You can see the numbers by sex, age, race and ethnicity, trends over time, survival, and prevalence.Link: https://gis.cdc.gov/Cancer/USCS/#/AtAGlance
The Digital Geologic Map of the U.S. Geological Survey Mapping in the Western Portion of Amistad National Recreation Area, Texas is composed of GIS data layers complete with ArcMap 9.3 layer (.LYR) files, two ancillary GIS tables, a Map PDF document with ancillary map text, figures and tables, a FGDC metadata record and a 9.3 ArcMap (.MXD) Document that displays the digital map in 9.3 ArcGIS. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) funded program that is administered by the NPS Geologic Resources Division (GRD). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: Eddie Collins, Amanda Masterson and Tom Tremblay (Texas Bureau of Economic Geology); Rick Page (U.S. Geological Survey); Gilbert Anaya (International Boundary and Water Commission). Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation sections(s) of this metadata record (wpam_metadata.txt; available at http://nrdata.nps.gov/amis/nrdata/geology/gis/wpam_metadata.xml). All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.1. (available at: http://science.nature.nps.gov/im/inventory/geology/GeologyGISDataModel.cfm). The GIS data is available as a 9.3 personal geodatabase (wpam_geology.mdb), and as shapefile (.SHP) and DBASEIV (.DBF) table files. The GIS data projection is NAD83, UTM Zone 14N. The data is within the area of interest of Amistad National Recreation Area.
Important Note: This item is in mature support as of June 2021 and is no longer updated. This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada
This map is for use in the Intermountain Region Website.
USGS developed The National Map Gazetteer as the Federal and national standard (ANSI INCITS 446-2008) for geographic nomenclature based on the Geographic Names Information System (GNIS). The National Map Gazetteer contains information about physical and cultural geographic features, geographic areas, and locational entities that are generally recognizable and locatable by name (have achieved some landmark status) and are of interest to any level of government or to the public for any purpose that would lead to the representation of the feature in printed or electronic maps and/or geographic information systems. The dataset includes features of all types in the United States, its associated areas, and Antarctica, current and historical, but not including roads and highways. The dataset holds the federally recognized name of each feature and defines the feature location by state, county, USGS topographic map, and geographic coordinates. Other attributes include names or spellings other than the official name, feature classification, and historical and descriptive information. The dataset assigns a unique, permanent feature identifier, the Feature ID, as a standard Federal key for accessing, integrating, or reconciling feature data from multiple data sets. This dataset is a flat model, establishing no relationships between features, such as hierarchical, spatial, jurisdictional, organizational, administrative, or in any other manner. As an integral part of The National Map, the Gazetteer collects data from a broad program of partnerships with federal, state, and local government agencies and other authorized contributors. The Gazetteer provides data to all levels of government and to the public, as well as to numerous applications through a web query site, web map, feature and XML services, file download services, and customized files upon request. The National Map download client allows free downloads of public domain geographic names data by state in a pipe-delimited text format. For additional information on the GNIS, go to http://nationalmap.gov/gnis.html.
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi.org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map database because geologic units have not been reconciled across State boundaries. However, the geologic data contained in each State geologic map have been standardized to allow spatial analyses of lithology, age, and stratigraphy at a national scale. A full discussion of the procedures and methodology used to create this dataset is available in the accompanying report: Horton, J.D., San Juan, C.A., and Stoeser, D.B, 2017, The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (ver. 1.1, August 2017): U.S. Geological Survey Data Series 1052, 46 p., https://doi.org/10.3133/ds1052.
https://webtechsurvey.com/termshttps://webtechsurvey.com/terms
A complete list of live websites using the Interactive Map Of The Us Regions technology, compiled through global website indexing conducted by WebTechSurvey.
