing bodies of water greater than 5 acres in size. Ponds are large standing bodies of water greater than 1 acre and less than 5 acres in size. Polygons are created from Stream edges and River Edges. The Ohio River, Monongahela River and Allegheny River are coded as Major Rivers. All other River and Stream polygons are coded as River. If a stream is less than 25 feet wide it is placed as a single line and coded as a Stream. Both sides of the stream are digitized and coded as a Stream for Streams whose width is greater than 25 feet. River edges are digitized and coded as River.
A Drainage Canal is a manmade or channelized hydrographic feature. Drainage Canals are differentiated from streams in that drainage canals have had the sides and/or bottom stabilized to prevent erosion for the predominant length of the feature. Streams may have had some stabilization done, but are primarily in a natural state. Lakes are large standing bodies of water greater than five acres in size. Ponds are large standing bodies of water greater than one acre in size and less than five acres in size. Reservoirs are manmade embankments of water. Included in this definition are both covered and uncovered water tanks. Reservoirs that are greater than one acre in size are digitized. Hidden Streams, Hidden Rivers and Hidden Drainage Canal or Culverts are those areas of drainage where the water flows through a manmade facility such as a culvert. Hydrology Annotation is not being updated but will be preserved. If a drainage feature has been removed, as apparent on the aerial photography, the associated drainage name annotation will be removed. A Mooring Cell is a structure to which tows can tie off while awaiting lockage. They are normally constructed of concrete and steel and are anchored to the river bottom by means of gravity or sheet piling.
Mooring Cells do not currently exist in the Allegheny County dataset but will be added. Locks are devices that are used to control flow or access to a hydrologic feature. The edges of the Lock are captured. Dams are devices that are used to hold or delay the natural flow of water. The edges of the Dam are shown.
This dataset is harvested on a weekly basis from Allegheny County’s GIS data portal. The full metadata record for this dataset can also be found on Allegheny County's GIS portal. You can access the metadata record and other resources on the GIS portal by clicking on the “Explore” button (and choosing the "Go to resource" option) to the right of the "ArcGIS Open Dataset" text below.
Category: Environment
Department: Geographic Information Systems Group; Department of Administrative Services
Data Notes: Coordinate System: Pennsylvania State Plane South Zone 3702; U.S. Survey Foot
Development Notes: Original Lakes and Drainage datasets combined to create this layer. Data was updated as a result of a flyover in the spring of 2004. A database field has been defined for all map features named Update Year". This database field will define which dataset provided each map feature. Map features from the current map will be set to "2004". The earlier dataset map features the earlier dataset map features used to supplement the area near the county boundary will be set to "1993". All new or modified map data will have the value for "Update Year" set to "2004".
Data Dictionary: https://docs.google.com/spreadsheets/d/16BWrRkoPtq2ANRkrbG7CrfQk2dUsWRiaS2Ee1mTn7l0/edit?usp=sharing
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS National Hydrography Dataset (NHD) downloadable data collection from The National Map (TNM) is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. For additional information on NHD, go to https://www.usgs.gov/core-science-systems/ngp/national-hydrography.
DWR was the steward for NHD and Watershed Boundary Dataset (WBD) in California. We worked with other organizations to edit and improve NHD and WBD, using the business rules for California. California's NHD improvements were sent to USGS for incorporation into the national database. The most up-to-date products are accessible from the USGS website. Please note that the California portion of the National Hydrography Dataset is appropriate for use at the 1:24,000 scale.
For additional derivative products and resources, including the major features in geopackage format, please go to this page: https://data.cnra.ca.gov/dataset/nhd-major-features Archives of previous statewide extracts of the NHD going back to 2018 may be found at https://data.cnra.ca.gov/dataset/nhd-archive.
In September 2022, USGS officially notified DWR that the NHD would become static as USGS resources will be devoted to the transition to the new 3D Hydrography Program (3DHP). 3DHP will consist of LiDAR-derived hydrography at a higher resolution than NHD. Upon completion, 3DHP data will be easier to maintain, based on a modern data model and architecture, and better meet the requirements of users that were documented in the Hydrography Requirements and Benefits Study (2016). The initial releases of 3DHP include NHD data cross-walked into the 3DHP data model. It will take several years for the 3DHP to be built out for California. Please refer to the resources on this page for more information.
