This map provides a spatial illustration of different means by which racial segregation was historically reinforced across the cities of Minneapolis and Saint Paul. The map focuses largely on data from the 1940s, and includes the following data layers:Population by Race - Data based on 1940 US Census that shows the percentage of the non-white population at the census tract level. This data was downloaded from NHGIS, with a spatial join performed to combine the census table and historic tracts (Citation: Steven Manson, Jonathan Schroeder, David Van Riper, Katherine Knowles, Tracy Kugler, Finn Roberts, and Steven Ruggles, IPUMS National Historical Geographic Information System: Version 18.0. Minneapolis, MN: IPUMS. 2023).HOLC Map Zones by Number of Covenants - This layer displays a summary of the number of racially exclusive covenants within the area of zones designated by grade on HOLC redlining maps. The polygons of each grade zone were digitized by the Mapping Inequality Project (University of Richmond Digital Scholarship Lab) and are symbolized by the grade colors on the original maps. The data on racially exclusive covenants in Twin Cities neighborhoods was downloaded from the Mapping Prejudice Project (University of Minnesota) and is symbolized by the size of each feature.Greenbook Locations - This layer displays locations included on Greenbook travel guides from the 1940s, which indicate safe businesses for African American travelers to American Cities. This data comes from a service layer created by Shana Crosson (University of Minnesota).This spatial extent of this map is limited to the cities of Minneapolis and Saint Paul. It was created as part of an in-class exercise in February of 2024.
http://www.opendefinition.org/licenses/cc-by-sahttp://www.opendefinition.org/licenses/cc-by-sa
Most of the text in this description originally appeared on the Mapping Inequality Website. Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers,
"HOLC staff members, using data and evaluations organized by local real estate professionals--lenders, developers, and real estate appraisers--in each city, assigned grades to residential neighborhoods that reflected their "mortgage security" that would then be visualized on color-coded maps. Neighborhoods receiving the highest grade of "A"--colored green on the maps--were deemed minimal risks for banks and other mortgage lenders when they were determining who should received loans and which areas in the city were safe investments. Those receiving the lowest grade of "D," colored red, were considered "hazardous."
Conservative, responsible lenders, in HOLC judgment, would "refuse to make loans in these areas [or] only on a conservative basis." HOLC created area descriptions to help to organize the data they used to assign the grades. Among that information was the neighborhood's quality of housing, the recent history of sale and rent values, and, crucially, the racial and ethnic identity and class of residents that served as the basis of the neighborhood's grade. These maps and their accompanying documentation helped set the rules for nearly a century of real estate practice. "
HOLC agents grading cities through this program largely "adopted a consistently white, elite standpoint or perspective. HOLC assumed and insisted that the residency of African Americans and immigrants, as well as working-class whites, compromised the values of homes and the security of mortgages. In this they followed the guidelines set forth by Frederick Babcock, the central figure in early twentieth-century real estate appraisal standards, in his Underwriting Manual: "The infiltration of inharmonious racial groups ... tend to lower the levels of land values and to lessen the desirability of residential areas."
These grades were a tool for redlining: making it difficult or impossible for people in certain areas to access mortgage financing and thus become homeowners. Redlining directed both public and private capital to native-born white families and away from African American and immigrant families. As homeownership was arguably the most significant means of intergenerational wealth building in the United States in the twentieth century, these redlining practices from eight decades ago had long-term effects in creating wealth inequalities that we still see today. Mapping Inequality, we hope, will allow and encourage you to grapple with this history of government policies contributing to inequality."
Data was copied from the Mapping Inequality Website for communities in Western Pennsylvania where data was available. These communities include Altoona, Erie, Johnstown, Pittsburgh, and New Castle. Data included original and georectified images, scans of the neighborhood descriptions, and digital map layers. Data here was downloaded on June 9, 2020.
Throughout history, government and industries have neglected investments in some neighborhoods, especially communities of color, who are more likely to have fewer resources.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The aim of this article and associate Main Map is to highlight the social and economic diversity of the Ruhr area in Germany through the use of multivariate analysis and visualization. To this end we combine two different datasets. Demographic parameters stemming from the 2011 German census and socioeconomic indicators obtained from the microdialog of the German post service. Due to the different spatial resolution of the two datasets, we aggregated the data at the neighbourhood (Stadtteil) level. The multivariate analysis was carried out at this scale using Self-Organizing Maps (SOM), an artificial neuron network, which uses an unsupervised learning mechanism for projecting multidimensional data in a low (in our case two) dimensional space. First we used a visualization technique to better comprehend the relationship between our observations via reducing the dimensionality or complexity of our input data. At the same time, we established a global statistical relationships between the indicators. Finally, using these results we built clusters for revealing the distribution of socioeconomic profiles over the whole region. Our results demonstrate that structural inequalities resulting from the processes of industrialization/deindustrialization in the region are still widely persistent and result in characteristic patterns along the three main rivers, the Lippe, Emscher and the Ruhr. In close connection with this, three types of societal segregation patterns become clearly evident in the Ruhr area, namely nationality, age and economic power.
