Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Northeastern United States State Boundary data are intended for geographic display of state boundaries at statewide and regional levels. Use it to map and label states on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)
Facebook
TwitterOpen Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
This political map of United States of America shows state and national boundaries, state names and other features.
Facebook
TwitterThis data set provides soil maps for the United States (US) (including Alaska), Canada, Mexico, and a part of Guatemala. The map information content includes maximum soil depth and eight soil attributes including sand, silt, and clay content, gravel content, organic carbon content, pH, cation exchange capacity, and bulk density for the topsoil layer (0-30 cm) and the subsoil layer (30-100 cm). The spatial resolution is 0.25 degree. The Unified North American Soil Map (UNASM) combined information from the state-of-the-art US General Soil Map (STATSGO2) and Soil Landscape of Canada (SLCs) databases. The area not covered by these data sets was filled by using the Harmonized World Soil Database version 1.21 (HWSD1.21). The Northern Circumpolar Soil Carbon (NCSCD) database was used to provide more accurate and up-to-date soil organic carbon information for the high-latitude permafrost region and was combined with soil organic carbon content derived from the UNASM (Liu et al., 2013). The UNASM data were utilized in the North American Carbon Program (NACP) Multi-Scale Synthesis and Terrestrial Model Intercomparison Project (MsTMIP) as model input driver data (Huntzinger et al., 2013). The driver data were used by 22 terrestrial biosphere models to run baseline and sensitivity simulations. The compilation of these data was facilitated by the NACP Modeling and Synthesis Thematic Data Center (MAST-DC). MAST-DC was a component of the NACP (www.nacarbon.org) designed to support NACP by providing data products and data management services needed for modeling and synthesis activities.
Facebook
TwitterThis map layer portrays the State boundaries of the United States, Puerto Rico, and the U.S. Virgin Islands. The map layer was created by extracting county polygon features from the CENSUS 2006 TIGER/Line files produced by the U.S. Census Bureau. These files were then merged into a single file and county boundaries within States were removed. This is a revised version of the July 2012 map layer.The data and related materials are made available through Esri (http://www.esri.com) and are intended for educational purposes only (see Access and Use Constraints section).
Facebook
TwitterBy Substance Abuse and Mental Health Services Organization [source]
This dataset contains estimates of serious mental illness in the US by state and substate region from 2012-2014. This data helps to understand better the mental health disparities that exist between states and different regions within states. By looking at this data, researchers can identify the parts of the country with particularly high or low rates of serious mental illness, which can help prioritize resources for affected areas.
The dataset includes estimates along with 95% confidence intervals based on a survey-weighted hierarchical Bayes estimation approach and are generated by Markov Chain Monte Carlo techniques. Columns labeled Map Group can be used to distinguish substate regions included in corresponding maps as well as numerical order for sorting original sort order. For definitions in Substate Region, refer to the National Survey on Drug Use and Health's Substate Region Definitions found here: https://www.samhsa.gov/data/sites/default/files/NSDUHsubstateRegionDefs2014/NSDUHsubstateRegionDefs2014.pdf
This reliable information is provided by SAMHSA, Center for Behavioral Health Statistics and Quality through their National Survey on Drug Use and Health from 2012-2014; helping us gain insights into America’s overall mental health picture – revealing more about where help is needed most urgently so that we can take steps towards a healthier future for all Americans!
For more datasets, click here.
- 🚨 Your notebook can be here! 🚨!
Welcome to this dataset! This dataset contains estimates of Serious Mental Illnesses in the United States by state and substate region from 2012 to 2014. It is designed for researchers, analysts, and data scientists looking for information about the prevalence of Serious Mental Illnesses across the US.
- Performing a trend analysis to identify changes in the estimates of serious mental illnesses over time and across different geographic regions.
- Exploring disparities in serious mental illnesses among certain minority groups or deprived socio-economic subgroups by comparing estimates at the substate level.
- Developing targeted public health strategies and interventions for states with higher than average rates of serious mental illness prevalence
If you use this dataset in your research, please credit the original authors. Data Source
License: Dataset copyright by authors - You are free to: - Share - copy and redistribute the material in any medium or format for any purpose, even commercially. - Adapt - remix, transform, and build upon the material for any purpose, even commercially. - You must: - Give appropriate credit - Provide a link to the license, and indicate if changes were made. - ShareAlike - You must distribute your contributions under the same license as the original. - Keep intact - all notices that refer to this license, including copyright notices.
