Colourful and easy to use, Bartholomew’s maps became a trademark series. The maps were popular and influential, especially for recreation, and the series sold well, particularly with cyclists and tourists. To begin with, Bartholomew printed their half-inch maps in Scotland as stand-alone sheets known as 'District Sheets' and by 1886 the whole of Scotland was covered. They then revised the maps into an ordered set of 29 sheets covering Scotland in a regular format. This was first published under the title Bartholomew’s Reduced Ordnance Survey of Scotland. The half-inch maps of Scotland formed the principal content for Bartholomew's Survey Atlas of Scotland published in 1895. Bartholomew then moved south of the Border to the more lucrative but competitive market in England and Wales, whilst continuing to revise the Scottish sheets. This Bartholomew series at half-inch to the mile, covered Great Britain in 62 sheets in the 1940s, Bartholomew’s first to cover Great Britain at this scale (their previous series covering Scotland and then England and Wales). The series provides an attractive and useful snapshot of 1940s Britain. By this time, Bartholomew had altered the range of information on their maps compared to the 1900s. There were more categories of roads, Ministry of Transport road numbers were added, and new recreational features such as Youth Hostels and Golf Courses. Bartholomew’s topographic information was gathered partly from original Ordnance Survey maps, and partly from information sent in to Bartholomew from map users. One important user community for Bartholomew were cyclists. From the 1890s, Bartholomew entered into a formal relationship with the Cyclists’ Touring Club, then numbering around 60,500 cyclists, proposing that club members supplied Bartholomew with up-to-date information. In return, Bartholomew provided the CTC with discounted half-inch maps. The relationship worked very well, turning CTC members into an unofficial surveying army, feeding back reliable and accurate topographical information which Bartholomew would then use to update their maps. You can read more about this and see selected letters from cyclists at: http://digital.nls.uk/bartholomew/duncan-street-explorer/cyclists-touring-club.html.
Usually Bartholomew made revisions the sheets right up to the time of publication, so the date of publication is the best guide to the approximate date of the features shown on the map. You can view the dates of publication for the series at: https://maps.nls.uk/series/bart_half_great_britain.html
This dataset contains gridded human population with a spatial resolution of 1 km x 1 km for the UK based on Census 2021 (Census 2022 for Scotland) and Land Cover Map 2021 input data. Data on population distribution for the United Kingdom is available from statistical offices in England, Wales, Northern Ireland and Scotland and provided to the public e.g. via the Office for National Statistics (ONS). Population data is typically provided in tabular form or, based on a range of different geographical units, in file types for geographical information systems (GIS), for instance as ESRI Shapefiles. The geographical units reflect administrative boundaries at different levels of detail, from Devolved Administration to Output Areas (OA), wards or intermediate geographies. While the presentation of data on the level of these geographical units is useful for statistical purposes, accounting for spatial variability for instance of environmental determinants of public health requires a more spatially homogeneous population distribution. For this purpose, the dataset presented here combines 2021/2022 UK Census population data on Output Area level with Land Cover Map 2021 land-use classes 'urban' and 'suburban' to create a consistent and comprehensive gridded population data product at 1 km x 1 km spatial resolution. The mapping product is based on British National Grid (OSGB36 datum).
