Facebook
TwitterThe Crop Map of England (CROME) is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 50 main crop types, grassland, and non-agricultural land covers, such as Trees, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 and Sentinel-2 images during the period late January 2017 – August 2017. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. Refer to the CROME specification document. Attribution statement: © Rural Payments Agency
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
The Crop Map of England (CROME) South East is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 20 main crop types, grassland, and non-agricultural land covers, such as Woodland, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 and Sentinel-2 images during the period late January 2016 – August 2016. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. refer to the CROME specification document Attribution statement: © Rural Payments Agency
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the output areas in the South East Region of England as at December 2011. (File Size - 29 MB)
Facebook
TwitterMaps of rural areas in the south-east region (Census 2001).
Defra statistics: rural
Email mailto:rural.statistics@defra.gov.uk">rural.statistics@defra.gov.uk
<p class="govuk-body">You can also contact us via Twitter: <a href="https://twitter.com/DefraStats" class="govuk-link">https://twitter.com/DefraStats</a></p>
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
This dataset is a single large shapefile of the buildings in southeast England. You can use it to make gorgeous maps or join it with other datasets for some really nice visualizations.
This dataset was kindly made available by Alasdair Rae, with the underlying raw data from the British Ordnance Survey. You can find the original shapefiles here, plus shapefiles for the rest of the UK.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
This dataset consists of an interactive map (and supporting guidance) containing background information that informs how we understand flood risk across the South East River Basin District. The map shows the River Basin District, component river basins and the coastline together with layers showing land use and topography.
This dataset together with equivalent datasets for each River Basin District, supports the Preliminary Flood Risk Assessment for England report which has been written to meet the requirements of the Flood Risk Regulations (2009) - to complete an assessment of flood risk and produce supporting maps of river catchments.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the Rural Urban Classification (2011) of the MSOAs in the South East Region. (File Size - 1 MB)
Facebook
TwitterA PDF map showing the middle layer super output areas in the South East Region of England as at December 2011. (File Size - 26 MB)
Facebook
TwitterA PDF map showing the lower layer super output areas in the South East Region of England as at December 2011. (File Size - 27 MB)
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Roads in central southern England c.1675, constructed from John Ogilby's strip maps.The .kml file gives a crude preview; please download the shapefiles for discrimination between major routes, minor routes, and speculative spurs.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
A PDF map showing the Rural Urban Classification (2011) of the LSOAs in the South East Region. (File Size - 2 MB)
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map showing the lower layer super output areas in the South East Region of England as at December 2011. (File Size - 27 MB)
Facebook
TwitterThis map was produced as part of the site selection process for the Greater Thames Estuary AoS.
It aimed to characterise the habitat features of the AoS, and to identify the areas of Annex I habitat present.
Original classification system: Marine Habitat Classification for Britain and Ireland
Survey Techniques: Sidescan sonars, Towed video, grabs and acoustic ground discrimination systems (AGDS) were used to determine the biotope
Facebook
TwitterThis layer shows data collected mainly by the Geochemical Baseline Survey of the Environment (G-BASE) programme. Geochemical data are available for soil samples for the Humber-Trent and East Anglia atlas areas (see the Geochemical atlas areas layer). Samples for East Midlands and part of Southeast England have been collected and are currently either undergoing analysis or data conditioning. More than twenty urban areas have also been sampled and top soil analyses are available for these urban areas (Belfast, Cardiff, Corby, Coventry, Derby, Doncaster, Glasgow, Hull, Ipswich, Leicester, Lincoln, Manchester, Mansfield, Northampton, Nottingham, Peterborough, Scunthorpe, Sheffield, Swansea, Stoke, Telford, Wolverhampton and York). Regional samples are collected at an average density of one site per 2 square kilometres, urban sampling is at a density of 4 samples per square kilometre. Top soil samples are collected at a depth of 5 - 20cm. It is sieved through a 2mm mesh and milled to less than 150 microns. The data include analyses for some or all of the following elements by XRFS: Mg, P, K, Ca, Ti, Mn, Fe, V, Cr, Co, Ba, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Pb, Bi, Th, U, Ag, Cd, Sn, Sb, Cs, La, Ce, Ge, Sc, Se, Br, Hf, Ta, W, Tl, Te and I. Loss on Ignition (LOI) and pH (in a slurry of 0.01 M CaCl2 ) is now routinely determined on 50% of regional and all urban samples.