Georectified HOLC map of greater Boston.
This is a historical measure for Strategic Direction 2023. For more data on Austin demographics please visit austintexas.gov/demographics.
The purpose of this dataset is to account for the number and percentage of Census tracts that are economically and/or racially segregated. The data was derived from a calculation originating with data from the 2019 U.S. Census Bureau, American Communities Survey (5yr). The row level data indicates the count or percentage of Census tracts. This data can be used to show the share of Census tracts that are not demographically reflective of the City of Austin’s demographics.
View more details and insights related to this measure on the story page: https://data.austintexas.gov/stories/s/Percentage-of-Census-tracts-that-are-economically-/xf9r-hzjn/
Between 1935 and 1940 the federal government’s Home Owners’ Loan Corporation (HOLC) classified the neighborhoods of 239 cities according to their perceived investment risk. This practice has since been referred to as “redlining,” as the neighborhoods classified as being the highest risk for investment were often colored red on the resultant maps. The Mapping Inequality project, a collaboration of faculty at the University of Richmond’s Digital Scholarship Lab, the University of Maryland’s Digital Curation Innovation Center, Virginia Tech, and Johns Hopkins University has digitized and georectified all 239 HOLC maps and made them publicly available, including the HOLC map of Boston from 1938. The Boston Area Research Initiative has coordinated (i.e., spatial joined) the districts from the 1938 HOLC map of Boston with census tracts from the 2010 U.S. Census. This dataset contains the original shapefile and the spatially joined tract-level data.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Note: Effect span indicates the genetic length that a SDL would cause segregation distortion of makers within the region. “+” represents segregation distortion skews to more visible alleles for markers in the affected genome region, and “-” indicates segregation distortion skews to less visible alleles for markers in the affected genome region.The SDLs detected based on the established genetic maps.
In 1934, the Federal Housing Administration created a financial mortgage system that rated mortgage risks for properties based on various criteria but was centered on race and ethnicity. This rating system propagated racial segregation that in many ways persists today.
The FHA Underwriting Handbook incorporated color-coded real estate investment maps that classified neighborhoods based on assumptions about a community, primarily their racial and ethnic composition, and not on the financial ability of the residents to satisfy the obligations of a mortgage loan. These maps, created by the Home Owners Loan Corporation (HOLC) were used to determine where mortgages could or could not be issued.
The neighborhoods were categoriezed into four types:
Type A : Best - newer or areas stil in demand
Type B : Still Desirable - areas expected to remain stable for many years
Type C : Definitely Declining - areas in transition
Type D : Hazardous - older areas considered risky
Neighborhoods shaded red were deemed too hazardous for federally-back loans. These "red-lined" neighborhoods were where most African American residents lived.
Many have argued tha the HOLC maps institutionalized discriminating lending practices which not only perpetuated racial segregation but also led to neighborhood disinvestment. Today, neighborhoods classified as Type C and Type D in 2934 make up the majority of neighborhoods in 2016 that are Areas of Concentrated Poverty where 50% or More are People of Color.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The prevalence of genetic diversity in switchgrass germplasm can be exploited to capture favorable alleles that increase its range of adaptation and biomass yield. The objectives of the study were to analyze the extent of polymorphism and patterns of segregation distortion in two F1 populations and use the linkage maps to locate QTL for biomass yield. We conducted genotyping-by-sequencing on two populations derived from crosses between the allotetraploid lowland genotype AP13 (a selection from “Alamo”) and coastal genotype B6 (a selection from PI 422001) with 285 progeny (AB population) and between B6 and the allotetraploid upland VS16 (a selection from “Summer”) with 227 progeny (BV population). As predictable from the Euclidean distance between the parents, a higher number of raw variants was discovered in the coastal × upland BV cross (6 M) compared to the lowland × coastal AB cross (2.5 M). The final number of mapped markers was 3,107 on the BV map and 2,410 on the AB map. More segregation distortion of alleles was seen in the AB population, with 75% distorted loci compared to 11% distorted loci in the BV population. The distortion in the AB population was seen across all chromosomes in both the AP13 and B6 maps and likely resulted from zygotic or post-zygotic selection for increased levels of heterozygosity. Our results suggest lower genetic compatibility between the lowland AP13 and the coastal B6 ecotype than between B6 and the upland ecotype VS16. Four biomass QTLs were mapped in the AB population (LG 2N, 6K, 6N, and 8N) and six QTLs in the BV population [LG 1N (2), 8N (2), 9K, and 9N]. The QTL, with the largest and most consistent effect across years, explaining between 8.4 and 11.5% of the variation, was identified on 6N in the AP13 map. The cumulative effect of all the QTLs explained a sizeable portion of the phenotypic variation in both AB and BV populations and the markers associated with them may potentially be used for the marker-assisted improvement of biomass yield. Since switchgrass improvement is based on increasing favorable allele frequencies through recurrent selection, the transmission bias within individuals and loci needs to be considered as this may affect the genetic gain if the favorable alleles are distorted.