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, high-resolution seismic-reflection profiles, and bottom-sediment sampling data. The map products display seafloor morphology and character, identify potential marine benthic habitats, and illustrate both the surficial seafloor geology and shallow (to about 100 m) subsurface geology. It is emphasized that the more interpretive habitat and geology data rely on the integration of multiple, new high-resolution datasets and that mapping at small scales would not be possible without such data. This approach and CSMP planning is based in part on recommendations of the Marine Mapping Planning Workshop (Kvitek and others, 2006), attended by coastal and marine managers and scientists from around the state. That workshop established geographic priorities for a coastal mapping project and identified the need for coverage of “lands” from the shore strand line (defined as Mean Higher High Water; MHHW) out to the 3-nautical-mile (5.6-km) limit of California’s State Waters. Unfortunately, surveying the zone from MHHW out to 10-m water depth is not consistently possible using ship-based surveying methods, owing to sea state (for example, waves, wind, or currents), kelp coverage, and shallow rock outcrops. Accordingly, some of the data presented in this series commonly do not cover the zone from the shore out to 10-m depth. This data is part of a series of online U.S. Geological Survey (USGS) publications, each of which includes several map sheets, some explanatory text, and a descriptive pamphlet. Each map sheet is published as a PDF file. Geographic information system (GIS) files that contain both ESRI ArcGIS raster grids (for example, bathymetry, seafloor character) and geotiffs (for example, shaded relief) are also included for each publication. For those who do not own the full suite of ESRI GIS and mapping software, the data can be read using ESRI ArcReader, a free viewer that is available at http://www.esri.com/software/arcgis/arcreader/index.html (last accessed September 20, 2013). The California Seafloor Mapping Program is a collaborative venture between numerous different federal and state agencies, academia, and the private sector. CSMP partners include the California Coastal Conservancy, the California Ocean Protection Council, the California Department of Fish and Wildlife, the California Geological Survey, California State University at Monterey Bay’s Seafloor Mapping Lab, Moss Landing Marine Laboratories Center for Habitat Studies, Fugro Pelagos, Pacific Gas and Electric Company, National Oceanic and Atmospheric Administration (NOAA, including National Ocean Service–Office of Coast Surveys, National Marine Sanctuaries, and National Marine Fisheries Service), U.S. Army Corps of Engineers, the Bureau of Ocean Energy Management, the National Park Service, and the U.S. Geological Survey. These web services for the Offshore of Ventura map area includes data layers that are associated to GIS and map sheets available from the USGS CSMP web page at https://walrus.wr.usgs.gov/mapping/csmp/index.html. Each published CSMP map area includes a data catalog of geographic information system (GIS) files; map sheets that contain explanatory text; and an associated descriptive pamphlet. This web service represents the available data layers for this map area. Data was combined from different sonar surveys to generate a comprehensive high-resolution bathymetry and acoustic-backscatter coverage of the map area. These data reveal a range of physiographic including exposed bedrock outcrops, large fields of sand waves, as well as many human impacts on the seafloor. To validate geological and biological interpretations of the sonar data, the U.S. Geological Survey towed a camera sled over specific offshore locations, collecting both video and photographic imagery; these “ground-truth” surveying data are available from the CSMP Video and Photograph Portal at https://doi.org/10.5066/F7J1015K. The “seafloor character” data layer shows classifications of the seafloor on the basis of depth, slope, rugosity (ruggedness), and backscatter intensity and which is further informed by the ground-truth-survey imagery. The “potential habitats” polygons are delineated on the basis of substrate type, geomorphology, seafloor process, or other attributes that may provide a habitat for a specific species or assemblage of organisms. Representative seismic-reflection profile data from the map area is also include and provides information on the subsurface stratigraphy and structure of the map area. The distribution and thickness of young sediment (deposited over the past about 21,000 years, during the most recent sea-level rise) is interpreted on the basis of the seismic-reflection data. The geologic polygons merge onshore geologic mapping (compiled from existing maps by the California Geological Survey) and new offshore geologic mapping that is based on integration of high-resolution bathymetry and backscatter imagery, seafloor-sediment and rock samples, digital camera and video imagery, and high-resolution seismic-reflection profiles. The information provided by the map sheets, pamphlet, and data catalog has a broad range of applications. High-resolution bathymetry, acoustic backscatter, ground-truth-surveying imagery, and habitat mapping all contribute to habitat characterization and ecosystem-based management by providing essential data for delineation of marine protected areas and ecosystem restoration. Many of the maps provide high-resolution baselines that will be critical for monitoring environmental change associated with climate change, coastal development, or other forcings. High-resolution bathymetry is a critical component for modeling coastal flooding caused by storms and tsunamis, as well as inundation associated with longer term sea-level rise. Seismic-reflection and bathymetric data help characterize earthquake and tsunami sources, critical for natural-hazard assessments of coastal zones. Information on sediment distribution and thickness is essential to the understanding of local and regional sediment transport, as well as the development of regional sediment-management plans. In addition, siting of any new offshore infrastructure (for example, pipelines, cables, or renewable-energy facilities) will depend on high-resolution mapping. Finally, this mapping will both stimulate and enable new scientific research and also raise public awareness of, and education about, coastal environments and issues. Web services were created using an ArcGIS service definition file. The ArcGIS REST service and OGC WMS service include all Monterey Canyon and Vicinity map area data layers. Data layers are symbolized as shown on the associated map sheets.
