Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
For complete collection of data and models, see https://doi.org/10.21942/uva.c.5290546.Map package for use in ArcMap containing three-tiered geomorphological data and geographical datasets such as rivers and hillshading. Datasets were used to generate figures for publication: Hierarchical geomorphological mapping in mountainous areas. Matheus G.G. De Jong, Henk Pieter Sterk, Stacy Shinneman & Arie C. Seijmonsbergen. Submitted to Journal of Maps 2020, revisions made in 2021. All data is in MGI Austria GK West projected coordinate system (EPSG: 31254) and was clipped to the study area.
Mobile Map Packages (MMPK’s) can be used in the ESRI Field Maps app (no login required), either by direct download in the Field Maps app or by sideloading from your PC. They can also be used in desktop applications that support MMPK’s such as ArcGIS Pro, and ArcGIS Navigator. MMPK’s will expire quarterly and have a warning for the user at that time but will still function afterwards. They are updated quarterly to ensure you have the most up to date data possible. These mobile map packages include the following national datasets along with others: Surface Management Agency, Public Land Survey System (PLSS), BLM Recreation Sites, National Conservation Lands, ESRI’s Navigation Basemap and Vector Tile Package. Last updated 20250321. Contact jlzimmer@blm.gov with any questions.
Open Government Licence - Canada 2.0https://open.canada.ca/en/open-government-licence-canada
License information was derived automatically
These Soil Mapping Data Packages include 1. a Soil Map dataset which includes the equivalents to Soil Project Boundaries, Soil Survey Spatial View mapping polygons with attributes from the Soil Name and Layer Files, plus + A Soil Site dataset which includes soil pit site information and detailed soil pit descriptions and any associated lab analyses, and + The Soil Data Dictionary which documents the fields and allowable codes within the data. The Soil Map geodatabase contains the 'best available' data ranging from 1:20,000 scale to 1:250,000 scale with overlapping data removed. The choice of the datasets that remain is based on connectivity to the soil attributes (soil name and layer files), map scale and survey date. (Note: the BC Soil Landscapes of Canada (BCSLC) 1:1,000,000 data has not been included in the Soil_Map or SIFT, but is available from: CANSIS. (A complete soils data package with overlapping soil survey mapping and BCSLC is available on request. Note that the soil survey data with attributes can also be viewed interactively in the [Soil Information Finder Tool](The Soil Map dataset is also available for interactive map viewing or as KMZs from the Soil Information Finder Tool website.
Web maps are available for the following nine Kansas federal reservoirs considered for study in this project:Cheney ReservoirClinton LakeEl Dorado LakeHillsdale LakeMarion ReservoirMelvern LakeMilford LakePerry LakeTuttle Creek Lake
This COVADIS data standard concerns communal map documents (CCs). This data standard provides a technical framework describing in detail how to dematerialise these town planning documents in a spatial database that can be used by a GIS tool and interoperable. This standard of data covers both the graphical plans of sectors and the information overlaying them. This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of planning documents created in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing spatial data from communal maps in an infrastructure, while the CNIG specifications are used to frame the digitisation of these data. Part C ‘Data Structure’ presented in this COVADIS standard provides additional recommendations for the storage of data files. These are specific choices for the common data infrastructure of the ministries responsible for agriculture and sustainable development, which do not apply outside their context.
The communal map (CC) is digitised according to the national requirements of the CNIG. This lot informs the right to build in the municipality. In addition to building and inconstructible sectors (SECTEUR_CC), it may contain another dataset, the onfacial information (INFO_SURF).
Map showing where custom packaging services in Manitoba are located.
This map shows where custom packaging services in Manitoba are located. A contract packager (subcontractor) is a company that manufactures and packages food products sold by other businesses. This list is not exhaustive and does not constitute a recommendation for services. For more information, visit the Manitoba Agriculture website.
This third party metadata element was translated using an automated translation tool (Amazon Translate).
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This COVADIS data standard concerns communal map documents (CCs). This data standard provides a technical framework describing in detail how to dematerialise these town planning documents in a spatial database that can be used by a GIS tool and interoperable. This standard of data covers both the graphical plans of sectors and the information overlaying them. This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of planning documents created in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing spatial data from communal maps in an infrastructure, while the CNIG specifications are used to frame the digitisation of these data. Part C ‘Data Structure’ presented in this COVADIS standard provides additional recommendations for the storage of data files. These are specific choices for the common data infrastructure of the ministries responsible for agriculture and sustainable development, which do not apply outside their context.