Georectified HOLC map of greater Boston.
https://opensource.org/licenses/GPL-3.0https://opensource.org/licenses/GPL-3.0
This study uses a boundary design and propensity score methods to study the effects of the 1930s-era HOLC “redlining” maps on the long-run trajectories of urban neighborhoods. The maps led to reduced homeownership rates, house values, and rents and increased racial segregation in later decades. A comparison on either side of a city-level population cutoff that determined whether maps were drawn finds broadly similar conclusions. These results suggest the HOLC maps had meaningful and lasting effects on the development of urban neighborhoods through reduced credit access and subsequent disinvestment.
The population of some areas in the United States is dominated heavily by one racial or ethnic group. These areas stand out on this map. In other areas, one group may be the majority, but the population is much more evenly balanced. Other areas have one group claiming a plurality, but not a majority.In each neighborhood, county, and state, this map shows which race or ethnicity is predominant, and by how much. It uses map colors to identify the predominant racial or ethnic group in specific areas by county and tract. The strength of the color indicates the extent to which one group is dominant over the next most populous.The data shown is from the U.S. Census Bureau's SF1 and TIGER data sets for 2010, and Esri. Concept and colors by Andrew Skinner.Original data sourced from: https://nation.maps.arcgis.com/apps/OnePane/splash/index.html?appid=602849530f5d4b6781ba37393144728c
FalsePositiveEstimationSee ReadMe file.SublineCreationSegDistSee ReadMe file.SterilityREADME
Home Owners’ Loan Corporation (HOLC) maps illustrated patterns of segregation in United States cites in the 1930s. As the causes and drivers of demographic and land use segregation vary over years, these maps provide an important spatial lens in determining how patterns of segregation spatially and temporally developed during the course of the past century. Using a high-resolution land-use time series (1937-2018) of Denver Colorado USA, in conjunction with 80 years of U.S. Census data, we found divergent land-use and demographics patterns across HOLC categories were both pre-existent to the establishment of HOLC mapping, and continued to develop over time. Over this period, areas deemed “declining” or “hazardous” had more diverse land use compared “desirable” areas. “Desirable” areas were dominated by one land-use type (single-family residential), while single-family residential diminished in prominence in the “declining/hazardous” areas. This divergence became more established decades after HOLC mapping, with impact to racial metrics and low-income households. We found changes in these demographic patterns also occurred between 2000 and 2019, highlighting how processes like gentrification can develop from both rapid demographic and land-use changes. This study demonstrates how the legacy of urban segregation develops over decades and can simultaneously persist in some neighborhoods while providing openings for fast-paced gentrification in others.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This repository contains the code used for the study: "Variant Filters Using Segregation Information Improve Mapping of Nectar-Production Genes in Sunflower (Helianthus annuus L.)". The study evaluates the impact of biologically informed variant filtering strategies on QTL mapping, demonstrating improved identification of candidate genes related to nectar production.ContentsCandidateGeneGetter.shThis shell script extracts candidate genes from a GFF annotation file (HAN412_Eugene_curated_v1_1.gff3) based on genomic regions specified in the Windows file. For each region (defined by chromosome, start position, and end position), it identifies all genes falling entirely within that window, counts them, and outputs the region information along with a comma-separated list of gene IDs to AshleyCandidateGenes.txt.Chi_square_template.RThis R script filters genomic markers using a chi-square test based on expected segregation ratios. The script is designed as a template that can be adjusted for different population types by modifying the expected ratios. The default values (48.4375% homozygous for each allele and 3.125% heterozygous) are set for F6 inbred lines, but can be modified to match the segregation expectations of any population being filtered. It retains markers whose observed genotype frequencies do not significantly deviate from expectations (p > 0.1), removing markers with segregation distortion that could interfere with accurate QTL identification.mapping.RThis R script performs QTL (Quantitative Trait Locus) mapping using the qtl package. It includes code for three distinct "Approaches," likely representing analyses performed on different datasets or using varied marker filtering strategies (Approach1.csv, Approach2.csv, Approach3.csv). The script covers data loading, genetic map estimation and refinement (including custom marker thinning functions and visualization of recombination frequencies), calculation of genotype probabilities, performing 1D (scanone), Composite Interval (cim), and 2D (scantwo) QTL scans, significance testing via permutations, and refining QTL models (fitqtl, refineqtl).marker_filt_dist.RThis R script filters genomic markers from a VCF file by removing markers within 125,000 bp of each other. It optimizes marker density while maintaining genome-wide