This layer presents the locations of major cities within the United States with populations of approximately 10,000 or greater, state capitals, and the national capital. Major Cities are locations containing population totals from the 2020 Census.The points represent U.S. Census Places polygons sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State). Attribute fields include 2020 total population from the U.S. Census Public Law 94 data that symbolize the city points using these six classifications: Class Population Range 5 2,500 – 9,999 6 10,000 – 49,999 7 50,000 – 99,999 8 100,000 – 249,999 9 250,000 – 499,999 10 500,000 and overThis ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.
This data set includes cities in the United States, Puerto Rico and the U.S. Virgin Islands. These cities were collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December, 2003, data set.
This layer is sourced from maps.bts.dot.gov.
The "Major Cities" layer is derived from the "World Cities" dataset provided by ArcGIS Data and Maps group as part of the global data layers made available for public use. "Major cities" layer specifically contains National and Provincial capitals that have the highest population within their respective country. Cities were filtered based on the STATUS (“National capital”, “National and provincial capital”, “Provincial capital”, “National capital and provincial capital enclave”, and “Other”). Majority of these cities within larger countries have been filtered at the highest levels of POP_CLASS (“5,000,000 and greater” and “1,000,000 to 4,999,999”). However, China for example, was filtered with cities over 11 million people due to many highly populated cities. Population approximations are sourced from US Census and UN Data. Credits: ESRI, CIA World Factbook, GMI, NIMA, UN Data, UN Habitat, US Census Bureau Disclaimer: The designations employed and the presentation of material at this site do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
This map layer includes cities and towns in Oregon. These cities were clipped from a larger dataset of cities collected from the 1970 National Atlas of the United States. Where applicable, U.S. Census Bureau codes for named populated places were associated with each name to allow additional information to be attached. The Geographic Names Information System (GNIS) was also used as a source for additional information. This is a revised version of the December 2003 map layer.
The Digital City Map (DCM) data represents street lines and other features shown on the City Map, which is the official street map of the City of New York. The City Map consists of 5 different sets of maps, one for each borough, totaling over 8000 individual paper maps. The DCM datasets were created in an ongoing effort to digitize official street records and bring them together with other street information to make them easily accessible to the public. The Digital City Map (DCM) is comprised of seven datasets; Digital City Map, Street Center Line, City Map Alterations, Arterial Highways and Major Streets, Street Name Changes (areas), Street Name Changes (lines), and Street Name Changes (points). All of the Digital City Map (DCM) datasets are featured on the Streets App All previously released versions of this data are available at BYTES of the BIG APPLE- Archive
Attribution-NonCommercial-ShareAlike 3.0 (CC BY-NC-SA 3.0)https://creativecommons.org/licenses/by-nc-sa/3.0/
License information was derived automatically
The "Major Cities" layer is derived from the "World Cities" dataset provided by ArcGIS Data and Maps group as part of the global data layers made available for public use.
"Major cities" layer specifically contains National and Provincial capitals that have the highest population within their respective country. Cities were filtered based on the STATUS (“National capital”, “National and provincial capital”, “Provincial capital”, “National capital and provincial capital enclave”, and “Other”). Majority of these cities within larger countries have been filtered at the highest levels of POP_CLASS (“5,000,000 and greater” and “1,000,000 to 4,999,999”). However, China for example, was filtered with cities over 11 million people due to many highly populated cities. Population approximations are sourced from US Census and UN Data.
Disclaimer: The designations employed and the presentation of material at this site do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
Data publication: 2021-03-12
Citation:
Credits: ESRI, CIA World Factbook, GMI, NIMA, UN Data, UN Habitat, US Census Bureau
Contact points:
Resource Contact: ESRI - ArcGIS Data and Maps
Metadata Contact: Justeen De Ocampo
Resource constraints:
Creative Commons Attribution-NonCommercial-ShareAlike 3.0 IGO (CC BY-NC- SA 3.0 IGO)
Online resources:
World Cities layer from ArcGIS Data & Maps
ArcGIS Data and Maps group background and available datasets.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset contains information about the demographics of all US cities and census-designated places with a population greater or equal to 65,000. This data comes from the US Census Bureau's 2015 American Community Survey. This product uses the Census Bureau Data API but is not endorsed or certified by the Census Bureau.
