This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.
This map shows the population density and total population in the United States in 2010. This is shown by state, county, tract, and block group. The color shows the population per square mile (population density), while the size of each feature shows the total population living there. This is a valuable way to represent population by understanding the quantity and density of the people living there. Areas with high population density are more tightly packed, while low population density means the population is more spread out.The map shows this pattern for states, counties, tracts, and block groups. There is increasing geographic detail as you zoom in, and only one geography is configured to show at any time. The data source is the US Census Bureau, and the vintage is 2010. The original service and data metadata can be found here.
In 2023, Washington, D.C. had the highest population density in the United States, with 11,130.69 people per square mile. As a whole, there were about 94.83 residents per square mile in the U.S., and Alaska was the state with the lowest population density, with 1.29 residents per square mile. The problem of population density Simply put, population density is the population of a country divided by the area of the country. While this can be an interesting measure of how many people live in a country and how large the country is, it does not account for the degree of urbanization, or the share of people who live in urban centers. For example, Russia is the largest country in the world and has a comparatively low population, so its population density is very low. However, much of the country is uninhabited, so cities in Russia are much more densely populated than the rest of the country. Urbanization in the United States While the United States is not very densely populated compared to other countries, its population density has increased significantly over the past few decades. The degree of urbanization has also increased, and well over half of the population lives in urban centers.
This map shows density surfaces derived from the 2010 US Census block points.This data shows % of people who identified themselves as 'single race' and 'Black'The block points were interpolated using the density function to a 2km x 2km grid of the continental US (with water and coastal data masks). There are many stories in these Maps:- What is that clean North/South Line through the center? Why do so many people live East of that line?- Notice the paths of the towns in the west – why are they so linear? And it seems there is a pattern to the spaces between the towns, why?- Looking at the ethnic maps, what explains the patterns? Look at the % Native American map – what are the areas of higher values? (note I did not make a % Asian map as at this scale there was not enough % to show any significant clusters.)
This map is designed to work in the new ArcGIS Online Map Viewer. Open in Map Viewer to view map. What does this map show?This map shows the population in the US by race. The map shows this pattern nationwide for states, counties, and tracts. Open the map in the new ArcGIS Online Map Viewer Beta to see the dot density pattern. What is dot density?The density is visualized by randomly placing one dot per a given value for the desired attribute. Unlike choropleth visualizations, dot density can be mapped using total counts since the size of the polygon plays a significant role in the perceived density of the attribute.Where is the data from?The data in this map comes from the most current American Community Survey (ACS) from the U.S. Census Bureau. Table B03002. The layer being used if updated with the most current data each year when the Census releases new estimates. The layer can be found in ArcGIS Living Atlas of the World: ACS Race and Hispanic Origin Variables - Boundaries.What questions does this map answer?Where do people of different races live?Do people of a similar race live close to people of their own race?Which cities have a diverse range of different races? Less diverse?
Link to landing page referenced by identifier. Service Protocol: Link to landing page referenced by identifier. Link Function: information-- dc:identifier.
In 2022, the population density in the United States remained nearly unchanged at around 36.43 inhabitants per square kilometer. Nevertheless, 2022 still represents a peak in the population density in the United States. Population density refers to the average number of residents per square kilometer of land across a given country or region. It is calculated by dividing the total midyear population by the total land area.Find more key insights for the population density in countries like Mexico.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
These high-resolution maps estimate not only the number of people living within 30-meter grid tiles, but also provide insights on demographics at unprecedentedly high resolutions. These maps aren’t built using Facebook data and instead rely on combining the power of machine vision AI with satellite imagery and census information.
This layer presents population density data by county for states bordering the U.S. Gulf, sourced from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. Population density is displayed as the number of people per square kilometer.Broadly speaking, population density indicates how many people would inhabit one square kilometer if the population were evenly distributed across the area. However, population distribution is uneven. People tend to cluster in urban areas, while those in rural regions are spread out over a much more sparsely populated landscape.Population density is a crucial metric for understanding and managing human population dynamics and their effects on society and the environment. It helps assess various environmental challenges, including urban sprawl, pollution, habitat loss, and resource depletion. Coastal areas frequently experience high population density due to urbanization, influencing land use, housing, and infrastructure development. This density can also stimulate tourism and recreation, necessitating careful planning for facilities, transportation, and environmental protection. Additionally, coastal regions are more susceptible to natural disasters such as hurricanes and flooding, making population density data essential for developing effective evacuation plans and emergency services.Data: U.S. Census BureauDocumentation: U.S. Census BureauThis is a component of the Gulf Data Atlas (V2.0) for the Socioeconomic Conditions topic area.