coverage, ensuring the filtered set is suitable for QTL mapping and identifying genomic regions linked to nectar-production traits in sunflower.proc freq marker data.sasThis SAS script filters genetic markers based on segregation patterns. It utilizes PROC FREQ to calculate genotype frequencies for biallelic markers (assuming three genotype classes) and performs chi-square tests against expected segregation ratios (e.g., specified test probabilities like 0.484375, 0.03125, 0.484375, corresponding to F6 expectations). Markers significantly deviating from these expectations (p < 0.10 in this script) are identified and potentially excluded from downstream analyses, similar in principle to Chi_square_template.R but implemented within the SAS environment for specific datasets (markers.bialw).thinning_loop.RThis R script thins genomic markers based on inter-marker distance thresholds, identifying and removing redundant or closely spaced markers. It helps refine marker sets to balance genome coverage and computational efficiency, improving QTL mapping precision in the study of sunflower nectar-production traits. (Note: Similar custom functions are also included within mapping.R).WindowsThis plain text file serves as input for the CandidateGeneGetter.sh script. Each line defines a genomic window with three columns: Chromosome, Start Position, and End Position. These windows likely represent regions of interest identified through QTL mapping or other analyses.CitationBarstow, A.C., McNellie, J.P., Smart, B.C., Keepers, K.G., Prasifka, J.R., Kane, N.C., & Hulke, B.S. (2025). Variant filters using segregation information improve mapping of nectar-production genes in sunflower (Helianthus annuus L.). The Plant Genome.
From:Robert K. Nelson, LaDale Winling, Richard Marciano, Nathan Connolly, et al., “Mapping Inequality,” American Panorama, ed. Robert K. Nelson and Edward L. Ayers, accessed May 26, 2021
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
The mapping depicts the relative abundance of segregated ice in upper permafrost at a national scale. The mapping is based on modelling by O'Neill et al. (2019) (https://doi.org/10.5194/tc-13-753-2019). The mapping offers an improved depiction of ground ice in Canada at a broad scale, incorporating current knowledge on the associations between geological and environmental conditions and ground ice type and abundance. It provides a foundation for hypothesis testing related to broad-scale controls on ground ice formation, preservation, and melt.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
180K SoyaSNP array genotype data for construction of genetic maps in WH, HI, WI, and II populations -- Details of four genetic maps, including raw segregation data
This map shows the diversity index of the population in the USA in 2010 by block group. "The diversity index summarizes racial and ethnic diversity. The index shows the likelihood that two people, chosen at random from the same area, belong to different race or ethnic groups. The index ranges from 0 (no diversity) to 100 (complete diversity). For example, a diversity index of 59 means there is a 59 percent probability that two people randomly chosen would belong to different race or ethnic groups." -Esri DemographicsIt calls to the 2010 Census service with attributes related to race and ethnicity. The field PctNonWhite calculates the total percentage of non-white population by subtracting the Total white population from the reported population total. This yields the total non-white population (Field "TotNonWhite"). This number was then divided by the total reported population and multipled by 100 to yield a percetage of the population that is non-white (Field "PctNonWhite"). Original data sourced from: https://tpc.maps.arcgis.com/home/item.html?id=04a8fbbf59aa48ebbc646ba2bc8d9b1c
This map provides a spatial illustration of different means by which racial segregation was historically reinforced across the cities of Minneapolis and Saint Paul. The map focuses largely on data from the 1940s, and includes the following data layers:Population by Race - Data based on 1940 US Census that shows the percentage of the non-white population at the census tract level. This data was downloaded from NHGIS, with a spatial join performed to combine the census table and historic tracts (Citation: Steven Manson, Jonathan Schroeder, David Van Riper, Katherine Knowles, Tracy Kugler, Finn Roberts, and Steven Ruggles, IPUMS National Historical Geographic Information System: Version 18.0. Minneapolis, MN: IPUMS. 2023).HOLC Map Zones by Number of Covenants - This layer displays a summary of the number of racially exclusive covenants within the area of zones designated by grade on HOLC redlining maps. The polygons of each grade zone were digitized by the Mapping Inequality Project (University of Richmond Digital Scholarship Lab) and are symbolized by the grade colors on the original maps. The data on racially exclusive covenants in Twin Cities neighborhoods was downloaded from the Mapping Prejudice Project (University of Minnesota) and is symbolized by the size of each feature.Greenbook Locations - This layer displays locations included on Greenbook travel guides from the 1940s, which indicate safe businesses for African American travelers to American Cities. This data comes from a service layer created by Shana Crosson (University of Minnesota).This spatial extent of this map is limited to the cities of Minneapolis and Saint Paul. It was created as part of an in-class exercise in February of 2024.