The FINAL,STATIC version of the National Hydrography Dataset for California was published for download by USGS on December 27, 2023. This dataset can no longer be edited by the state stewards. The next generation of national hydrography data is the USGS 3D Hydrography Program (3DHP).
Questions about the California stewardship of these datasets may be directed to nhd_stewardship@water.ca.gov.
The Terra Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Global Water Bodies Database (ASTWBD) Version 1 data product provides global coverage of water bodies larger than 0.2 square kilometers at a spatial resolution of 1 arc second (approximately 30 meters) at the equator, along with associated elevation information.
The ASTWBD data product was created in conjunction with the ASTER Global Digital Elevation Model (ASTER GDEM) Version 3 data product by the Sensor Information Laboratory Corporation (SILC) in Tokyo. The ASTER GDEM Version 3 data product was generated using ASTER Level 1A scenes acquired between March 1, 2000, and November 30, 2013. The ASTWBD data product was then generated to correct elevation values of water body surfaces.
To generate the ASTWBD data product, water bodies were separated from land areas and then classified into three categories: ocean, river, or lake. Oceans and lakes have a flattened, constant elevation value. The effects of sea ice were manually removed from areas classified as oceans to better delineate ocean shorelines in high latitude areas. For lake water bodies, the elevation for each lake was calculated from the perimeter elevation data using the mosaic image that covers the entire area of the lake. Rivers presented a unique challenge given that their elevations gradually step down from upstream to downstream; therefore, visual inspection and other manual detection methods were required.
The geographic coverage of the ASTWBD extends from 83°N to 83°S. Each tile is distributed in GeoTIFF format and referenced to the 1984 World Geodetic System (WGS84)/1996 Earth Gravitational Model (EGM96) geoid. Each data product is provided as a zipped file that contains an attribute file with the water body classification information and a DEM file, which provides elevation information in meters.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
Water files are provided for the mapping of inland and coastal waters, Great Lakes and the St. Lawrence River. These files were created to be used in conjunction with the boundary files.
The Human Geography Map (World Edition) web map provides a detailed vector basemap with a monochromatic style and content adjusted to support Human Geography information. Where possible, the map content has been adjusted so that it observes WCAG contrast criteria.This basemap, included in the ArcGIS Living Atlas of the World, uses 3 vector tile layers:Human Geography Label, a label reference layer including cities and communities, countries, administrative units, and at larger scales street names.Human Geography Detail, a detail reference layer including administrative boundaries, roads and highways, and larger bodies of water. This layer is designed to be used with a high degree of transparency so that the detail does not compete with your information. It is set at approximately 50% in this web map, but can be adjusted.Human Geography Base, a simple basemap consisting of land areas in a very light gray only.The vector tile layers in this web map are built using the same data sources used for other Esri Vector Basemaps. For details on data sources contributed by the GIS community, view the map of Community Maps Basemap Contributors. Esri Vector Basemaps are updated monthly.Learn more about this basemap from the cartographic designer in Introducing a Human Geography Basemap.Use this MapThis map is designed to be used as a basemap for overlaying other layers of information or as a stand-alone reference map. You can add layers to this web map and save as your own map. If you like, you can add this web map to a custom basemap gallery for others in your organization to use in creating web maps. If you would like to add this map as a layer in other maps you are creating, you may use the tile layer item referenced in this map.
The Water Framework Directive (WFD) sets out the basic principles for sustainable water policy. Its purpose is to establish a framework for the protection of inland surface waters, transitional waters, coastal waters and groundwater. The WFD aims to achieve good water status. The body of water is the elementary territorial division of aquatic environments intended to be the WFD assessment unit. A reference for water bodies is established for all waters in the Seine Normandy basin. It allows the development of the WFD management plan to achieve good water status.