Important Note: This item is in mature support as of June 2023 and will retire in December 2025. A new version of this item is available for your use.The layers going from 1:1 to 1:1.5M present the 2010 Census Urbanized Areas (UA) and Urban Clusters (UC). A UA consists of contiguous, densely settled census block groups (BGs) and census blocks that meet minimum population density requirements (1000 people per square mile (ppsm) / 500 ppsm), along with adjacent densely settled census blocks that together encompass a population of at least 50,000 people. A UC consists of contiguous, densely settled census BGs and census blocks that meet minimum population density requirements, along with adjacent densely settled census blocks that together encompass a population of at least 2,500 people, but fewer than 50,000 people. The dataset covers the 50 States plus the District of Columbia within United States. The layer going over 1:1.5M presents the urban areas in the United States derived from the urban areas layer of the Digital Chart of the World (DCW). It provides information about the locations, names, and populations of urbanized areas for conducting geographic analysis on national and large regional scales. To download the data for this layer as a layer package for use in ArcGIS desktop applications, refer to USA Census Urban Areas.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
<ul style='margin-top:20px;'>
<li>North America population density for 2021 was <strong>20.65</strong>, a <strong>1.19% increase</strong> from 2020.</li>
<li>North America population density for 2020 was <strong>20.41</strong>, a <strong>0.99% increase</strong> from 2019.</li>
<li>North America population density for 2019 was <strong>20.21</strong>, a <strong>0.56% increase</strong> from 2018.</li>
</ul>Population density is midyear population divided by land area in square kilometers. Population is based on the de facto definition of population, which counts all residents regardless of legal status or citizenship--except for refugees not permanently settled in the country of asylum, who are generally considered part of the population of their country of origin. Land area is a country's total area, excluding area under inland water bodies, national claims to continental shelf, and exclusive economic zones. In most cases the definition of inland water bodies includes major rivers and lakes.
Apache License, v2.0https://www.apache.org/licenses/LICENSE-2.0
License information was derived automatically
The dataset is a zip file that contains 28 cloud optimized tiff files that cover the continent of Africa. Each of the 28 files represents a region or area - these are not divided by country. These 28 tiff files represent 2015 population estimates. However, please note that many of the country-level files include 2020 population estimates including: Angola, Benin, Botswana, Burundi, Cameroon, Cabo Verde, Cote d'Ivoire, Djibouti, Eritrea, Eswatini, The Gambia, Ghana, Lesotho, Liberia, Mozambique, Namibia, Sao Tome & Principe, Sierra Leone, South Africa, Togo, Zambia, and Zimbabwe. To create the high-resolution maps, machine learning techniques are used to identify buildings from commercially available satellite images then general population estimates are overlaid based on publicly available census data and other population statistics. The resulting maps are the most detailed and actionable tools available for aid and research organizations.
This map of human habitation was developed, following a modification of Schumacher et al. (2000), by incorporating 2000 U.S Census Data and land ownership. The 2000 U.S. Census Block data and ownership map of the western United States were used to correct the population density for uninhabited public lands. All census blocks in the western United States were merged into one shapefile which was then clipped to contain only those areas found on private or indian reservation lands because human habitation on federal land is negligible. The area (ha) for each corrected polygon was calculated and the 2000 census block data table was joined to the shapefile. In a new field, population density (individuals/ha) corrected for public land in census blocks was calculated . SHAPEGRID in ARC/INFO was used to convert population density values to grid with 90m resolution.
This map shows density surfaces derived from the 2010 US Census block points.The block points were interpolated using the density function to a 2km x 2km grid of the continental US (with water and coastal data masks). There are many stories in these Maps:- What is that clean North/South Line through the center? Why do so many people live East of that line?- Notice the paths of the towns in the west – why are they so linear? And it seems there is a pattern to the spaces between the towns, why?- Looking at the ethnic maps, what explains the patterns? Look at the % Native American map – what are the areas of higher values? (note I did not make a % Asian map as at this scale there was not enough % to show any significant clusters.)