The National Mine Map Repository (NMMR) maintains point locations for mines appearing on maps within its archive. This dataset is intended to help connect the Office of Surface Mining Reclamation & Enforcement, other federal, state, and local government agencies, private industry, and the general public with archived mine maps in the NMMR's collection. The coordinates for mine point locations represent the best information the NMMR has for the location of the mine. As much as possible, the NMMR strives to find precise locations for all historic mines appearing on mine maps. When this is not possible, another feature as close to the mine as is known is used. This information is reflected in the mine point symbols. However, the NMMR cannot guarantee the accuracy of mine point locations or any other information on or derived from mine maps.The NMMR is part of the United States Department of the Interior, Office of Surface Mining Reclamation and Enforcement (OSMRE). The mission of the NMMR is to preserve abandoned mine maps, to correlate those maps to the surface topography, and to provide the public with quality map products and services. It serves as a point of reference for maps and other information on surface and underground coal, metal, and non-metal mines from throughout the United States. It also serves as a location to retrieve mine maps in an emergency. Some of the information that can be found in the repository includes:Mine and company names, Mine plans including mains, rooms, and pillars, Man-ways, shafts, and mine surface openings. Geological information such as coal bed names, bed thicknesses, bed depths and elevations, bed outcrops, drill-hole data, cross-sections, stratigraphic columns, and mineral assays. Geographical information including historic railroad lines, roads, coal towns, surface facilities and structures, ponds, streams, and property survey lines, gas well and drill-hole locations. Please note: Map images are not available for download from this dataset. They can be requested by contacting NMMR staff and providing them with the desired Document Numbers. NMMR staff also have additional search capabilities and can fulfill more complex requests if necessary. See the NMMR website homepage for contact information: https://www.osmre.gov/programs/national-mine-map-repositoryThere is no charge for noncommercial use of the maps. Commercial uses will incur a $46/hour research fee for fulfilling requests.
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
The data are designed for strategic analyses at a national or regional scale which require spatially explicit information regarding the extent, distribution, and prevalence of the ownership types represented. The data are not recommended for tactical analyses on a sub-regional scale, or for informing local management decisions. Furthermore, map accuracies vary considerably and thus the utility of these data can vary geographically under different ownership patterns.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This political map of United States of America shows state and national boundaries, state names and other features.
Three feature layers of Unites States internal state boundaries at different scales: 1:500K, 1:5M, and 1:20M. These layers are intended for use as a cartographic product. It is up to the user to determine which layer is most appropriate for their map.Derived from 2019 US Census Bureau Cartographic Boundary Files for state boundaries using ArcGIS Pro 2.4.3. Process:Original files were downloaded from US Census for the three different scales.Polygons were then converted to lines using the Polygon-to-Line tool.To remove the coastlines, all rows not having a LEFT_FID or RIGHT_FID attribute equal to -1 were then exported to a new geodatabase feature class.The geodatabase was zipped and uploaded to ArcGIS Online.For more information on Cartographic Boundary Files visit https://www.census.gov/programs-surveys/geography/technical-documentation/naming-convention/cartographic-boundary-file.html and https://www.census.gov/geographies/mapping-files/time-series/geo/cartographic-boundary.html.Created by Ryan Davis (RDavis9@cdc.gov) on behalf of CDC/ATSDR/DTHHS/GRASP.