File: 2012-2014_Substate_SAE_Table_24.csv | Column name | Description | |:--------------------|:----------------------------------------------------------------------------------------------------------------------------------------------| | Order | A numerical order that can be used to sort the data back to its original order. (Numeric) | | State | The US state associated with the data. (String) | | Substate Region | The substate region associated with the data. (String) | | 95% CI (Lower) | The lower bound of the 95 percent confidence interval for the estimated number of people with serious mental illness in the region. (Numeric) | | 95% CI (Upper) | The upper bound of the 95 percent confidence interval for the estimated number of people with serious mental illness in the region. (Numeric) | | Map Group | A numerical value which can distinguish between different substate regions included in the maps. (Numeric) |
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The State Geologic Map Compilation (SGMC) geodatabase of the conterminous United States (https://doi.org/10.5066/F7WH2N65) represents a seamless, spatial database of 48 State geologic maps that range from 1:50,000 to 1:1,000,000 scale. A national digital geologic map database is essential in interpreting other datasets that support numerous types of national-scale studies and assessments, such as those that provide geochemistry, remote sensing, or geophysical data. The SGMC is a compilation of the individual U.S. Geological Survey releases of the Preliminary Integrated Geologic Map Databases for the United States. The SGMC geodatabase also contains updated data for seven States and seven entirely new State geologic maps that have been added since the preliminary databases were published. Numerous errors have been corrected and enhancements added to the preliminary datasets using thorough quality assurance/quality control procedures. The SGMC is not a truly integrated geologic map ...
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Connecticut and Vicinity State Boundary data are intended for geographic display of state boundaries at statewide and regional levels. Use it to map and label states on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)
Facebook
TwitterOfficial NWS Advanced Weather Interactive Processing System (AWIPS) background US State and Territory designations.
Facebook
TwitterMultispectral remote sensing data acquired by Landsat 8 Operational Land Imager (OLI) sensor were analyzed using an automated technique to generate surficial mineralogy and vegetation maps of the conterminous western United States. Six spectral indices (e.g. band-ratios), highlighting distinct spectral absorptions, were developed to aid in the identification of mineral groups in exposed rocks, soils, mine waste rock, and mill tailings across the landscape. The data are centered on the Western U.S. and cover portions of Texas, Oklahoma, Kansas, the Canada-U.S. border, and the Mexico-U.S. border during the summers of 2013 – 2014. Methods used to process the images and algorithms used to infer mineralogical composition of surficial materials are detailed in Rockwell and others (2021) and were similar to those developed by Rockwell (2012; 2013). Final maps are provided as ERDAS IMAGINE (.img) thematic raster images and contain pixel values representing mineral and vegetation group classifications. Rockwell, B.W., 2012, Description and validation of an automated methodology for mapping mineralogy, vegetation, and hydrothermal alteration type from ASTER satellite imagery with examples from the San Juan Mountains, Colorado: U.S. Geological Survey Scientific Investigations Map 3190, 35 p. pamphlet, 5 map sheets, scale 1:100,000, http://doi.org/10.13140/RG.2.1.2769.9365. Rockwell, B.W., 2013, Automated mapping of mineral groups and green vegetation from Landsat Thematic Mapper imagery with an example from the San Juan Mountains, Colorado: U.S. Geological Survey Scientific Investigations Map 3252, 25 p. pamphlet, 1 map sheet, scale 1:325,000, http://doi.org/10.13140/RG.2.1.2507.7925. Rockwell, B.W., Gnesda, W.R., and Hofstra, A.H., 2021, Improved automated identification and mapping of iron sulfate minerals, other mineral groups, and vegetation from Landsat 8 Operational Land Imager Data: San Juan Mountains, Colorado, and Four Corners Region: U.S. Geological Survey Scientific Investigations Map 3466, scale 1:325,000, 51 p. pamphlet, https://doi.org/10.3133/sim3466/.
Facebook
TwitterOverview
The Office of the Geographer and Global Issues at the U.S. Department of State produces the Large Scale International Boundaries (LSIB) dataset. The current edition is version 11.4 (published 24 February 2025). The 11.4 release contains updated boundary lines and data refinements designed to extend the functionality of the dataset. These data and generalized derivatives are the only international boundary lines approved for U.S. Government use. The contents of this dataset reflect U.S. Government policy on international boundary alignment, political recognition, and dispute status. They do not necessarily reflect de facto limits of control.