CC0 1.0 Universal Public Domain Dedicationhttps://creativecommons.org/publicdomain/zero/1.0/
License information was derived automatically
This COVADIS data standard concerns communal map documents (CCs). This data standard provides a technical framework describing in detail how to dematerialise these town planning documents in a spatial database that can be used by a GIS tool and interoperable. This standard of data covers both the graphical plans of sectors and the information overlaying them. This standard of COVADIS data was developed on the basis of the specifications for the dematerialisation of planning documents created in 2012 by the CNIG, itself based on the consolidated version of the urban planning code dated 16 March 2012. The recommendations of these two documents are consistent even if their purpose is not the same. The COVADIS data standard provides definitions and a structure for organising and storing spatial data from communal maps in an infrastructure, while the CNIG specifications are used to frame the digitisation of these data. Part C ‘Data Structure’ presented in this COVADIS standard provides additional recommendations for the storage of data files. These are specific choices for the common data infrastructure of the ministries responsible for agriculture and sustainable development, which do not apply outside their context.
Attribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
Here we provide four ArcGIS map packages with georeferenced files on the spatial distribution of demersal and pelagic fishes in the wider Weddell Sea (Antarctica), which were created in the context of the development of a marine protected area (MPA) in the Weddell Sea. Antarctic toothfish: The map of Dissostichus mawsoni occurrence probability is based on catch per unit effort (CPUE) data from the database of the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) (data request: 03-08-2016) and on bathymetric data from the International Bathymetric Chart of the Southern Ocean (IBCSO). We fitted a four-parameter Weibull model to the simulated CPUE data per depth interval by means of the R package 'fitdistrplus'. The highest D. mawsoni occurrence probability was shown at depths between 1500 and 2000 m and only approximately 20 % of the Antarctic toothfish population occurred deeper than 2000 m. Antarctic silverfish: The map of interpolated abundances of Pleuragramma antarctica was based on pelagic trawl survey data, which were collected during "Polarstern" cruises ANT-I/2, ANT-III/3 and in the context of the Lazarev Sea Krill Survey (LAKRIS) ("Polarstern" cruises ANT-XXI/4, ANT-XXIII/6, ANT-XXIV/2). The first mentioned data were provided by V. Siegel (retired; formerly Thünen Institute), the LAKRIS data by H. Flores (AWI). Those data were complemented by benthic trawl survey data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI) as well as by data on counts of fish species from trawl and dredge samples by Drescher et. (2012), Ekau et al. (2012a, b), Hureau et al. (2012), Kock et al. (2012) and Wöhrmann et al. (2012). An inverse distance weighted interpolation was performed for a 10 nautical mile radius around each record. Areas with highest numbers of P. antarctica (> 36 individuals/1000 m²) occurred offshore Riiser -Larsen Ice Shelf and on the southern Weddell Sea continental shelf offshore Filchner Ice Shelf. Demersal fish: The map of predicted habitat suitability for demersal fish is based on data, which were collected during seven "Polarstern" cruises between 1996 and 2011 (ANT-XIII/3, ANT-XV/3, ANT-XVII/3, ANT-XIX/5, ANT-XXI/2, ANT-XXIII/8, ANT-XXVII/3) and were provided by R. Knust (AWI). The habitat suitability model was developed by the use of the modelling package "biomod2". Most suitable habitat conditions for demersal fish in the wider Weddell Sea occurred on the continental shelf between approx. 5° and 30°W, on the shelf west and east of the tip of the Antarctic Peninsula as well as around the South Shetland and South Orkney Islands. Nesting sites of demersal fish: The map on observation of nesting sites of demersal fish is based on data, which were collected during "Polarstern" cruises ANT-XXVII/3, ANT-XXIX/9 and ANT-XXXI/2 and were obtained by T. Lundälv (retired; formerly University of Gothenburg), D. Gerdes (retired; formerly AWI) and E. Riginella (University of Padova), respectively. Those data were complemented by a literature research. Most nesting sites were observed west of 25°W, north of the tip of the Antarctic Peninsula and along the west coast of the Antarctic Peninsula. More information is given in the working paper WG-EMM-16/03 submitted to the CCAMLR Working Group on Ecosystem Monitoring and Management CCAMLR (available at https://www.ccamlr.org/en/wg-emm-16). Revised versions of the spatial analysis are described in working paper WG-SAM-17/30 and WS-SM-18/13 submitted to the CCAMLR Working Group on Statistics, Assessments and Modelling and the CCAMLR Workshop on Spatial Management, respectively (available at https://www.ccamlr.org/en/wg-sam-17; https://www.ccamlr.org/en/ws-sm-18).