This layer is a component of ENOW_Counties.
This map service presents spatial information about the Economics: National Ocean Watch (ENOW) data in the Web Mercator projection. The ENOW data provides time-series data on the ocean and Great Lakes economy, which includes six economic sectors dependent on the oceans and Great Lakes, and measures four economic indicators: Establishments, Employment, Wages, and Gross Domestic Product (GDP). The annual time-series data are available for about 400 coastal counties, 30 coastal states, 8 regions, and the nation. The service was developed by the National Oceanic and Atmospheric Administration (NOAA), but may contain data and information from a variety of data sources, including non-NOAA data. NOAA provides the information “as-is” and shall incur no responsibility or liability as to the completeness or accuracy of this information. NOAA assumes no responsibility arising from the use of this information. The NOAA Office for Coastal Management will make every effort to provide continual access to this service but it may need to be taken down during routine IT maintenance or in case of an emergency. If you plan to ingest this service into your own application and would like to be informed about planned and unplanned service outages or changes to existing services, please register for our Data Services Newsletter (http://coast.noaa.gov/digitalcoast/publications/subscribe). For additional information, please contact the NOAA Office for Coastal Management (coastal.info@noaa.gov).
© NOAA Office for Coastal Management
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
On July 21, 2023, OMB Bulletin No 23-01 published the planned revisions to Metropolitan Statistical Areas, Micropolitan Statistical Areas, and Combined Statistical Areas and published guidance on uses of those area.The Tennessee State Data Center created a layer of the revised delineations using the 2022 TIGER Line data from the US Census Bureau and List 1 from the OMB bulletin. Data from List 1 was published in excel format to the Census Bureau’s website in August 2023. The data were joined and new metropolitan/micropolitan areas and combined statistical areas were generated.For more info see:Federal Register: https://www.federalregister.gov/documents/2021/07/16/2021-15159/2020-standards-for-delineating-core-based-statistical-areasOMB Bulletin: https://www.whitehouse.gov/wp-content/uploads/2023/07/OMB-Bulletin-23-01.pdfCensus Delineation files: https://www.census.gov/geographies/reference-files/time-series/demo/metro-micro/delineation-files.html
The TIGER/Line shapefiles and related database files (.dbf) are an extract of selected geographic and cartographic information from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). The MTDB represents a seamless national file with no overlaps or gaps between parts, however, each TIGER/Line shapefile is designed to stand alone as an independent data set, or they can be combined to cover the entire nation. States and equivalent entities are the primary governmental divisions of the United States. In addition to the fifty States, the Census Bureau treats the District of Columbia, Puerto Rico, and each of the Island Areas (American Samoa, the Commonwealth of the Northern Mariana Islands, Guam, and the U.S. Virgin Islands) as the statistical equivalents of States for the purpose of data presentation.
https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-0063https://dataverse-staging.rdmc.unc.edu/api/datasets/:persistentId/versions/1.0/customlicense?persistentId=hdl:1902.29/CD-0063
This edition of the Congressional District Atlas contains maps and tables for the 105th Congress of the United States. The maps show the boundaries of each congressional district. Tables listing the jurisdictions that are completely or partially within each congressional district are included. For states with only one congressional district, a state map is included but there is no table. The maps and tables are designed for page size (8 1/2 x 11) printed output. Although the map images use co lor for enhanced viewing, the design allows for acceptable black and white desktop printing. For more information, see the sections on Maps and Tables. Background: 103rd and 104th Congress Following the 1990 decennial census, most states redistricted for the 103rd Congress based upon the apportionment of the seats for the U.S. House of Representatives and the most recent decennial census data. For the 104th Congress, six states redistricted or through court action had either plans revised or redrawn. These states were Georgia, Louisiana, Maine, Minnesota, South Carolina and Virginia. The 104th Congress began January 1995 and continued through the beginning of January 1997. 105th Congress The 105th Congress began January 5, 1997 and continues through the beginning of January 1999. For the 105th Congress, Florida, Georgia, Kentucky, Louisiana, and Texas had new or revised congressional district plans. The Census Bureau retabulated demographic data from the 1990 census to accommodate any congressional district boundary changes from the previous Congress. This data is available on a separate CD-ROM from the Census Bureau Customer Service Branch (301) 457-4100. The 105th Congressional District Atlas CD-ROM provides maps showing the boundaries of the congressional districts of the 105th Congress. To meet the data needs for the 105th Congress, the Census Bureau designed this product on CD-ROM for all states. It contains maps and related entity tables in Adobe. Note to Users: This CD is part of a collection located in the Data Archive of the Odum Institute for Research in Social Science, at the University of North Carolina at Chapel Hill. The collection is located in Room 10, Manning Hall. Users may check the CDs out subscribing to the honor system. Items can be checked out for a period of two weeks. Loan forms are located adjacent to the collection.