National Geospatial Data Asset
This dataset is a National Geospatial Data Asset (NGDAID 194) managed by the Department of State. It is a part of the International Boundaries Theme created by the Federal Geographic Data Committee.
Dataset Source Details
Sources for these data include treaties, relevant maps, and data from boundary commissions, as well as national mapping agencies. Where available and applicable, the dataset incorporates information from courts, tribunals, and international arbitrations. The research and recovery process includes analysis of satellite imagery and elevation data. Due to the limitations of source materials and processing techniques, most lines are within 100 meters of their true position on the ground.
Cartographic Visualization
The LSIB is a geospatial dataset that, when used for cartographic purposes, requires additional styling. The LSIB download package contains example style files for commonly used software applications. The attribute table also contains embedded information to guide the cartographic representation. Additional discussion of these considerations can be found in the Use of Core Attributes in Cartographic Visualization section below.
Additional cartographic information pertaining to the depiction and description of international boundaries or areas of special sovereignty can be found in Guidance Bulletins published by the Office of the Geographer and Global Issues: https://data.geodata.state.gov/guidance/index.html
Contact
Direct inquiries to internationalboundaries@state.gov. Direct download: https://data.geodata.state.gov/LSIB.zip
Attribute Structure
The dataset uses the following attributes divided into two categories: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | Core CC1_GENC3 | Extension CC1_WPID | Extension COUNTRY1 | Core CC2 | Core CC2_GENC3 | Extension CC2_WPID | Extension COUNTRY2 | Core RANK | Core LABEL | Core STATUS | Core NOTES | Core LSIB_ID | Extension ANTECIDS | Extension PREVIDS | Extension PARENTID | Extension PARENTSEG | Extension
These attributes have external data sources that update separately from the LSIB: ATTRIBUTE NAME | ATTRIBUTE STATUS CC1 | GENC CC1_GENC3 | GENC CC1_WPID | World Polygons COUNTRY1 | DoS Lists CC2 | GENC CC2_GENC3 | GENC CC2_WPID | World Polygons COUNTRY2 | DoS Lists LSIB_ID | BASE ANTECIDS | BASE PREVIDS | BASE PARENTID | BASE PARENTSEG | BASE
The core attributes listed above describe the boundary lines contained within the LSIB dataset. Removal of core attributes from the dataset will change the meaning of the lines. An attribute status of “Extension” represents a field containing data interoperability information. Other attributes not listed above include “FID”, “Shape_length” and “Shape.” These are components of the shapefile format and do not form an intrinsic part of the LSIB.
Core Attributes
The eight core attributes listed above contain unique information which, when combined with the line geometry, comprise the LSIB dataset. These Core Attributes are further divided into Country Code and Name Fields and Descriptive Fields.
County Code and Country Name Fields
“CC1” and “CC2” fields are machine readable fields that contain political entity codes. These are two-character codes derived from the Geopolitical Entities, Names, and Codes Standard (GENC), Edition 3 Update 18. “CC1_GENC3” and “CC2_GENC3” fields contain the corresponding three-character GENC codes and are extension attributes discussed below. The codes “Q2” or “QX2” denote a line in the LSIB representing a boundary associated with areas not contained within the GENC standard.
The “COUNTRY1” and “COUNTRY2” fields contain the names of corresponding political entities. These fields contain names approved by the U.S. Board on Geographic Names (BGN) as incorporated in the ‘"Independent States in the World" and "Dependencies and Areas of Special Sovereignty" lists maintained by the Department of State. To ensure maximum compatibility, names are presented without diacritics and certain names are rendered using common cartographic abbreviations. Names for lines associated with the code "Q2" are descriptive and not necessarily BGN-approved. Names rendered in all CAPITAL LETTERS denote independent states. Names rendered in normal text represent dependencies, areas of special sovereignty, or are otherwise presented for the convenience of the user.
Descriptive Fields
The following text fields are a part of the core attributes of the LSIB dataset and do not update from external sources. They provide additional information about each of the lines and are as follows: ATTRIBUTE NAME | CONTAINS NULLS RANK | No STATUS | No LABEL | Yes NOTES | Yes
Neither the "RANK" nor "STATUS" fields contain null values; the "LABEL" and "NOTES" fields do. The "RANK" field is a numeric expression of the "STATUS" field. Combined with the line geometry, these fields encode the views of the United States Government on the political status of the boundary line.