The financially constrained element of Visualize 2045 identifies all the regionally significant capital improvements to the region’s highway and transit systems that transportation agencies expect to make and to be able to afford through 2045.For more information on Visualize 2045, visit https://www.mwcog.org/visualize2045/.To view the web map, visit https://www.mwcog.org/maps/map-listing/visualize-2045-project-map/.* NOTE: the online map shows projects in the current version of the plan (2022 update); this data download is for the 2018 update to the plan.Adding GIS Data to ArcMap from a Map Package:To load the .mpk file if saved locally: From Windows Explorer1. Browse to the location of the .mpk file. 2. Double-click the file to launch ArcMap and unpack all the data in the package. From ArcCatalog1. Browse to the location of the .mpk file. 2. Right-click the file, and select Unpack. This action launches ArcMap and unpacks the data in the package. The process is the same if you are using ArcCatalog from within ArcMap.Note: The .mpk file cannot be opened within ArcMap.Regardless of where the .mpk file is stored originally, the data within the map package when unpacked saves on your hard drive in the Documents and Settings folder:C:\Documents_and_Settings\MyDocuments\ArcGIS\Packages*.gdb
The Digital Geologic-GIS Map of the Maumee Quadrangle, Arkansas is composed of GIS data layers and GIS tables, and is available in the following GRI-supported GIS data formats: 1.) a 10.1 file geodatabase (maum_geology.gdb), and a 2.) Open Geospatial Consortium (OGC) geopackage. The file geodatabase format is supported with a 1.) ArcGIS Pro map file (.mapx) file (maum_geology.mapx) and individual Pro layer (.lyrx) files (for each GIS data layer), as well as with a 2.) 10.1 ArcMap (.mxd) map document (maum_geology.mxd) and individual 10.1 layer (.lyr) files (for each GIS data layer). Upon request, the GIS data is also available in ESRI 10.1 shapefile format. Contact Stephanie O'Meara (see contact information below) to acquire the GIS data in these GIS data formats. In addition to the GIS data and supporting GIS files, three additional files comprise a GRI digital geologic-GIS dataset or map: 1.) A GIS readme file (buff_geology_gis_readme.pdf), 2.) the GRI ancillary map information document (.pdf) file (buff_geology.pdf) which contains geologic unit descriptions, as well as other ancillary map information and graphics from the source map(s) used by the GRI in the production of the GRI digital geologic-GIS data for the park, and 3.) a user-friendly FAQ PDF version of the metadata (maum_geology_metadata_faq.pdf). Please read the buff_geology_gis_readme.pdf for information pertaining to the proper extraction of the GIS data and other map files. QGIS software is available for free at: https://www.qgis.org/en/site/. The data were completed as a component of the Geologic Resources Inventory (GRI) program, a National Park Service (NPS) Inventory and Monitoring (I&M) Division funded program that is administered by the NPS Geologic Resources Division (GRD). For a complete listing of GRI products visit the GRI publications webpage: For a complete listing of GRI products visit the GRI publications webpage: https://www.nps.gov/subjects/geology/geologic-resources-inventory-products.htm. For more information about the Geologic Resources Inventory Program visit the GRI webpage: https://www.nps.gov/subjects/geology/gri,htm. At the bottom of that webpage is a "Contact Us" link if you need additional information. You may also directly contact the program coordinator, Jason Kenworthy (jason_kenworthy@nps.gov). Source geologic maps and data used to complete this GRI digital dataset were provided by the following: U.S. Geological Survey. Detailed information concerning the sources used and their contribution the GRI product are listed in the Source Citation section(s) of this metadata record (maum_geology_metadata.txt or maum_geology_metadata_faq.pdf). Users of this data are cautioned about the locational accuracy of features within this dataset. Based on the source map scale of 1:24,000 and United States National Map Accuracy Standards features are within (horizontally) 12.2 meters or 40 feet of their actual location as presented by this dataset. Users of this data should thus not assume the location of features is exactly where they are portrayed in ArcGIS, QGIS or other software used to display this dataset. All GIS and ancillary tables were produced as per the NPS GRI Geology-GIS Geodatabase Data Model v. 2.3. (available at: https://www.nps.gov/articles/gri-geodatabase-model.htm).