Important Note: This item is in mature support as of June 2023 and will retire in December 2025. A new version of this item is available for your use.The layers going from 1:1 to 1:1.5M present the 2010 Census Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000 people per square mile (ppsm) / 500 ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States. The layer going over 1:1.5M presents the urban areas in the United States derived from the urban areas layer of the Digital Chart of the World (DCW). It provides information about the locations, names, and populations of urbanized areas for conducting geographic analysis on national and large regional scales. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Census Urban Areas.
This world cities layer presents the locations of many cities of the world, both major cities and many provincial capitals.Population estimates are provided for those cities listed in open source data from the United Nations and US Census.
This point shapefile depicts cities and towns in the United States, Puerto Rico, and the United States Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer. This layer is part of the 2014 National Transportation Atlas Database.
This map layer includes cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer.
The 2020 cartographic boundary shapefiles are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. A consolidated city is a unit of local government for which the functions of an incorporated place and its county or minor civil division (MCD) have merged. This action results in both the primary incorporated place and the county or MCD continuing to exist as legal entities, even though the county or MCD performs few or no governmental functions and has few or no elected officials. Where this occurs, and where one or more other incorporated places in the county or MCD continue to function as separate governments, even though they have been included in the consolidated government, the primary incorporated place is referred to as a consolidated city. The Census Bureau classifies the separately incorporated places within the consolidated city as place entities and creates a separate place (balance) record for the portion of the consolidated city not within any other place. The generalized boundaries of the consolidated cities in this file are based on those as of January 1, 2020, as reported through the Census Bureau's Boundary and Annexation Survey (BAS).
MassGIS has processed Massachusetts municipalities (cities and towns) from the U.S. Census Bureau's 2020 data release for Massachusetts to assist GIS users who may need access to these value-added datasets. These data are suitable for use with Census 2020 products and certain Census publications and demographics surveys created after 2020.See datalayer metadata.Map service also available.
https://www.maine-demographics.com/terms_and_conditionshttps://www.maine-demographics.com/terms_and_conditions
A dataset listing Maine cities by population for 2024.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
In 2023, around 3,640.56 violent crimes per 100,000 residents were reported in Oakland, California. This made Oakland the most dangerous city in the United States in that year. Four categories of violent crimes were used: murder and non-negligent manslaughter; forcible rape; robbery; and aggravated assault. Only cities with a population of at least 200,000 were considered.
The Populated Places dataset was published on March 01, 2014 from the National Atlas of the United States - U.S. Geological Survey and is part of the U.S. Department of Transportation (USDOT)/Bureau of Transportation Statistics (BTS) National Transportation Atlas Database (NTAD). This map layer includes cities and towns in the United States, Puerto Rico, and the U.S. Virgin Islands. A city or town is a place with a recorded population, usually with at least one central area that provides commercial activities. Cities are generally larger than towns; no distinction is made between cities and towns in this map layer. Census 2010 information was used for population counts of the cities and towns.
The map title is Yarmouth. Tactile map scale. 2 centimetres = 3 kilometres North arrow pointing to the north. Yarmouth and surrounding area. Atlantic Ocean is shown with a wavy symbol to indicate water. Dashed lines indicate ferry crossings to Maine, USA. Main roads, Route 101 and Route 103. A circle with a dot in the middle indicates a bus terminal west of the city. Tactile maps are designed with Braille, large text, and raised features for visually impaired and low vision users. The Tactile Maps of Canada collection includes: (a) Maps for Education: tactile maps showing the general geography of Canada, including the Tactile Atlas of Canada (maps of the provinces and territories showing political boundaries, lakes, rivers and major cities), and the Thematic Tactile Atlas of Canada (maps showing climatic regions, relief, forest types, physiographic regions, rock types, soil types, and vegetation). (b) Maps for Mobility: to help visually impaired persons navigate spaces and routes in major cities by providing information about streets, buildings and other features of a travel route in the downtown area of a city. (c) Maps for Transportation and Tourism: to assist visually impaired persons in planning travel to new destinations in Canada, showing how to get to a city, and streets in the downtown area.