ATTRIBUTE NAME | | VALUE | RANK | 1 | 2 | 3 STATUS | International Boundary | Other Line of International Separation | Special Line
A value of “1” in the “RANK” field corresponds to an "International Boundary" value in the “STATUS” field. Values of ”2” and “3” correspond to “Other Line of International Separation” and “Special Line,” respectively.
The “LABEL” field contains required text to describe the line segment on all finished cartographic products, including but not limited to print and interactive maps.
The “NOTES” field contains an explanation of special circumstances modifying the lines. This information can pertain to the origins of the boundary lines, limitations regarding the purpose of the lines, or the original source of the line.
Use of Core Attributes in Cartographic Visualization
Several of the Core Attributes provide information required for the proper cartographic representation of the LSIB dataset. The cartographic usage of the LSIB requires a visual differentiation between the three categories of boundary lines. Specifically, this differentiation must be between:
Rank 1 lines must be the most visually prominent. Rank 2 lines must be less visually prominent than Rank 1 lines. Rank 3 lines must be shown in a manner visually subordinate to Ranks 1 and 2. Where scale permits, Rank 2 and 3 lines must be labeled in accordance with the “Label” field. Data marked with a Rank 2 or 3 designation does not necessarily correspond to a disputed boundary. Please consult the style files in the download package for examples of this depiction.
The requirement to incorporate the contents of the "LABEL" field on cartographic products is scale dependent. If a label is legible at the scale of a given static product, a proper use of this dataset would encourage the application of that label. Using the contents of the "COUNTRY1" and "COUNTRY2" fields in the generation of a line segment label is not required. The "STATUS" field contains the preferred description for the three LSIB line types when they are incorporated into a map legend but is otherwise not to be used for labeling.
Use of
Facebook
TwitterFinal approved map by the 2020 California Citizens Redistricting Commission for the California State Assembly; the authoritative and official delineations of the California State Assembly drawn during the 2020 redistricting cycle. The Citizens Redistricting Commission for the State of California has created statewide district maps for the State Assembly, State Senate, State Board of Equalization, and United States Congress in accordance, with the provisions of Article XXI of the California Constitution. The Commission has approved the final maps and certified them to the Secretary of State.Line drawing criteria included population equality as required by the U.S. Constitution, the Federal Voting Rights Act, geographic contiguity, geographic integrity, geographic compactness, and nesting. Geography was defined by U.S. Census Block geometry.80 Assembly districts have an ideal population of around 500,000 people each, and in consideration of population equality, the Commission chose to limit the population deviation range to as close to zero percent as practicable. With these districts, the Commission was able to respect many local communities of interest and group similar communities; however, it was more difficult to keep densely populated counties, cities, neighborhoods, and larger communities of interest whole due to the district size and correspondingly smaller number allowable in the population deviation percentage.
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, ...
Facebook
TwitterU.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
In 2007, the California Ocean Protection Council initiated the California Seafloor Mapping Program (CSMP), designed to create a comprehensive seafloor map of high-resolution bathymetry, marine benthic habitats, and geology within California’s State Waters. The program supports a large number of coastal-zone- and ocean-management issues, including the California Marine Life Protection Act (MLPA) (California Department of Fish and Wildlife, 2008), which requires information about the distribution of ecosystems as part of the design and proposal process for the establishment of Marine Protected Areas. A focus of CSMP is to map California’s State Waters with consistent methods at a consistent scale. The CSMP approach is to create highly detailed seafloor maps through collection, integration, interpretation, and visualization of swath sonar data (the undersea equivalent of satellite remote-sensing data in terrestrial mapping), acoustic backscatter, seafloor video, seafloor photography, ...
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Comprehensive dataset containing 470 verified Map store businesses in United States with complete contact information, ratings, reviews, and location data.