This map service displays data derived from the 2008-2012 American Community Survey (ACS). Values derived from the ACS and used for this map service include: Total Population, Population Density (per square mile), Percent Minority, Percent Below Poverty Level, Percent Age (less than 5, less than 18, and greater than 64), Percent Housing Units Built Before 1950, Percent (population) 25 years and over (with less than a High School Degree and with a High School Degree), Percent Linguistically Isolated Households, Population of American Indians and Alaskan Natives, Population of American Indians and Alaskan Natives Below Poverty Level, and Percent Low Income Population (Less Than 2X Poverty Level). The map service was created for inclusion in US EPA mapping applications.
MIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
The typical statewide or county-wide red/blue map (shown at left) depicts presidential voting results on a winner-take-all basis, so they award an entire geographical area to the Republican or Democratic candidate no matter how close the actual vote tally The large map in the attachment factors in both the percentage of the popular vote won by each candidate as well as the population density of each county. So, the sparsely populated Great Plains and Rocky Mountain West are shown in a much lighter color than the Eastern Seaboard, and the map as a whole is more purple than either red or blue. Perhaps the United States is less divided than some maps would lead us to believe.
The FGGD rural population density map is a global raster datalayer with a resolution of 5 arc-minutes. Each pixel classified as rural by the urban area boundaries map contains the number of persons per square kilometre, aggregated from the 30 arc-second datalayer. All remaining pixels contain no data. The method used by FAO to generate this datalayer is described in FAO, 2005, Mapping global urban and rural population distributions, by M. Salvatore, et. al.
Map containing historical census data from 1900 - 2000 throughout the western United States at the county level. Data includes total population, population density, and percent population change by decade for each county. Population data was obtained from the US Census Bureau and joined to 1:2,000,000 scale National Atlas counties shapefile.
The 2020 cartographic boundary KMLs are simplified representations of selected geographic areas from the U.S. Census Bureau's Master Address File / Topologically Integrated Geographic Encoding and Referencing (MAF/TIGER) Database (MTDB). These boundary files are specifically designed for small-scale thematic mapping. When possible, generalization is performed with the intent to maintain the hierarchical relationships among geographies and to maintain the alignment of geographies within a file set for a given year. Geographic areas may not align with the same areas from another year. Some geographies are available as nation-based files while others are available only as state-based files. After each decennial census, the Census Bureau delineates urban areas that represent densely developed territory, encompassing residential, commercial, and other nonresidential urban land uses. In general, this territory consists of areas of high population density and urban land use resulting in a representation of the urban footprint. There are 2,644 Urban Areas (UAs) in this data release with either a minimum population of 5,000 or a housing unit count of 2,000 units. Each urban area is identified by a 5-character numeric census code that may contain leading zeroes. This file includes revisions made to the 2020 Census New Orleans, LA Urban Area where the territory originally delineated as the 2020 Census Laplace--Lutcher--Gramercy, LA Urban Area was combined with the 2020 Census New Orleans, LA Urban Area to form the current New Orleans, LA Urban Area. This file includes revisions made to the 2020 Census Atlanta, GA Urban Area and Gainesville, GA Urban Area, where some urban territory originally designated to the Gainesville, GA Urban Area was reassigned to the Atlanta, GA Urban Area.
Data are derived from generalized linear models and model selection techniques using 129 estimates of population density of wild pigs (Sus scrofa) from 5 continents. Models were used to determine the strength of association among a diverse set of biotic and abiotic factors associated with wild pig population dynamics. The models and associated factors were used to predict the potential population density of wild pigs at the 1 km resolution. Predictions were then compared with available population estimates for wild pigs on their native range in North America indicating the predicted densities are within observed values. See Lewis et al (2017) and Lewis et al (2019) for more information.Lewis, Jesse S., Matthew L. Farnsworth, Chris L. Burdett, David M. Theobald, Miranda Gray, and Ryan S. Miller. "Biotic and abiotic factors predicting the global distribution and population density of an invasive large mammal." Scientific reports7 (2017): 44152.Lewis, Jesse S., Joseph L. Corn, John J. Mayer, Thomas R. Jordan, Matthew L. Farnsworth, Christopher L. Burdett, Kurt C. VerCauteren, Steven J. Sweeney, and Ryan S. Miller. "Historical, current, and potential population size estimates of invasive wild pigs (Sus scrofa) in the United States." Biological Invasions21, no. 7 (2019): 2373-2384.