This data concerns the Master Plan for Water Management 2022-027 (SDAGE) of the Seine Normandy Basin. It lists the surface water bodies: river body, transitional water body, coastal water body, body of water body water body
A river water body is a distinct and significant part of surface waters such as a river, river or canal, part of a river, river or canal. A transitional water body is a distinct and significant part of surface waters located near the mouths of rivers or rivers, which are partly salty because of their proximity to coastal waters but which remain fundamentally influenced by fresh water currents. A coastal water body is a distinct and significant part of the surface waters between the baseline used to measure the breadth of territorial waters and a distance of one nautical mile. A body of water body of water is a distinct and significant part of surface waters such as a lake, a reservoir.
For more information, you can consult the document of the Sander dedicated to water body repositories: http://www.sandre.eaufrance.fr/urn.php? urn=urn:sandre:dictionnaire:MDO:FRA:::ressource:1.3:::pdf
Provides a representation of major hydrological features in Dallas and environs.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The Waterbodies dataset is comprised of area features: lakes, intermittent waterbodies, islands, and rivers wide enough to be represented as an area feature (e.g. St. Lawrence River, Mackenzie River). In a few exceptional cases, islands had to be represented by "holes" in the polygons in the Waterbodies dataset. Some area features have been subdivided and several types of virtual linear features serve to separate them. Features in this dataset are linked (by an attribute) to their corresponding flow line in the Drainage Network Skeleton. Therefore the Waterbodies dataset may be used in conjunction with the Drainage Network Skeleton for analytical applications. The Islands dataset is comprised of area and linear features: islands within inland waters and the waterbodies and single line rivers within these islands. Oceanic islands are not included as they are part of the coastline component of the Drainage Network Skeleton dataset. The Islands dataset exists to complete the cartographic representation of Canadian hydrology. The Islands dataset is not logically connected with the Drainage Network Skeleton, and can not be used for analytical applications. It should be noted that flow lines of the Drainage Network Skeleton do not take into account of the existence of islands and therefore do not necessarily flow around them. In a few exceptional cases, islands had to be represented by "holes" in the polygons in the Waterbodies dataset. Some islands themselves contain waterbodies and rivers, not significant for network analysis. However, in order to support a complete cartographic representation such waterbodies and rivers have been added to the Islands dataset. The National Scale Frameworks Hydrology data consists of area, linear and point geospatial and attribute data for Canada's hydrology at a national scale. It provides a representation of Canada's surface water features, and data completeness reflects the content of the source, the original Vector Map level 0 (VMAP0) revision 4 hydrographic layers, except where revision editing has been performed. Key value-added characteristics include river flow direction, connectivity and the tagging of geographical name keys to selected rivers, lakes and islands included in the Concise Gazetteer of Canada. The Atlas Frameworks are a set of integrated base map layers which form part of a larger National Scale Frameworks data collection. These data have been compiled at a scale of 1:1 000 000 with the primary goal being to indicate correct relative positioning with other framework layers rather than absolute positional accuracy. Distributed from GeoYukon by the Government of Yukon . Discover more digital map data and interactive maps from Yukon's digital map data collection. For more information: geomatics.help@yukon.ca
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer contains polygon features of water bodies large enough to identify on 6-inch aerial photography. This layer was originally derived from the 2011 OSIP LiDAR collection but is updated as part of the planimetric (base map) mapping conducted by the Auditor's office.