Facebook
TwitterMature Support Notice: This item is in mature support as of June 2021. A replacement item has not been identified at this time.This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service. Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:Grand Canyon, ArizonaGolden Gate, CaliforniaThe Statue of Liberty, New YorkWashington DCCanyon De Chelly, ArizonaYellowstone National Park, WyomingArea 51, Nevada
Facebook
TwitterThis layer shows Race and Ethnicity. This is shown by state and county boundaries. This service contains the 2018-2022 release of data from the American Community Survey (ACS) 5-year data, and contains estimates and margins of error. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis. This layer is symbolized to show the percentage of population that are Hispanic or Latino (of any race). To see the full list of attributes available in this service, go to the "Data" tab, and choose "Fields" at the top right. Current Vintage: 2018-2022ACS Table(s): B02001, B03001, DP05Data downloaded from: CensusBureau's API for American Community Survey Date of API call: January 18, 2024National Figures: data.census.govThe United States Census Bureau's American Community Survey (ACS):About the SurveyGeography & ACSTechnical DocumentationNews & UpdatesThis ready-to-use layer can be used within ArcGIS Pro, ArcGIS Online, its configurable apps, dashboards, Story Maps, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the Census and ACS when using this data.Data Note from the Census:Data are based on a sample and are subject to sampling variability. The degree of uncertainty for an estimate arising from sampling variability is represented through the use of a margin of error. The value shown here is the 90 percent margin of error. The margin of error can be interpreted as providing a 90 percent probability that the interval defined by the estimate minus the margin of error and the estimate plus the margin of error (the lower and upper confidence bounds) contains the true value. In addition to sampling variability, the ACS estimates are subject to nonsampling error (for a discussion of nonsampling variability, see Accuracy of the Data). The effect of nonsampling error is not represented in these tables.Data Processing Notes:Boundaries come from the Cartographic Boundaries via US Census TIGER geodatabases. Boundaries are updated at the same time as the data updates, and the boundary vintage appropriately matches the data vintage as specified by the Census. These are Census boundaries with water and/or coastlines clipped for cartographic purposes. For state and county boundaries, the water and coastlines are derived from the coastlines of the 500k TIGER Cartographic Boundary Shapefiles. The original AWATER and ALAND fields are still available as attributes within the data table (units are square meters). The States layer contains 52 records - all US states, Washington D.C., and Puerto Rico. The Counties (and equivalent) layer contains 3221 records - all counties and equivalent, Washington D.C., and Puerto Rico municipios. See Areas Published. Percentages and derived counts, and associated margins of error, are calculated values (that can be identified by the "_calc_" stub in the field name), and abide by the specifications defined by the American Community Survey.Field alias names were created based on the Table Shells.Margin of error (MOE) values of -555555555 in the API (or "*****" (five asterisks) on data.census.gov) are displayed as 0 in this dataset. The estimates associated with these MOEs have been controlled to independent counts in the ACS weighting and have zero sampling error. So, the MOEs are effectively zeroes, and are treated as zeroes in MOE calculations. Other negative values on the API, such as -222222222, -666666666, -888888888, and -999999999, all represent estimates or MOEs that can't be calculated or can't be published, usually due to small sample sizes. All of these are rendered in this dataset as null (blank) values.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This coverage was identified on the USGS Water Resources NSDI Node site at https://www.usgs.gov/ngpo/. The coverage contains the state boundaries of the southern region of the continental United States. These boundaries were derived from the Digital Line Graph (DLG) files representing the 1:100,000 scale map in the National Atlas of the United States. The data was then modified by USDA Forest Service Personnel for use in the Southern Forest Resource Assessment and exported to a shapefile (please see Process Steps below).This shapefile is used as a base map for a variety of applications.Metadata modified on 6/08/2011 to include DOI and other minor modifications to the metadata. As of 6/08/2011 data were also available at: //www.srs.fs.usda.gov/sustain/data/. Minor metadata updates on 02/26/2013 and 08/13/2014. Minor metadata updates on 12/06/2016.
Facebook
TwitterRetirement Notice: This item is in mature support as of September 2023 and will be retired in December 2025. A new version of this item is available for your use. Esri recommends updating your maps and apps to use the new version. The USGS Protected Areas Database of the United States (PAD-US) is the official inventory of public parks and other protected open space. The spatial data in PAD-US represents public lands held in trust by thousands of national, state and regional/local governments, as well as non-profit conservation organizations. GAP Status Code is a measure of management intent to permanently protect biodiversity. GAP 1 and 2 areas are primarily managed for biodiversity, GAP 3 are managed for multiple uses including conservation and extraction, GAP 4 no known mandate for biodiversity protection. This map displays locations from the PAD-US version 3.0 symbolized by Gap Status Code. Status code values indicate the level of protection from GAP status 1 with a high level of protection to GAP status 4 with no known mandate for protection:GAP Status 1 - Areas managed for biodiversity where natural disturbances are allowed to proceedGAP Status 2 - Areas managed for biodiversity where natural disturbance is suppressedGAP Status 3 - Areas protected from land cover conversion but subject to extractive uses such as logging and miningGAP Status 4 - Areas with no known mandate for protectionThis map features 3 layers derived from the Protection Status by GAP Status Code feature layer. Four layers were used in order to control the drawing order of overlapping protected areas. A vector tile layer is used to draw the map at scales smaller than 1:1,000,000.PAD-US is published by the U.S. Geological Survey (USGS) Science Analytics and Synthesis (SAS), Gap Analysis Project (GAP). GAP produces data and tools that help meet critical national challenges such as biodiversity conservation, recreation, public health, climate change adaptation, and infrastructure investment. See the GAP webpage for more information about GAP and other GAP data including species and land cover.
