Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.
Important Note: This item is in mature support as of June 2021 and is no longer updated.
This map presents land cover and detailed topographic maps for the United States. It uses the USA Topographic Map service. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps.
The maps provide a very useful basemap for a variety of applications, particularly in rural areas where the topographic maps provide unique detail and features from other basemaps.
To add this map service into a desktop application directly, go to the entry for the USA Topo Maps map service.
Tip: Here are some famous locations as they appear in this web map, accessed by including their location in the URL that launches the map:
The Statue of Liberty, New York
The ArcGIS Online US Geological Survey (USGS) topographic map collection now contains over 177,000 historical quadrangle maps dating from 1882 to 2006. The USGS Historical Topographic Map Explorer app brings these maps to life through an interface that guides users through the steps for exploring the map collection:
Finding the maps of interest is simple. Users can see a footprint of the map in the map view before they decide to add it to the display, and thumbnails of the maps are shown in pop-ups on the timeline. The timeline also helps users find maps because they can zoom and pan, and maps at select scales can be turned on or off by using the legend boxes to the left of the timeline. Once maps have been added to the display, users can reorder them by dragging them. Users can also download maps as zipped GeoTIFF images. Users can also share the current state of the app through a hyperlink or social media. This ArcWatch article guides you through each of these steps: https://www.esri.com/esri-news/arcwatch/1014/envisioning-the-past.
Version 10.0 of these data are part of a larger U.S. Geological Survey (USGS) project to develop an updated geospatial database of mines, mineral deposits, and mineral regions in the United States. Mine and prospect-related symbols, such as those used to represent prospect pits, mines, adits, dumps, tailings, etc., hereafter referred to as “mine” symbols or features, have been digitized from the 7.5-minute (1:24,000, 1:25,000-scale; and 1:10,000, 1:20,000 and 1:30,000-scale in Puerto Rico only) and the 15-minute (1:48,000 and 1:62,500-scale; 1:63,360-scale in Alaska only) archive of the USGS Historical Topographic Map Collection (HTMC), or acquired from available databases (California and Nevada, 1:24,000-scale only). Compilation of these features is the first phase in capturing accurate locations and general information about features related to mineral resource exploration and extraction across the U.S. The compilation of 725,690 point and polygon mine symbols from approximately 106,350 maps across 50 states, the Commonwealth of Puerto Rico (PR) and the District of Columbia (DC) has been completed: Alabama (AL), Alaska (AK), Arizona (AZ), Arkansas (AR), California (CA), Colorado (CO), Connecticut (CT), Delaware (DE), Florida (FL), Georgia (GA), Hawaii (HI), Idaho (ID), Illinois (IL), Indiana (IN), Iowa (IA), Kansas (KS), Kentucky (KY), Louisiana (LA), Maine (ME), Maryland (MD), Massachusetts (MA), Michigan (MI), Minnesota (MN), Mississippi (MS), Missouri (MO), Montana (MT), Nebraska (NE), Nevada (NV), New Hampshire (NH), New Jersey (NJ), New Mexico (NM), New York (NY), North Carolina (NC), North Dakota (ND), Ohio (OH), Oklahoma (OK), Oregon (OR), Pennsylvania (PA), Rhode Island (RI), South Carolina (SC), South Dakota (SD), Tennessee (TN), Texas (TX), Utah (UT), Vermont (VT), Virginia (VA), Washington (WA), West Virginia (WV), Wisconsin (WI), and Wyoming (WY). The process renders not only a more complete picture of exploration and mining in the U.S., but an approximate timeline of when these activities occurred. These data may be used for land use planning, assessing abandoned mine lands and mine-related environmental impacts, assessing the value of mineral resources from Federal, State and private lands, and mapping mineralized areas and systems for input into the land management process. These data are presented as three groups of layers based on the scale of the source maps. No reconciliation between the data groups was done.
This map presents land cover imagery for the world and detailed topographic maps for the United States. The map includes the National Park Service (NPS) Natural Earth physical map at 1.24km per pixel for the world at small scales, i-cubed eTOPO 1:250,000-scale maps for the contiguous United States at medium scales, and National Geographic TOPO! 1:100,000 and 1:24,000-scale maps (1:250,000 and 1:63,000 in Alaska) for the United States at large scales. The TOPO! maps are seamless, scanned images of United States Geological Survey (USGS) paper topographic maps. For more information on this map, including our terms of use, visit us online at http://goto.arcgisonline.com/maps/USA_Topo_Maps
This dataset was created to represent the land surface elevation at 1:24,000 scale for Florida. The elevation contour lines representing the land surface elevation were digitized from United States Geological survey 1:24,000 (7.5 minute) quadrangles and were compiled by South Florida, South West Florida, St. Johns River and Suwannee River Water Management Districts and FDEP. QA and corrections to the data were supplied by the Florida Department of Environmental Protection's Florida Geological Survey and the Division of Water Resource Management. This data, representing over 1,000 USGS topographic maps, spans a variety of contour intervals including 1 and 2 meter and 5 and 10 foot. The elevation values have been normalized to feet in the final data layer. Attributes for closed topographic depressions were also captured where closed (hautchered) features were identified and the lowest elevation determined using the closest contour line minus one-half the contour interval. This data was derived from the USGS 1:24,000 topographic map series. The data is more than 20 years old and is likely out-of-date in areas of high human activity.