To begin with, Bartholomew printed their half-inch maps in Scotland as stand-alone sheets known as 'District Sheets' and by 1886 the whole of Scotland was covered. They then revised the maps into an ordered set of 29 sheets covering Scotland in a regular format. This was first pubilshed under the title Bartholomew’s Reduced Ordnance Survey of Scotland. The half-inch maps formed the principal content for Bartholomew's Survey Atlas of Scotland published in 1895. Bartholomew then moved south of the Border to the more lucrative but competitive market in England and Wales, whilst continuing to revise the Scottish sheets. The first complete coverage of Great Britain at the half-inch scale was achieved by 1903 with 67 individual half-inch sheets. Generally at this time, the English sheets sold three times more quickly, at three times the volume of the Scottish sheets. As for Scotland, Bartholomew used their half-inch sheets of England and Wales in the Survey Atlas of England and Wales published in 1903. From 1901, following a copyright complaint from Ordnance Survey, Bartholomew was forced to drop 'Ordnance' from their map titles. The series was initially renamed 'Bartholomew's Reduced Survey', and by 1903 'Bartholomew's half inch to the mile map'.Bartholomew revised the most popular half-inch sheets every couple of years, ensuring that their maps were more up to date than their main rival, Ordnance Survey. Popular sheets had print runs of several tens of thousands per edition, involving nearly 20 different layer colour plates for hillier areas with more colour.More information: http://geo.nls.uk/maps/bartholomew/great_britain/further_info.html
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The 1:63 360 / 1:50 000 scale map series are the most useful scale for most purposes. They provide almost complete coverage of onshore Great Britain. The BGS collection of 1:63 360 and 1:50 000 scale maps comprises two map series: - Geological Survey of England and Wales 1:63 360 / 1:50 000 Geological Map Series [New Series]. These maps are based on the Ordnance Survey One-inch New Series topographic basemaps and provide almost complete coverage of England and Wales, with the exception of sheet 180 (Knighton). The quarter-sheets of 1:63 360 Old Series sheets 91 to 110 coincide with sheets 1 to 73 of the New Series maps. These earlier maps often carry two sheet numbers which refer to the Old Series and the New Series. - Geological Survey of Scotland 1:63 360 / 1:50 000 Geological Map Series. These maps are based on the Ordnance Survey First, Second, Third and Fourth editions of the One-inch map of Scotland. The maps used the most recent topographic basemap available at the time. In the Western Isles, one-inch mapping was abandoned and replaced by maps at 1:100 000 scale, which are associated with this series. Sheets were traditionally issued at 1:63 360 scale, with the first 1:50 000 maps appearing in 1972. Sheets at 1:50 000 scale may be either facsimile enlargements of an existing 1:63 360 sheets, or may contain new geology and cartography. The latter bear the additional series designation '1:50 000 series'. Within the Scottish series, new mapping at 1:50 000 scale was split into east and west sheets. For example, the original one-inch sheet 32 became 1:50 000 sheets 32E and 32W. A number of irregular sheets were also introduced with the new 1:50 000 scale mapping. There are a number of irregular special sheets within both series. Geological maps represent a geologist's compiled interpretation of the geology of an area. A geologist will consider the data available at the time, including measurements and observations collected during field campaigns, as well as their knowledge of geological processes and the geological context to create a model of the geology of an area. This model is then fitted to a topographic basemap and drawn up at the appropriate scale, with generalization if necessary, to create a geological map, which is a representation of the geological model. Explanatory notes and vertical and horizontal cross sections may be published with the map. Geological maps may be created to show various aspects of the geology, or themes. The most common map themes held by BGS are solid (later referred to as bedrock) and drift (later referred to as superficial). These maps are, for the most part, hard-copy paper records stored in the National Geoscience Data Centre (NGDC) and are delivered as digital scans through the BGS website.
This dataset consists of a 1km resolution raster version of the Land Cover Map 2007 for Great Britain. Each 1km pixel represents the dominant aggregate class across the 1km area. The aggregate classes are aggregations of the target classes, broadly representing Broad Habitats (see below). The dataset is part of a series of data products produced by the Centre for Ecology & Hydrology known as LCM2007. LCM2007 is a parcel-based thematic classification of satellite image data covering the entire United Kingdom. The map updates and upgrades the Land Cover Map of Great Britain (LCMGB) 1990 and LCM2000. Like the earlier 1990 and 2000 products, LCM2007 is derived from a computer classification of satellite scenes obtained mainly from Landsat, IRS and SPOT sensors and also incorporates information derived from other ancillary datasets. LCM2007 was classified using a nomenclature corresponding to the Joint Nature Conservation Committee (JNCC) Broad Habitats, which encompasses the entire range of UK habitats. In addition, it recorded further detail where possible. The series of LCM2007 products includes vector and raster formats, with a number of different versions containing varying levels of detail and at different spatial resolutions. LCM2007 uses a spatial framework based on OS MasterMap (R). MasterMap was generalised to remove unnecessary detail, then the framework was segmented according to the underlying satellite data to split areas of non-uniform landscape. The data was classified according to a parcel-based supervised maximum likelihood classification procedure. The raster products are derived from the vector products. Version 1.2 includes OS tiles NW and HZ, and also a water class. Refer to supporting documentation for further information.