https://en.wikipedia.org/wiki/Public_domainhttps://en.wikipedia.org/wiki/Public_domain
This dataset is part of the Geographical repository maintained by Opendatasoft. This dataset contains data for places and equivalent entities in United States of America.This layer both incorporated places (legal entities) and census designated places or CDPs (statistical entities). An incorporated place is established to provide governmental functions for a concentration of people as opposed to a minor civil division (MCD), which generally is created to provide services or administer an area without regard, necessarily, to population. Places always nest within a state, but may extend across county and county subdivision boundaries. An incorporated place usually is a city, town, village, or borough, but can have other legal descriptions. CDPs are delineated for the decennial census as the statistical counterparts of incorporated places. CDPs are delineated to provide data for settled concentrations of population that are identifiable by name, but are not legally incorporated under the laws of the state in which they are located. The boundaries for CDPs often are defined in partnership with state, local, and/or tribal officials and usually coincide with visible features or the boundary of an adjacent incorporated place or another legal entity. CDP boundaries often change from one decennial census to the next with changes in the settlement pattern and development; a CDP with the same name as in an earlier census does not necessarily have the same boundary. The only population/housing size requirement for CDPs is that they must contain some housing and population. Processors and tools are using this data. Enhancements Add ISO 3166-3 codes. Simplify geometries to provide better performance across the services. Add administrative hierarchy.
IntroductionClimate Central’s Surging Seas: Risk Zone map shows areas vulnerable to near-term flooding from different combinations of sea level rise, storm surge, tides, and tsunamis, or to permanent submersion by long-term sea level rise. Within the U.S., it incorporates the latest, high-resolution, high-accuracy lidar elevation data supplied by NOAA (exceptions: see Sources), displays points of interest, and contains layers displaying social vulnerability, population density, and property value. Outside the U.S., it utilizes satellite-based elevation data from NASA in some locations, and Climate Central’s more accurate CoastalDEM in others (see Methods and Qualifiers). It provides the ability to search by location name or postal code.The accompanying Risk Finder is an interactive data toolkit available for some countries that provides local projections and assessments of exposure to sea level rise and coastal flooding tabulated for many sub-national districts, down to cities and postal codes in the U.S. Exposure assessments always include land and population, and in the U.S. extend to over 100 demographic, economic, infrastructure and environmental variables using data drawn mainly from federal sources, including NOAA, USGS, FEMA, DOT, DOE, DOI, EPA, FCC and the Census.This web tool was highlighted at the launch of The White House's Climate Data Initiative in March 2014. Climate Central's original Surging Seas was featured on NBC, CBS, and PBS U.S. national news, the cover of The New York Times, in hundreds of other stories, and in testimony for the U.S. Senate. The Atlantic Cities named it the most important map of 2012. Both the Risk Zone map and the Risk Finder are grounded in peer-reviewed science.Back to topMethods and QualifiersThis map is based on analysis of digital elevation models mosaicked together for near-total coverage of the global coast. Details and sources for U.S. and international data are below. Elevations are transformed so they are expressed relative to local high tide lines (Mean Higher High Water, or MHHW). A simple elevation threshold-based “bathtub method” is then applied to determine areas below different water levels, relative to MHHW. Within the U.S., areas below the selected water level but apparently not connected to the ocean at that level are shown in a stippled green (as opposed to solid blue) on the map. Outside the U.S., due to data quality issues and data limitations, all areas below the selected level are shown as solid blue, unless separated from the ocean by a ridge at least 20 meters (66 feet) above MHHW, in which case they are shown as not affected (no blue).Areas using lidar-based elevation data: U.S. coastal states except AlaskaElevation data used for parts of this map within the U.S. come almost entirely from ~5-meter horizontal resolution digital elevation models curated and distributed by NOAA in its Coastal Lidar collection, derived from high-accuracy laser-rangefinding measurements. The same data are used in NOAA’s Sea Level Rise Viewer. (High-resolution elevation data for Louisiana, southeast Virginia, and limited other areas comes from the U.S. Geological Survey (USGS)). Areas using CoastalDEM™ elevation data: Antigua and Barbuda, Barbados, Corn Island (Nicaragua), Dominica, Dominican Republic, Grenada, Guyana, Haiti, Jamaica, Saint Kitts and Nevis, Saint Lucia, Saint Vincent and the Grenadines, San Blas (Panama), Suriname, The Bahamas, Trinidad and Tobago. CoastalDEM™ is a proprietary high-accuracy bare earth elevation dataset developed especially for low-lying coastal areas by Climate Central. Use our contact form to request more information.Warning for areas using other elevation data (all other areas)Areas of this map not listed above use elevation data on a roughly 90-meter horizontal resolution grid derived from NASA’s Shuttle Radar Topography Mission (SRTM). SRTM provides surface elevations, not bare earth elevations, causing it to commonly overestimate elevations, especially in areas with dense and tall buildings or vegetation. Therefore, the map under-portrays areas that could be submerged at each water level, and exposure is greater than shown (Kulp and Strauss, 2016). However, SRTM includes error in both directions, so some areas showing exposure may not be at risk.SRTM data do not cover latitudes farther north than 60 degrees or farther south than 56 degrees, meaning that sparsely populated parts of Arctic Circle nations are not mapped here, and may show visual artifacts.Areas of this map in Alaska use elevation data on a roughly 60-meter horizontal resolution grid supplied by the U.S. Geological Survey (USGS). This data is referenced to a vertical reference frame from 1929, based on historic sea levels, and with no established conversion to modern reference frames. The data also do not take into account subsequent land uplift and subsidence, widespread in the state. As a consequence, low confidence should be placed in Alaska map portions.Flood control structures (U.S.)Levees, walls, dams or other features may protect some areas, especially at lower elevations. Levees and other flood control structures are included in this map within but not outside of the U.S., due to poor and missing data. Within the U.S., data limitations, such as an incomplete inventory of levees, and a lack of levee height data, still make assessing protection difficult. For this map, levees are assumed high and strong enough for flood protection. However, it is important to note that only 8% of monitored levees in the U.S. are rated in “Acceptable” condition (ASCE). Also note that the map implicitly includes unmapped levees and their heights, if broad enough to be effectively captured directly by the elevation data.For more information on how Surging Seas incorporates levees and elevation data in Louisiana, view our Louisiana levees and DEMs methods PDF. For more information on how Surging Seas incorporates dams in Massachusetts, view the Surging Seas column of the web tools comparison matrix for Massachusetts.ErrorErrors or omissions in elevation or levee data may lead to areas being misclassified. Furthermore, this analysis does not account for future erosion, marsh migration, or construction. As is general best practice, local detail should be verified with a site visit. Sites located in zones below a given water level may or may not be subject to flooding at that level, and sites shown as isolated may or may not be be so. Areas may be connected to water via porous bedrock geology, and also may also be connected via channels, holes, or passages for drainage that the elevation data fails to or cannot pick up. In addition, sea level rise may cause problems even in isolated low zones during rainstorms by inhibiting drainage.ConnectivityAt any water height, there will be isolated, low-lying areas whose elevation falls below the water level, but are protected from coastal flooding by either man-made flood control structures (such as levees), or the natural topography of the surrounding land. In areas using lidar-based elevation data or CoastalDEM (see above), elevation data is accurate enough that non-connected areas can be clearly identified and treated separately in analysis (these areas are colored green on the map). In the U.S., levee data are complete enough to factor levees into determining connectivity as well.However, in other areas, elevation data is much less accurate, and noisy error often produces “speckled” artifacts in the flood maps, commonly in areas that should show complete inundation. Removing non-connected areas in these places could greatly underestimate the potential for flood exposure. For this reason, in these regions, the only areas removed from the map and excluded from analysis are separated from the ocean by a ridge of at least 20 meters (66 feet) above the local high tide line, according to the data, so coastal flooding would almost certainly be impossible (e.g., the Caspian Sea region).Back to topData LayersWater Level | Projections | Legend | Social Vulnerability | Population | Ethnicity | Income | Property | LandmarksWater LevelWater level means feet or meters above the local high tide line (“Mean Higher High Water”) instead of standard elevation. Methods described above explain how each map is generated based on a selected water level. Water can reach different levels in different time frames through combinations of sea level rise, tide and storm surge. Tide gauges shown on the map show related projections (see just below).The highest water levels on this map (10, 20 and 30 meters) provide reference points for possible flood risk from tsunamis, in regions prone to them.
This layer presents the locations of major cities within the United States with populations of approximately 10,000 or greater, state capitals, and the national capital. Major Cities are locations containing population totals from the 2020 Census.The points represent U.S. Census Places polygons sourced from U.S. Census Bureau 2020 TIGER FGDB (National Sub-State). Attribute fields include 2020 total population from the U.S. Census Public Law 94 data that symbolize the city points using these six classifications: Class Population Range 5 2,500 – 9,999 6 10,000 – 49,999 7 50,000 – 99,999 8 100,000 – 249,999 9 250,000 – 499,999 10 500,000 and overThis ready-to-use layer can be used in ArcGIS Pro and in ArcGIS Online and its configurable apps, dashboards, StoryMaps, custom apps, and mobile apps. The data can also be exported for offline workflows. Cite the 'U.S. Census Bureau' when using this data.