The 1966 polygons included in this data release represent the main body portion of the 37 named glaciers of Glacier National Park (GNP) and 2 named glaciers on the U.S. Forest Service’s Flathead National Forest land. This is a subset of the original mapping effort derived from 1:24000 scale mapping of named glaciers and permanent snowfields within Glacier National Park, Montana which were digitized by Richard Menicke (Glacier National Park) and Carl Key (U.S. Geological Survey) in 1993. These data are based on USGS 7.5 minute quadrangle mapping published from 1966 through 1968 which were the result of the earliest park-wide aerial surveys of snow and ice features in GNP. Examination of the aerial photographs shows that seasonal snow was present at some of the glaciers, limiting the ability of the 1966-1968 cartographers to see and map the glacier ice margins. This resulted in some smoothed and generalized outlines of the glaciers where the cartographers were likely guessing where the ice margins were under the snow. In addition, some photographs show exposed glacier margin ice with irregular patterns that are not represented by the mapped ice margin. It appeared that the original cartographers used a more generalized outline for the glaciers and were not concerned with small scale ice features even when they were evident in the photographs. Despite the generalized nature of the glacier outlines, which were also limited by mapping technology and standards of the time, the dataset represents the baseline for the glacier margins derived from aerial photography. In several cases, because of the generalized nature of the 1966-1968 mapping, a glacier perimeter did not seem as if it reflected likely location in the basin topography. In these cases the original USGS aerial imagery was referred to for verification and revision if the error seemed significant. Specifics of margin revision are detailed in attribute files for those glaciers that warranted change as part of the time series analysis conducted by Dan Fagre and Lisa McKeon (USGS) in February - August, 2016. For each glacier, determination of what constituted the "main body" was made in accordance with USGS criteria outlined in Supplemental Information section of the xml file and some disconnected patches were eliminated in the interest of keeping this analysis strictly to glacier main bodies.
USGS Topo is a tile cache base map service that combines the most current data in The National Map (TNM), and other public-domain data, into a multi-scale topographic reference map. Data themes included are Boundaries, Geographic Names, Transportation, Contours, Hydrography, Land Cover, Shaded Relief, and Bathymetry. This service is designed to provide a seamless view of TNM data in a geographic information system (GIS) accessible format.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
USGS Imagery Topo is a topographic tile cache base map with orthoimagery as a backdrop, and combines the most current data (Boundaries, Names, Transportation, Elevation, Hydrography, and other themes) that make up The National Map. Contours generated for the US Topo product are included and are visible along with other data to the 1:18,000 zoom scale. This product is designed to provide a seamless view of the data, closely resembling The National Map's US Topo (GeoPDF) product at large scales, in a GIS accessible format. Orthoimagery data are typically high resolution aerial images that combine the visual attributes of an aerial photograph with the spatial accuracy and reliability of a map. Digital orthoimage resolution may vary from 6 inches to 1 meter. In the former resolution, every pixel in an orthoimage covers a six inch square of the earth's surface, while in the latter resolution, one meter square is represented by each pixel. Blue Marble: Next Generation and Landsat imagery data sources are displayed at small to medium scales, however, the majority of the imagery service source is from the National Agriculture Imagery Program (NAIP) for the conterminous United States. The data is 1-meter pixel resolution with "leaf-on". Collection of NAIP imagery is administered by the U.S. Department of Agriculture's Farm Service Agency (FSA). In areas where NAIP data is not available other imagery may be acquired through partnerships by the USGS. The National Map Program is working on acquisition of large scale imagery for the nonconterminous States of Alaska and Hawaii. For the most part, any new Alaska orthoimagery data will not be available in this service due to license restrictions.