This data set provides soil maps for the United States (US) (including Alaska), Canada, Mexico, and a part of Guatemala. The map information content includes maximum soil depth and eight soil attributes including sand, silt, and clay content, gravel content, organic carbon content, pH, cation exchange capacity, and bulk density for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm). The spatial resolution is 0.25 degree. The Unified North American Soil Map (UNASM) combined information from the state-of-the-art US General Soil Map (STATSGO2) and Soil Landscape of Canada (SLCs) databases. The area not covered by these data sets was filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The Northern Circumpolar Soil Carbon (NCSCD) database was used to provide more accurate and up-to-date soil organic carbon information for the high-latitude permafrost region and was combined with soil organic carbon content derived from the UNASM (Liu et al., 2013). The UNASM data were utilized in the North American Carbon Program (NACP) Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) as model input driver data (Huntzinger et al., 2013). The driver data were used by 22 terrestrial biosphere models to run baseline and sensitivity simulations. The compilation of these data was facilitated by the NACP Modeling and Synthesis Thematic Data Center (MAST-DC). MAST-DC was a component of the NACP (www.nacarbon.org) designed to support NACP by providing data products and data management services needed for modeling and synthesis activities.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This part of DS 781 presents data for the bathymetry and shaded-relief maps of the Offshore of Point Reyes map area, California. Raster data file is included in "Bathymetry_PointReyes.zip," which is accessible from https://pubs.usgs.gov/ds/781/PointReyes/data_catalog_PointReyes.html. These data accompany the pamphlet and map sheets of Watt, J.T., Dartnell, P., Golden, N.E., Greene, H.G., Erdey, M.D., Cochrane, G.R., Johnson, S.Y., Hartwell, S.R., Kvitek, R.G., Manson, M.W., Endris, C.A., Dieter, B.E., Sliter, R.W., Krigsman, L.M., Lowe, E.N., and Chin, J.L. (J.T. Watt and S.A. Cochran, eds.), 2015, California State Waters Map Series—Offshore of Point Reyes, California: U.S. Geological Survey Open-File Report 2015–1114, pamphlet 39 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/ofr20151114. The bathymetry map of the Offshore of Point Reyes map area, California, was generated from bathymetry data collected by California State University, Monterey Bay (CSUMB), and by Fugro Pe ...
The New York Times is releasing a series of data files with cumulative counts of coronavirus cases in the United States, at the state and county level, over time. We are compiling this time series data from state and local governments and health departments in an attempt to provide a complete record of the ongoing outbreak.
Since late January, The Times has tracked cases of coronavirus in real time as they were identified after testing. Because of the widespread shortage of testing, however, the data is necessarily limited in the picture it presents of the outbreak.
We have used this data to power our maps and reporting tracking the outbreak, and it is now being made available to the public in response to requests from researchers, scientists and government officials who would like access to the data to better understand the outbreak.
The data begins with the first reported coronavirus case in Washington State on Jan. 21, 2020. We will publish regular updates to the data in this repository.
You can see the numbers by sex, age, race and ethnicity, trends over time, survival, and prevalence.Link: https://gis.cdc.gov/Cancer/USCS/#/AtAGlance