Attribution 3.0 (CC BY 3.0)https://creativecommons.org/licenses/by/3.0/
License information was derived automatically
National Library of Scotland Historic Maps APIHistorical Maps of Great Britain for use in mashups and ArcGIS Onlinehttps://nls.tileserver.com/https://maps.nls.uk/projects/api/index.htmlThis seamless historic map can be:embedded in your own websiteused for research purposesused as a backdrop for your own markers or geographic dataused to create derivative work (such as OpenStreetMap) from it.The mapping is based on out-of-copyright Ordnance Survey maps, dating from the 1920s to the 1940s.The map can be directly opened in a web browser by opening the Internet address: https://nls.tileserver.com/The map is ready for natural zooming and panning with finger pinching and dragging.How to embed the historic map in your websiteThe easiest way of embedding the historical map in your website is to copy < paste this HTML code into your website page. Simple embedding (try: hello.html):You can automatically position the historic map to open at a particular place or postal address by appending the name as a "q" parameter - for example: ?q=edinburgh Embedding with a zoom to a place (try: placename.html):You can automatically position the historic map to open at particular latitude and longitude coordinates: ?lat=51.5&lng=0&zoom=11. There are many ways of obtaining geographic coordinates. Embedding with a zoom to coordinates (try: coordinates.html):The map can also automatically detect the geographic location of the visitor to display the place where you are right now, with ?q=auto Embedding with a zoom to coordinates (try: auto.html):How to use the map in a mashupThe historic map can be used as a background map for your own data. You can place markers on top of it, or implement any functionality you want. We have prepared a simple to use JavaScript API to access to map from the popular APIs like Google Maps API, Microsoft Bing SDK or open-source OpenLayers or KHTML. To use our map in your mashups based on these tools you should include our API in your webpage: ... ...
The purpose of this project was to explore the institutions and organisations that are shaping the development of local energy systems in Great Britain, comparing England, Scotland and Wales. The project was part of the UK Energy Research Centre (UKERC).
Institutional mapping explores functional relationships and powers relevant to decision-making. It focuses on the key actors, their interactions, where power is located, who has the ability to influence and make decisions, and sources of funding. The objective is to create a (simplified) visual representation of the different groups and organizations within a community and their relationships and importance for decision-making. In order to explore the governance frameworks and actor networks for LES in England, Wales and Scotland governance mapping was carried out for the three jurisdictions. Draft institutional maps of local energy systems in England, Scotland and Wales were developed through a desk-based review of key organisations, (formal) institutions, rules, relationships and decision-making power based on a database of LES relevant strategy documents and policy instruments (data also deposited). These maps were validated based on interviews with energy system stakeholders to valuate accuracy, and explore informal agenda setting power, future policy needs and governance gaps. Interviews were carried out with a total of 21 people, across 18 organisations, including government, local authorities, distribution network operators, regulators, consultants and NGOs. Maps were revised and finalised based on interview outputs and published in September 2022. The institutional maps developed are deposited here together with the interview schedule.
This project explored the development of locally integrated energy systems in Great Britain. It compared development across England, Scotland and Wales in order to investigate the interactions between the different policy frameworks across GB and the local/regional energy business models, partnerships and funding mechanisms in use.