Note: This layer does not have clickable pop-ups at this time.Watersheds, also called drainage or catchment basins, are areas of land where precipitation drains into a common body of water such as a lake, river, or ocean. This includes precipitation from clouds like rain or snow, groundwater, and other bodies of water within the basin. Watersheds are powerful components of the natural landscape, and it is important to understand the factors that impact their condition. The size and shape of a drainage basin is determined by many features of its landscape. Often, the first that comes to mind is an area’s topography. The steepness of hills and mountains, along with the distance between a precipitation source and bodies of water, also determine how quickly it reaches its destination. Additionally, different soil types impact water movement, with some types (like sand) much more permeable than others (like clay). If the surface is too impermeable for precipitation to reach the soil in the first place, which is the case in developed areas covered by roofs and pavement, it forms runoff and reaches bodies of water without spending time as groundwater. Extremely large drainage areas are made of a number of tributary basins, which collect precipitation in streams and then deliver water to the major rivers. Watersheds can be made of any number of smaller drainage basins, which is called a river system.The elevated boundary between areas drained by different basins is called a divide, and a continental divide completely separates large river systems to different regions of a continent. In North and South America, the Great Continental Divide runs along the peaks of the Rocky Mountains and Andes, with water to the west running into the Pacific Ocean and to the east into the Atlantic. Another continental divide exists along the Himalayan Mountains in South Asia and continues along the coast of the Arabian Peninsula and eastern Africa, directing precipitation into the Indian Ocean. On the other side of this divide, to the north of the Himalayas, exists a feature called an endorheic basin—in these regions, precipitation never reaches an ocean, but is retained in a smaller body of water like a lake or inland sea.Knowing the extent of watersheds is important for both natural and sociopolitical reasons. Scientists interested in hydrology and ecology often study entire drainage basins because the majority of the precipitation, sediments, nutrients, and pollutants flowing through a watershed originated there, too. Many conservation efforts protect watersheds as holistic units as well, called watershed management, and some countries and states even have governing bodies for basins in their territory. In the field of geopolitics, the study of how international relations are influenced by geographical factors, watersheds can be the cause of conflict or of harmony through mutual governance and accountability.This map layer was created using a model that predicts water flow with elevation data. It separates one watershed into two, by predicting flow then using GIS to add additional information to the model such as catchment boundaries, lake shorelines, and rivers.Each time a divide is created, the model makes a new level—these levels are called hydrologic units. Hydrologic units break the globe up into regions, subregions, basins, subbasins, watersheds and sub watersheds. Each hydrologic unit has a unique code called a hierarchical hydrologic unit code (HUC). Regions, for example, have a two-digit code. An additional two digits are added for each subsequent scale until sub watersheds, which has twelve digits. Not all of the watersheds are clickable at this time. Check back as we add data for areas outside the United States.Watershed conservation is a very important part of keeping water clean and safe. The Nature Conservancy explains that there are a lot of ways to help protect your watersheds, like conserving water, disposing of waste and chemicals safely, or choosing to walk or bike instead of drive. Add the Protected Areas layer to the map to find the areas of your watershed that need special care.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The major water bodies within the Minneapolis city limits. Includes polygons for the Mississippi River, major lakes, and streams. If there are any issues with the data in this map, service, or shp file please contact the Minneapolis GIS office.
This layer is intended for researchers, students, and policy makers for reference and mapping purposes, and may be used for basic applications such as viewing, querying, and map output production, or to provide a basemap to support graphical overlays and analysis with other spatial data.
https://www.nconemap.gov/pages/termshttps://www.nconemap.gov/pages/terms
A 49" x 23" general reference river basin wall map containing river basin boundaries, county boundaries, roads, major water bodies, and cities.
River width is a fundamental parameter of river hydrodynamic simulations, but to date no global-scale river width database based on observed water bodies has been available. Here we present a new algorithm that automatically calculates river width from satellite-based water masks and flow direction maps. The Global Width Database for Large Rivers (GWD-LR) is developed by applying the algorithm to the SRTM Water Body Database and the HydroSHEDS flow direction map.