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This data is experimental, see the ‘Access Constraints or User Limitations’ section for more details. This dataset has been generalised to 10 metre resolution where it is still but the space needed for downloads will be improved.A set of UK wide estimated travel area geometries (isochrones), from Output Area (across England, Scotland, and Wales) and Small Area (across Northern Ireland) population-weighted centroids. The modes used in the isochrone calculations are limited to public transport and walking. Generated using Open Trip Planner routing software in combination with Open Street Maps and open public transport schedule data (UK and Ireland).The geometries provide an estimate of reachable areas by public transport and on foot between 7:15am and 9:15am for a range of maximum travel durations (15, 30, 45 and 60 minutes). For England, Scotland and Wales, these estimates were generated using public transport schedule data for Tuesday 15th November 2022. For Northern Ireland, the date used is Tuesday 6th December 2022.The data is made available as a set of ESRI shape files, in .zip format. This corresponds to a total of 17 files; one for Northern Ireland, one for Wales, eleven for England (one per English region, where London, and North West have been split into two files each) and four for Scotland (one per NUTS2 region, where the ‘North-East’ and ‘Highlands and Islands’ have been combined into one shape file, and South West Scotland has been split into two files).The shape files contain the following attributes. For further details, see the ‘Access Constraints or User Limitations’ section:AttributeDescriptionOA21CD or SA2011 or OA11CDEngland and Wales: The 2021 Output Area code.Northern Ireland: The 2011 Small Area code.Scotland: The 2011 Output Area code.centre_latThe population-weighted centroid latitude.centre_lonThe population-weighted centroid longitude.node_latThe latitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_lonThe longitude of the nearest Open Street Map “highway” node to the population-weighted centroid.node_distThe distance, in meters, between the population-weighted centroid and the nearest Open Street Map “highway” node.stop_latThe latitude of the nearest public transport stop to the population-weighted centroid.stop_lonThe longitude of the nearest public transport stop to the population-weighted centroid.stop_distThe distance, in metres, between the population-weighted centroid and the nearest public transport stop.centre_inBinary value (0 or 1), where 1 signifies the population-weighted centroid lies within the Output Area/Small Area boundary. 0 indicates the population-weighted centroid lies outside the boundary.node_inBinary value (0 or 1), where 1 signifies the nearest Open Street Map “highway” node lies within the Output Area/Small Area boundary. 0 indicates the nearest Open Street Map node lies outside the boundary.stop_inBinary value (0 or 1), where 1 signifies the nearest public transport stop lies within the Output Area/Small Area boundary. 0 indicates the nearest transport stop lies outside the boundary.iso_cutoffThe maximum travel time, in seconds, to construct the reachable area/isochrone. Values are either 900, 1800, 2700, or 3600 which correspond to 15, 30, 45, and 60 minute limits respectively.iso_dateThe date for which the isochrones were estimated, in YYYY-MM-DD format.iso_typeThe start point from which the estimated isochrone was calculated. Valid values are:from_centroid: calculated using population weighted centroid.from_node: calculated using the nearest Open Street Map “highway” node.from_stop: calculated using the nearest public transport stop.no_trip_found: no isochrone was calculated.geometryThe isochrone geometry.iso_hectarThe area of the isochrone, in hectares.Access constraints or user limitations.These data are experimental and will potentially have a wider degree of uncertainty. They remain subject to testing of quality, volatility, and ability to meet user needs. The methodologies used to generate them are still subject to modification and further evaluation.These experimental data have been published with specific caveats outlined in this section. The data are shared with the analytical community with the purpose of benefitting from the community's scrutiny and in improving the quality and demand of potential future releases. There may be potential modification following user feedback on both its quality and suitability.For England and Wales, where possible, the latest census 2021 Output Area population weighted centroids were used as the starting point from which isochrones were calculated.For Northern Ireland, 2011 Small Area population weighted centroids were used as the starting point from which isochrones were calculated. Small Areas and Output Areas contain a similar number of households within their boundaries. 