The population of the United Kingdom in 2023 was estimated to be approximately 68.3 million in 2023, with almost 9.48 million people living in South East England. London had the next highest population, at over 8.9 million people, followed by the North West England at 7.6 million. With the UK's population generally concentrated in England, most English regions have larger populations than the constituent countries of Scotland, Wales, and Northern Ireland, which had populations of 5.5 million, 3.16 million, and 1.92 million respectively. English counties and cities The United Kingdom is a patchwork of various regional units, within England the largest of these are the regions shown here, which show how London, along with the rest of South East England had around 18 million people living there in this year. The next significant regional units in England are the 47 metropolitan and ceremonial counties. After London, the metropolitan counties of the West Midlands, Greater Manchester, and West Yorkshire were the biggest of these counties, due to covering the large urban areas of Birmingham, Manchester, and Leeds respectively. Regional divisions in Scotland, Wales and Northern Ireland The smaller countries that comprise the United Kingdom each have different local subdivisions. Within Scotland these are called council areas whereas in Wales the main regional units are called unitary authorities. Scotland's largest Council Area by population is that of Glasgow City at over 622,000, while in Wales, it was the Cardiff Unitary Authority at around 372,000. Northern Ireland, on the other hand, has eleven local government districts, the largest of which is Belfast with a population of around 348,000.
This layer of the GeoIndex shows the location of available 1:50000 scale digital geological maps within Great Britain. The Digital Geological Map of Great Britain project (DiGMapGB) has prepared 1:625 000, 1:250 000 and 1:50 000 scale datasets for England, Wales and Scotland. The datasets themselves are available as vector data in a variety of formats in which they are structured into themes primarily for use in geographical information systems (GIS) where they can be integrated with other types of spatial data for analysis and problem solving in many earth-science-related issues. Most of the 1:50 000 scale geological maps for England & Wales and for Scotland are now available digitally as part of the DiGMapGB-50 dataset. It integrates geological information from a variety of sources. These include recent digital maps, older 'paper only' maps, and desk compilations for sheets with no published maps.
This dataset references directly NatureScot's Open Data Hub, the data is not hosted in Stirling's platform and, therefore, will be updated as soon as NatureScot releases any updates.Symbology for the layers published as per NatureScot.https://opendata.nature.scot/A more sophisticated classification was developed for woodlands in Scotland due to the nature of the available historical sources. IMPORTANT. For Scottish woods, the category Ancient comprises woods recorded as being of semi-natural origin on EITHER the 1750 Roy maps OR the 1st Edition Ordnance Survey maps of 1860. This is due a) to the likelihood of the latter having been omitted from the Roy maps and b) to render the Scottish classification compatible with that for England and Wales.
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
The Wader Zonal Map - a.k.a. Wader Sensitivity Map (WSM) and Breeding Wader Sensitivity Map - was produced by the British Trust for Ornithology (BTO) in partnership with the Forestry Commission and the Cairngorm National Park Authority. This layer shows the predicted relative abundance of ten species of breeding wader for each 1km square of England, Scotland and Wales.
https://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 18 files; one for Northern Ireland, one for Wales, twelve for England (one per English region, where London, South East and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
Coal resource maps for the whole of the UK have been produced by the British Geological Survey as a result of joint work with Department of Trade and Industry and the Coal Authority. The Coal Resources Map is a Map of Britain depicting the spatial extent of the principal coal resources. The map shows the areas where coal and lignite are present at the surface and also where coal is buried at depth beneath younger rocks. The maps are intended to be used for resource development, energy policy, strategic planning, land-use planning, the indication of hazard in mined areas, environment assessment and as a teaching aid. In addition to a general map of coal resources for Britain data also exists for the six inset maps: Scotland; North-East; North-West; East Pennines; Lancashire, North Wales and the West Midlands; South Wales, Forest of Dean and Bristol. Available as a paper map, flat or folded, from BGS Sales or as a pdf on a CD if requested.