This map shows population density of the United States. Areas in darker magenta have much higher population per square mile than areas in orange or yellow. Data is from the U.S. Census Bureau’s 2020 Census Demographic and Housing Characteristics. The map's layers contain total population counts by sex, age, and race groups for Nation, State, County, Census Tract, and Block Group in the United States and Puerto Rico. From the Census:"Population density allows for broad comparison of settlement intensity across geographic areas. In the U.S., population density is typically expressed as the number of people per square mile of land area. The U.S. value is calculated by dividing the total U.S. population (316 million in 2013) by the total U.S. land area (3.5 million square miles).When comparing population density values for different geographic areas, then, it is helpful to keep in mind that the values are most useful for small areas, such as neighborhoods. For larger areas (especially at the state or country scale), overall population density values are less likely to provide a meaningful measure of the density levels at which people actually live, but can be useful for comparing settlement intensity across geographies of similar scale." SourceAbout the dataYou can use this map as is and you can also modify it to use other attributes included in its layers. This map's layers contain total population counts by sex, age, and race groups data from the 2020 Census Demographic and Housing Characteristics. This is shown by Nation, State, County, Census Tract, Block Group boundaries. Each geography layer contains a common set of Census counts based on available attributes from the U.S. Census Bureau. There are also additional calculated attributes related to this topic, which can be mapped or used within analysis.Vintage of boundaries and attributes: 2020 Demographic and Housing Characteristics Table(s): P1, H1, H3, P2, P3, P5, P12, P13, P17, PCT12 (Not all lines of these DHC tables are available in this feature layer.)Data downloaded from: U.S. Census Bureau’s data.census.gov siteDate the Data was Downloaded: May 25, 2023Geography Levels included: Nation, State, County, Census Tract, Block GroupNational Figures: included in Nation layer The United States Census Bureau Demographic and Housing Characteristics: 2020 Census Results 2020 Census Data Quality Geography & 2020 Census Technical Documentation Data Table Guide: includes the final list of tables, lowest level of geography by table and table shells for the Demographic Profile and Demographic and Housing Characteristics.News & Updates This map is ready to be used in ArcGIS Pro, ArcGIS Online and its configurable apps, Story Maps, dashboards, Notebooks, Python, custom apps, and mobile apps. Data can also be exported for offline workflows. Please cite the U.S. Census Bureau when using this data. Data Processing Notes: These 2020 Census boundaries come from the US Census TIGER geodatabases. These are Census boundaries with water and/or coastlines erased for cartographic and mapping purposes. For Census tracts and block groups, the water cutouts are derived from a subset of the 2020 Areal Hydrography boundaries offered by TIGER. Water bodies and rivers which are 50 million square meters or larger (mid to large sized water bodies) are erased from the tract and block group boundaries, as well as additional important features. For state and county boundaries, the water and coastlines are derived from the coastlines of the 2020 500k TIGER Cartographic Boundary Shapefiles. These are erased to more accurately portray the coastlines and Great Lakes. The original AWATER and ALAND fields are unchanged and available as attributes within the data table (units are square meters). The layer contains all US states, Washington D.C., and Puerto Rico. Census tracts with no population that occur in areas of water, such as oceans, are removed from this data service (Census Tracts beginning with 99). Block groups that fall within the same criteria (Block Group denoted as 0 with no area land) have also been removed.Percentages and derived counts, are calculated values (that can be identified by the "_calc_" stub in the field name). Field alias names were created based on the Table Shells file available from the Data Table Guide for the Demographic Profile and Demographic and Housing Characteristics. Not all lines of all tables listed above are included in this layer. Duplicative counts were dropped. For example, P0030001 was dropped, as it is duplicative of P0010001.To protect the privacy and confidentiality of respondents, their data has been protected using differential privacy techniques by the U.S. Census Bureau.