This layer is intended for researchers, students, and policy makers for reference and mapping purposes, and may be used for basic applications such as viewing, querying, and map output production, or to provide a basemap to support graphical overlays and analysis with other spatial data.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The Watershed Boundary Dataset (WBD) from The National Map (TNM) defines the perimeter of drainage areas formed by the terrain and other landscape characteristics. The drainage areas are nested within each other so that a large drainage area, such as the Upper Mississippi River, is composed of multiple smaller drainage areas, such as the Wisconsin River. Each of these smaller areas can further be subdivided into smaller and smaller drainage areas. The WBD uses six different levels in this hierarchy, with the smallest averaging about 30,000 acres. The WBD is made up of polygons nested into six levels of data respectively defined by Regions, Subregions, Basins, Subbasins, Watersheds, and Subwatersheds. For additional information on the WBD, go to https://nhd.usgs.gov/wbd.html. The USGS National Hydrography Dataset (NHD) service is a companion dataset to the WBD. The NHD is a comprehensive set of digital spatial data that encodes information about naturally occurring and constructed bodies of surface water (lakes, ponds, and reservoirs), paths through which water flows (canals, ditches, streams, and rivers), and related entities such as point features (springs, wells, stream gages, and dams). The information encoded about these features includes classification and other characteristics, delineation, geographic name, position and related measures, a "reach code" through which other information can be related to the NHD, and the direction of water flow. The network of reach codes delineating water and transported material flow allows users to trace movement in upstream and downstream directions. In addition to this geographic information, the dataset contains metadata that supports the exchange of future updates and improvements to the data. The NHD is available nationwide in two seamless datasets, one based on 1:24,000-scale maps and referred to as high resolution NHD, and the other based on 1:100,000-scale maps and referred to as medium resolution NHD. Additional selected areas in the United States are available based on larger scales, such as 1:5,000-scale or greater, and referred to as local resolution NHD. For more information on the NHD, go to https://nhd.usgs.gov/index.html. Hydrography data from The National Map supports many applications, such as making maps, geocoding observations, flow modeling, data maintenance, and stewardship. Hydrography data is commonly combined with other data themes, such as boundaries, elevation, structures, and transportation, to produce general reference base maps. The National Map viewer allows free downloads of public domain WBD and NHD data in either Esri File or Personal Geodatabase, or Shapefile formats. The Watershed Boundary Dataset is being developed under the leadership of the Subcommittee on Spatial Water Data, which is part of the Advisory Committee on Water Information (ACWI) and the Federal Geographic Data Committee (FGDC). The USDA Natural Resources Conservation Service (NRCS), along with many other federal agencies and national associations, have representatives on the Subcommittee on Spatial Water Data. As watershed boundary geographic information systems (GIS) coverages are completed, statewide and national data layers will be made available via the Geospatial Data Gateway to everyone, including federal, state, local government agencies, researchers, private companies, utilities, environmental groups, and concerned citizens. The database will assist in planning and describing water use and related land use activities. Resources in this dataset:Resource Title: Watershed Boundary Dataset (WBD). File Name: Web Page, url: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/water/watersheds/dataset/?cid=nrcs143_021630 Web site for the Watershed Boundary Dataset (WBD), including links to:
Review Data Availability (Status Maps)
Obtain Data by State, County, or Other Area
Obtain Seamless National Data offsite link image
Geospatial Data Tools
National Technical and State Coordinators
Information about WBD dataset
Water bodies are a key element in the landscape. This layer provides a global map of large water bodies for use inlandscape-scale analysis. Dataset SummaryThis layer provides access to a 250m cell-sized raster of surface water created by extracting pixels coded as water in the Global Lithological Map and the Global Landcover Map. The layer was created by Esri in 2014. Analysis: Restricted single source analysis. Maximum size of analysis is 16,000 x 16,000 pixels. What can you do with this layer?This layer is suitable for both visualization and analysis. It can be used in ArcGIS Online in web maps and applications and can be used in ArcGIS Desktop. Restricted single source analysis means this layer has size constraints for analysis and it is not recommended for use with other layers in multisource analysis.This layer has query, identify, and export image services available. This layer is restricted to a maximum area of 16,000 x 16,000 pixels - an area 4,000 kilometerson a side or an area approximately the size of Europe.This layer is part of a larger collection of landscape layers that you can use to perform a wide variety of mapping and analysis tasks.The Living Atlas of the World provides an easy way to explore the landscape layers and many otherbeautiful and authoritative maps on hundreds of topics. Geonetis a good resource for learning more aboutlandscape layers and the Living Atlas of the World. To get started see theLiving Atlas Discussion Group. TheEsri Insider Blogprovides an introduction to the Ecophysiographic Mapping project.