http://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1dhttp://inspire.ec.europa.eu/metadata-codelist/LimitationsOnPublicAccess/INSPIRE_Directive_Article13_1d
Data identifying landscape areas (shown as polygons) attributed with geological names. The scale of the data is 1:50 000 scale. Onshore coverage is provided for all of England, Wales, Scotland and the Isle of Man. Data are supplied as five themes: bedrock, superficial deposits, mass movement, artificial ground and linear features. Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. Geological names are based on the lithostratigraphic or lithodemic hierarchy. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition. This assesses visible features such as texture, structure, mineralogy. Superficial deposits are younger geological deposits formed during the most recent geological time; the Quaternary. These deposits rest on older rocks or deposits referred to as bedrock. The superficial deposits theme defines landscape areas (shown as polygons) attributed with a geological name and their deposit-type or lithological composition. Mass movement describes areas where deposits have moved down slope under gravity to form landslips. These landslips can affect bedrock, superficial or artificial ground. Mass movement deposits are described in the BGS Rock Classification Scheme Volume 4. However this data also includes foundered strata, where ground has collapsed due to subsidence (this is not described in the Rock Classification Scheme). Caution should be exercised with this data; historically BGS has not always recorded mass movement events and due to the dynamic nature of occurrence significant changes may have occurred since the data was released. Artificial (man-made) theme (shown as polygons) indicates areas where the ground surface has been significantly modified by human activity. Whilst artificial ground may not be considered as part of the 'real geology' of bedrock and superficial deposits it does affect them. Artificial ground impacts on the near surface ground conditions which are important to human activities and economic development. Due to the constantly changing nature of land use and re-use/redevelopment, caution must be exercised when using this data as it represents a snapshot in time rather than an evolving picture hence the data may become dated very rapidly. Linear features (shown as polylines) represent geological structural features e.g. faults, folds or landforms e.g. buried channels, glacial drainage channels at the ground or bedrock surface (beneath superficial deposits). Linear features are associated most closely with the bedrock theme either as an intrinsic part of it for example marine bands or affecting it in the case of faults. Landform elements are associated with both bedrock and superficial deposits. All five data themes are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are available under BGS data licence.
CEH Land Cover plus: Pesticides maps annual average pesticide applications across England, Wales and Scotland. The product provides application estimates for 162 different active ingredients including herbicides, insecticides, molluscicides and fungicides. It is produced at a 1km resolution with units of kg active ingredient applied per year, averaged between 2012 and 2017. Pesticide application rates (kg/km2/yr) are calculated for each of the crops grown in each 1km square, using information from CEH Land Cover® Plus: Crops 2015, 2016 and 2017 to determine where each crop is grown. Pesticide application data is provided by the Pesticide Usage Survey. Uncertainty maps are produced alongside each active ingredient map to quantify the level of confidence in the estimated applications. Uncertainty is quantified using the distribution of each parameter estimate obtained from the modelling method and is expressed relative to the total application. The product builds upon the Centre for Ecology & Hydrology (CEH) Land Cover® Plus: Crops product. These maps were created under the NERC funded ASSIST (Achieving Sustainable Agricultural Systems) project to enable exploration of the impacts of agrochemical usage on the environment, enabling farmers and policymakers to implement better, more sustainable agricultural practices.
Data identifying landscape areas (shown as polygons) attributed with geological names and rock type descriptions. The scale of the data is 1:625 000 scale providing a simplified interpretation of the geology. Onshore coverage is provided for all of England, Wales, Scotland, the Isle of Man and Northern Ireland. Bedrock geology describes the main mass of solid rocks forming the earth's crust. Bedrock is present everywhere, whether exposed at surface in outcrops or concealed beneath superficial deposits or water bodies. The bedrock geology of the UK is very diverse and includes three broad classes based on their mode of origin: igneous, metamorphic and sedimentary. The data includes attribution to identify each rock type (in varying levels of detail) as described in the BGS Rock Classification Scheme (volumes 1-3 ). The bedrock has formed over long periods of geological time, from the Archean eon some 7500 million years ago, to the relatively young Pliocene, 58 million years ago. The age of the rocks is identified in the data through their BGS lexicon name (published for each deposit at the time of the original survey or subsequent digital data creation). For stratified rocks i.e. arranged in sequence, this will usually be of a lithostratigraphic type. Other rock types for example intrusive igneous bodies will be of a lithodemic type. More information on the formal naming of UK rocks is available in the BGS Lexicon of Named Rock Units. Geological names are based on the lithostratigraphic or lithodemic hierarchy. The lithostratigraphic scheme arranges rock bodies into units based on rock-type and geological time of formation. Where rock-types do not fit into the lithostratigraphic scheme, for example intrusive, deformed rocks subjected to heat and pressure resulting in new or changed rock types; then their classification is based on their rock-type or lithological composition using visible features such as texture, structure, mineralogy. The data are available in vector format (containing the geometry of each feature linked to a database record describing their attributes) as ESRI shapefiles and are delivered free of charge under the terms of the Open Government Licence.