This map is designed to be used as a basemap by GIS professionals and as a reference map by anyone. The map includes administrative boundaries, cities, water features, physiographic features, parks, landmarks, highways, roads, railways, and airports overlaid on land cover and shaded relief imagery for added context. The map provides coverage for the world down to a scale of ~1:72k. Coverage is provided down to ~1:4k for the following areas: Australia and New Zealand; India; Europe; Canada; Mexico; the continental United States and Hawaii; South America and Central America; Africa; and most of the Middle East. Coverage down to ~1:1k and ~1:2k is available in select urban areas. This basemap was compiled from a variety of best available sources from several data providers, including the U.S. Geological Survey (USGS), U.S. Environmental Protection Agency (EPA), U.S. National Park Service (NPS), Food and Agriculture Organization of the United Nations (FAO), Department of Natural Resources Canada (NRCAN), GeoBase, Agriculture and Agri-Food Canada, Garmin, HERE, Esri, OpenStreetMap contributors, and the GIS User Community. For more information on this map, including the terms of use, visit us online.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
The USGS US Topo Availability service from The National Map consists of footprints where US Topo products are currently available. Various green tints are used to reflect the year in which US Topo map products have been published. The service is updated daily and contains the same data used in footprints in the Map Locator & Downloader application program interface used in the USGS Store (https://store.usgs.gov). In addition to access through The National Map download client (https://viewer.nationalmap.gov/basic), US Topo products and other USGS publications are available through the USGS Store. For additional information, go to https://nationalmap.gov/ustopo
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This is a tiled collection of the 3D Elevation Program (3DEP) and is one meter resolution. The 3DEP data holdings serve as the elevation layer of The National Map, and provide foundational elevation information for earth science studies and mapping applications in the United States. Scientists and resource managers use 3DEP data for hydrologic modeling, resource monitoring, mapping and visualization, and many other applications. The elevations in this DEM represent the topographic bare-earth surface. USGS standard one-meter DEMs are produced exclusively from high resolution light detection and ranging (lidar) source data of one-meter or higher resolution. One-meter DEM surfaces are seamless within collection projects, but, not necessarily seamless across projects. The spatial reference used for tiles of the one-meter DEM within the conterminous United States (CONUS) is Universal Transverse Mercator (UTM) in units of meters, and in conformance with the North American Datum of 1983 ...
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
This data set contains the sea floor topographic contours, sun-illuminated topographic imagery, and backscatter intensity generated from a multibeam sonar survey of the Stellwagen Bank National Marine Sanctuary region off Boston, Massachusetts, an area of approximately 1100 square nautical miles. The Stellwagen Bank NMS Mapping Project is designed to provide detailed maps of the Stellwagen Bank region's environments and habitats and the first complete multibeam topographic and sea floor characterization maps of a significant region of the shallow EEZ. Data were collected on four cruises over a two year period from the fall of 1994 to the fall of 1996. The surveys were conducted aboard the Candian Hydrographic Service vessel Frederick G. Creed, a SWATH (Small Waterplane Twin Hull) ship that surveys at speeds of 16 knots. The multibeam data were collected utilizing a Simrad Subsea EM 1000 Multibeam Echo Sounder (95 kHz) that is permanently installed in the hull of the Creed.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Link to the ScienceBase Item Summary page for the item described by this metadata record. Service Protocol: Link to the ScienceBase Item Summary page for the item described by this metadata record. Application Profile: Web Browser. Link Function: information
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
U.S. Government Workshttps://www.usa.gov/government-works
License information was derived automatically
This part of SIM 3306 presents data for the bathymetric contours for several seafloor maps of the Offshore of San Gregorio map area, California. The vector data file is included in "Contours_OffshoreSanGregorio.zip," which is accessible from https://pubs.usgs.gov/ds/781/OffshoreSanGregorio/data_catalog_OffshoreSanGregorio.html. These data accompany the pamphlet and map sheets of Cochrane, G.R., Dartnell, P., Greene, H.G., Watt, J.T., Golden, N.E., Endris, C.A., Phillips, E.L., Hartwell, S.R., Johnson, S.Y., Kvitek, R.G., Erdey, M.D., Bretz, C.K., Manson, M.W., Sliter, R.W., Ross, S.L., Dieter, B.E., and Chin, J.L. (G.R. Cochrane and S.A. Cochran, eds.), 2014, California State Waters Map Series—Offshore of San Gregorio, California: U.S. Geological Survey Scientific Investigations Map 3306, pamphlet 38 p., 10 sheets, scale 1:24,000, https://doi.org/10.3133/sim3306. 10-m interval contours of the Offshore of San Gregorio map area, California, were generated from bathymetry data collec ...
Layered GeoPDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, and other selected map features.
Layered geospatial PDF 7.5 Minute Quadrangle Map. Layers of geospatial data include orthoimagery, roads, grids, geographic names, elevation contours, hydrography, boundaries, and other selected map features. This map depicts geographic features on the surface of the earth. One intended purpose is to support emergency response at all levels of government. The geospatial data in this map are from selected National Map data holdings and other government sources.