2011 data was used because this was the most up-to-date data available at the time of generating this dataset. Population weighted centroids for Northern Ireland were calculated internally but may be subject to change - in the future we aim to update these data to be consistent with Census 2021 across the UK.For Scotland, 2011 Output Area population-weighted centroids were used as the starting point from which isochrones were calculated. 2011 data was used because this was the most up-to-date data available at the time of work.The data for England, Scotland and Wales are released with the projection EPSG:27700 (British National Grid).The data for Northern Ireland are released with the projection EPSG:29902 (Irish Grid).The modes used in the isochrone calculations are limited to public transport and walking. Other modes were not considered when generating this data.A maximum value of 1.5 kilometres walking distance was used when generating isochrones. This approximately represents typical walking distances during a commute (based on Department for Transport/Labour Force Survey data and Travel Survey for Northern Ireland technical reports).When generating Northern Ireland data, public transport schedule data for both Northern Ireland and Republic of Ireland were used.Isochrone geometries and calculated areas are subject to public transport schedule data accuracy, Open Trip Planner routing methods and Open Street Map accuracy. The location of the population-weighted centroid can also influence the validity of the isochrones, when this falls on land which is not possible or is difficult to traverse (e.g., private land and very remote locations).The Northern Ireland public transport data were collated from several files, and as such required additional pre-processing. Location data are missing for two bus stops. Some services run by local public transport providers may also be missing. However, the missing data should have limited impact on the isochrone output. Due to the availability of Northern Ireland public transport data, the isochrones for Northern Ireland were calculated on a comparable but slight later date of 6th December 2022. Any potential future releases are likely to contained aligned dates between all four regions of the UK.In cases where isochrones are not calculable from the population-weighted centroid, or when the calculated isochrones are unrealistically small, the nearest Open Street Map ‘highway’ node is used as an alternative starting point. If this then fails to yield a result, the nearest public transport stop is used as the isochrone origin. If this also fails to yield a result, the geometry will be ‘None’ and the ‘iso_hectar’ will be set to zero. The following information shows a further breakdown of the isochrone types for the UK as a whole:from_centroid: 99.8844%from_node: 0.0332%from_stop: 0.0734%no_trip_found: 0.0090%The term ‘unrealistically small’ in the point above refers to outlier isochrones with a significantly smaller area when compared with both their neighbouring Output/Small Areas and the entire regional distribution. These reflect a very small fraction of circumstances whereby the isochrone extent was impacted by the centroid location and/or how Open Trip Planner handled them (e.g. remote location, private roads and/or no means of traversing the land). Analysis showed these outliers were consistently below 100 hectares for 60-minute isochrones. Therefore, In these cases, the isochrone point of origin was adjusted to the nearest node or stop, as outlined above.During the quality assurance checks, the extent of the isochrones was observed to be in good agreement with other routing software and within the limitations stated within this section. Additionally, the use of nearest node, nearest stop, and correction of ‘unrealistically small areas’ was implemented in a small fraction of cases only. This culminates in no data being available for 8 out of 239,768 Output/Small Areas.Data is only available in ESRI shape file format (.zip) at this release.https://www.openstreetmap.org/copyright
Facebook
TwitterThis layer of the map based index (GeoIndex) shows the boundaries of the G-BASE (Geochemical Baseline Survey of the Environment) project mapping areas which are reported as geochemical atlases. The majority of atlases are for stream sediments, with data on stream waters and soils included when available. Separate stream sediment, soil and stream water atlases have been published for Wales. Wales and north of Humber-Trent are reported as hardcopy generally A3 sized publications. The Humber-Trent atlas is available as a pdf file on a CD-ROM. Atlases are available for Shetland, Orkney, South Orkney and Caithness, Sutherland, Hebrides, Great Glen, East Grampians, Argyll, Southern Scotland, Lake District, NE England, NW England and N Wales, Humber-Trent, Wales and West Midlands. Atlases are not available yet for the East Midlands, East Anglia, SE England and SW England.