Data sources: England & Wales - Office for National Statistics (ONS)Scotland - National Records of Scotland (NRS)Northern Ireland - Northern Ireland Statistics and Research Agency (NISRA)Coverage: United Kingdom The boundaries used have been generalised using a point remove algorithm for web display using the following thresholds:Euro Regions - 250 metres Local Authorities - 150 metres Middle Super Output Area (MSOA) - 100 metres Lower Super Output Area (LSOA) - 75 metres Output Area (OA) - 50 metres The boundaries have been set to display at the following scale thresholds: Euro Regions - > 1:4,000,000 Local Authorities - 1:300,000 – 1:4,000,000 Middle Super Output Area (MSOA) - 1:100,000 – 1:300,000 Lower Super Output Area (LSOA) - 1:40,000 – 1:100,000 Output Area (OA) - < 1:40,000The currency of this data is 2011.
Not relevant Map covers England, Wales and Scotland and Northern Ireland. A vector map is available under licence. CEH LCM 2015 is available under the same conditions as outlined above.
A more sophisticated classification was developed for woodlands in Scotland due to the nature of the available historical sources. IMPORTANT. For Scottish woods, the category Ancient comprises woods recorded as being of semi-natural origin on EITHER the 1750 Roy maps OR the 1st Edition Ordnance Survey maps of 1860. This is due a) to the likelihood of the latter having been omitted from the Roy maps and b) to render the Scottish classification compatible with that for England and Wales.More information at the NatureScot websiteComplete metadata
Open Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map that shows the Nomenclature of Territorial Units for Statistics (NUTS) Levels 1, 2, and 3 in England and Wales as at January 2012 and in Scotland as at December 2008. (File Size - 7 MB)
Colourful and easy to use, Bartholomew’s maps became a trademark series. The maps were popular and influential, especially for recreation, and the series sold well, particularly with cyclists and tourists. To begin with, Bartholomew printed their half-inch maps in Scotland as stand-alone sheets known as 'District Sheets' and by 1886 the whole of Scotland was covered. They then revised the maps into an ordered set of 29 sheets covering Scotland in a regular format. This was first published under the title Bartholomew’s Reduced Ordnance Survey of Scotland. The half-inch maps of Scotland formed the principal content for Bartholomew's Survey Atlas of Scotland published in 1895. Bartholomew then moved south of the Border to the more lucrative but competitive market in England and Wales, whilst continuing to revise the Scottish sheets. This Bartholomew series at half-inch to the mile, covered Great Britain in 62 sheets in the 1940s, Bartholomew’s first to cover Great Britain at this scale (their previous series covering Scotland and then England and Wales). The series provides an attractive and useful snapshot of 1940s Britain. By this time, Bartholomew had altered the range of information on their maps compared to the 1900s. There were more categories of roads, Ministry of Transport road numbers were added, and new recreational features such as Youth Hostels and Golf Courses. Bartholomew’s topographic information was gathered partly from original Ordnance Survey maps, and partly from information sent in to Bartholomew from map users. One important user community for Bartholomew were cyclists. From the 1890s, Bartholomew entered into a formal relationship with the Cyclists’ Touring Club, then numbering around 60,500 cyclists, proposing that club members supplied Bartholomew with up-to-date information. In return, Bartholomew provided the CTC with discounted half-inch maps. The relationship worked very well, turning CTC members into an unofficial surveying army, feeding back reliable and accurate topographical information which Bartholomew would then use to update their maps. You can read more about this and see selected letters from cyclists at: http://digital.nls.uk/bartholomew/duncan-street-explorer/cyclists-touring-club.html.
Usually Bartholomew made revisions the sheets right up to the time of publication, so the date of publication is the best guide to the approximate date of the features shown on the map. You can view the dates of publication for the series at: https://maps.nls.uk/series/bart_half_great_britain.html