Facebook
TwitterThis dataset contains identifiers, metadata, and a map of the locations where field measurements have been conducted at the East River Community Observatory located in the Upper Colorado River Basin, United States. This is version 3.1 of the dataset and replaces the prior version 3.0 (see below for details on changes between the versions). Dataset description: The East River is the primary field site of the Watershed Function Scientific Focus Area (WFSFA) and the Rocky Mountain Biological Laboratory. Researchers from several institutions generate highly diverse hydrological, biogeochemical, climate, vegetation, geological, remote sensing, and model data at the East River in collaboration with the WFSFA. Thus, the purpose of this dataset is to maintain an inventory of the field locations and instrumentation to provide information on the field activities in the East River and coordinate data collected across different locations, researchers, and institutions. The dataset contains (1) a README file with information on the various files, (2) three csv files describing the metadata collected for each surface point location, plot and region registered with the WFSFA, (3) csv files with metadata and contact information for each surface point location registered with the WFSFA, (4) a csv file with with metadata and contact information for plots, (5) a csv file with metadata for geographic regions and sub-regions within the watershed, (6) a compiled xlsx file with all the data and metadata which can be opened in Microsoft Excel, (7) a kml map of the locations plotted in the watershed which can be opened in Google Earth, (8) a jpeg image of the kml map which can be viewed in any photo viewer, and (9) a zipped file with the registration templates used by the SFA team to collect location metadata. The zipped template file contains two csv files with the blank templates (point and plot), two csv files with instructions for filling out the location templates, and one compiled xlsx file with the instructions and blank templates together. Additionally, the templates in the xlsx include drop down validation for any controlled metadata fields. Persistent location identifiers (Location_ID) are determined by the WFSFA data management team and are used to track data and samples across locations. Dataset uses: This location metadata is used to update the Watershed SFA’s publicly accessible Field Information Portal (an interactive field sampling metadata exploration tool; https://wfsfa-data.lbl.gov/watershed/), the kml map file included in this dataset, and other data management tools internal to the Watershed SFA team. Version Information: The latest version of this dataset publication is version 3.1. This version contains a total of 101 new point locations and 1 new geographic region. Overall, there are a total of 1111 point locations, 62 plots, and 36 geographic regions. Additionally, the kml map of locations and image now includes a Taylor River geographic region boundary and stream network. Refer to methods for further details on the version history. This dataset will be updated on a periodic basis with new measurement location information. Researchers interested in having their East River measurement locations added in this list should reach out to the WFSFA data management team at wfsfa-data@googlegroups.com. Acknowledgements: Please cite this dataset if using any of the location metadata in other publications or derived products. If using the location metadata for the NEON hyperspectral campaign, additionally cite Chadwick et al. (2020). doi:10.15485/1618130.
Facebook
TwitterThis data set describes ground-water regions in the United States defined by the U.S. Geological Survey. These ground-water regions are useful for dividing the United States into areas of roughly similar hydrologic characterstics and water-use patterns. Most of these regions are very generalized and were developed from a illustration published at a scale of approximately 1:20 million. The data set also includes polygon features for unconsolidated watercourses taken from 1:7,500,000-scale U.S. Geological Survey map of productive aquifers.
Facebook
TwitterCC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
Northeastern United States State Boundary data are intended for geographic display of state boundaries at statewide and regional levels. Use it to map and label states on a map. These data are derived from Northeastern United States Political Boundary Master layer. This information should be displayed and analyzed at scales appropriate for 1:24,000-scale data. The State of Connecticut, Department of Environmental Protection (CTDEP) assembled this regional data layer using data from other states in order to create a single, seamless representation of political boundaries within the vicinity of Connecticut that could be easily incorporated into mapping applications as background information. More accurate and up-to-date information may be available from individual State government Geographic Information System (GIS) offices. Not intended for maps printed at map scales greater or more detailed than 1:24,000 scale (1 inch = 2,000 feet.)