Facebook
TwitterOpen Government Licence 3.0http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3/
License information was derived automatically
A PDF map showing the middle layer super output areas in the South East Region of England as at December 2011. (File Size - 26 MB)
Facebook
Twitterhttps://www.ons.gov.uk/methodology/geography/licenceshttps://www.ons.gov.uk/methodology/geography/licences
This file contains the NHS England (Region, Local Office) (NHSRLO) names and codes, as at 1 April 2018. (File size - 16KB).This contains the four new NHSRLOs of NHS England South East (Hampshire, Isle of Wight and Thames Valley) (E39000041), NHS England South East (Kent, Surrey and Sussex) (E39000042), NHS England South West (South West North) (E39000043) and NHS England South West (South West South) (E39000044).Field Names - NHSRLO18CD, NHSRLO18CDH, NHSRLO18MField Types - Text, Text, Text Field Lengths - 9, 3, 67REST URL of Feature Access Service – https://services1.arcgis.com/ESMARspQHYMw9BZ9/arcgis/rest/services/NHS_England_Region_Local_Office_April_2018_Names_and_Codes_in_England_2022/FeatureServer
Facebook
Twitterhttp://purl.org/coar/access_right/c_abf2http://purl.org/coar/access_right/c_abf2
https://eidc.ceh.ac.uk/licences/OGL/plainhttps://eidc.ceh.ac.uk/licences/OGL/plain
The data consists of a matrix of twelve land cover classes by 20 stream sites with the area of each land cover class given in km^2. The areal coverage (km2) of each of twelve land cover classes was recorded for each of 20 chalkstream catchments in southern England. The 20 discrete chalkstream catchments are distributed along the white chalk geology extending from Dorset in the south west, through Wiltshire, to Hampshire in the north east, to cover a gradient of catchment land cover intensification from extensive calcareous grassland and woodland through to arable and improved grasslands. These data were acquired in July 2012. This dataset was created as part of work package 3.1 of the Wessex Biodiversity & Ecosystem Service Sustainability (BESS) project. Full details about this dataset can be found at https://doi.org/10.5285/b8a66584-da67-49e5-a0b0-d8e0b3e75b99
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This layer of the map based index (GeoIndex) shows the locations where stream sediment samples are collected under the G-BASE (Geochemical Baseline Survey of the Environment) programme at an average density of approximately one site per 1.5 km square. Analytical data for the minus 150 micron fraction of stream sediment samples are available for some or all of the following elements by a variety of analytical methods (now predominantly XRFS): Mg, P, K, Ca, Ti, Mn, Fe, V, Cr, Co, Ba, Ni, Cu, Zn, Ga, As, Se, Rb, Sr, Y, Zr, Nb, Mo, Pb, Bi, Th, U, Ag, Cd, Sn, Sb, Cs, La, Ce, Ge, Sc, Se, Br, Hf, Ta, W, Tl, Te and I. Stream sediment samples were also collected by the now defunct MRP programme and analytical data for the minus 150 micron fraction of samples is available for a variety of elements including Ag, As, Au, Ba, Bi, Ca, Ce, Cu, Fe, Mn, Mo, Ni, Pb, Sb, Sn, Sr, Ti, U, V, W, Zn and Zr. Some of the MRP samples may have undergone several stages of analysis, some for inclusion in the G-BASE project. The samples may have been assigned a different sample number but will plot at the same site. Data is available for most Great Britain, apart from some parts of Southern England which have yet to be surveyed.
Facebook
TwitterThe Crop Map of England (CROME) is a polygon vector dataset mainly containing the crop types of England. The dataset contains approximately 32 million hexagonal cells classifying England into over 50 main crop types, grassland, and non-agricultural land covers, such as Trees, Water Bodies, Fallow Land and other non-agricultural land covers. The classification was created automatically using supervised classification (Random Forest Classification) from the combination of Sentinel-1 and Sentinel-2 images during the period late January 2017 – August 2017. The dataset was created to aid the classification of crop types from optical imagery, which can be affected by cloud cover. The results were checked against survey data collected by field inspectors and visually validated. Refer to the CROME specification document. Attribution statement: © Rural Payments Agency