The Forest Service Base Map (FS Base Map) products are created, maintained, and produced by the U.S. Forest Service. The Forest Service Base Map Series includes FSTopo (1:24,000 scale in CONUS and Puerto Rico, and 1:25,000 scale in Alaska), the 1:63,360/126,720 FS Base Maps, the 1:100,000 scale Maps, the 1:250,000 Forest/Grassland Maps, the 1:2,000,000 Regional Maps, National Maps and map services.The FS Base Map data is compiled from authoritative data sources from the US Forest Service, the US Geologic Survey (USGS), the Bureau of Land Management (BLM), the National Park Service (NPS), the US Fish and Wildlife Service (USFWS), The Census Bureau (US Census), The Federal Aviation Administration (FAA), North American Rail Network (NARN), and the Homeland Infrastructure Foundation Level Data (HIFLD- HERE) from the Department of Homeland Security (DHS).
This submissions contains datasets and information relevant to work on the City of Wells geothermal project
Mobile map packages are available for the following nine Kansas federal reservoirs considered for study in this project:Cheney ReservoirClinton LakeEl Dorado LakeHillsdale LakeMarion ReservoirMelvern LakeMilford LakePerry LakeTuttle Creek Lake
Supermarkets are one of the most popular and convenient ways in which Americans gain access to healthy food, such as fresh meat and fish, or fresh fruits and vegetables. There are various ways in which people gain access to supermarkets. People in the suburbs drive to supermarkets and load up the car with many bags of food. People in cities depend much more on walking to the local store, or taking a bus or train.This map came about after asking a simple question: how many Americans live within a reasonable walk or drive to a supermarket?In this case, "reasonable" was defined as a 10 minute drive, or a 1 mile walk. The ArcGIS Network Analyst extension performed the calculations on NAVTEQ streets, and the ArcGIS Spatial Analyst extension created a heat map of the walkable access and drivable access to supermarkets.The green dots represent populations in poverty who live within one mile of a supermarket. The red dots represent populations in poverty who live beyond a one mile walk to a supermarket, but may live within a 10 minute drive...assuming they have access to a car. The grey dots represent the total population in a given area.This is an excellent map to use as backdrop to show how people are improving access to healthy food in their community. Open this map in ArcGIS Explorer to add your favorite farmers' market, CSA, or transit line -- then share that map via Facebook, Twitter or email.This map shows data for the entire U.S. The supermarkets included in the analysis have annual sales of $1 million or more. Populations in poverty are represented by taking the block group poverty rate (e.g. 10%) from the Census and symbolizing each block in that block group based on that percentage. Demographic data from U.S. Census 2010 and Esri Business location from infoUSAData sources: see this map package.
**Suggested to use 'Download' button instead of 'Open in ArcGIS Pro'The REST service page displays all data provided in this layer package: https://arcgis.dnr.alaska.gov/arcgis/rest/services/Mapper/Surface_Classification/MapServer
The U.S. Geological Survey (USGS) St. Petersburg Coastal and Marine Science Center (SPCMSC) conducted research to identify areas of seafloor elevation stability and instability based on elevation changes between the years of 2002 and 2016 in the Upper Florida Keys (UFK) from Triumph Reef to Pickles Reef within a 242.4 square-kilometer area. USGS SPCMSC staff used seafloor elevation-change data from Murphy and others (2021) derived from an elevation-change analysis between two elevation datasets acquired in 2001/2002 and 2016/2017 using the methods of Yates and others (2017). Most of the elevation data from these two time periods were collected during 2002 and 2016, so as an abbreviated naming convention, we refer to this study time period as 2002-2016. A seafloor stability threshold was determined for the 2002-2016 UFK elevation-change dataset based on the vertical uncertainty of the 2002 and 2016 digital elevation models (DEMs). Five stability categories (which include, Stable: 0.0 meters (m) to ±0.24 m or 0.0 m to ±0.49 m; Moderately stable: ±0.25 m to ±0.49 m; Moderately unstable: ±0.50 m to ±0.74 m; Mostly unstable: ±0.75 m to ±0.99 m; and Unstable: ±1.00 m to Max/Min elevation change) were created and used to define levels of stability and instability for each elevation-change value (60,585,610 data points at 2-m horizontal resolution) based on the amount of erosion and accretion during the 2002 to 2016 time period. Seafloor-stability point and triangulated irregular network (TIN) surface models were created at five different elevation-change data resolutions (1st order through 5th order) with each resolution becoming increasingly more detailed. The stability models were used to determine the level of seafloor stability at potential areas of interest for coral restoration and 13 habitat types found in the UFK. Stability surface (TIN) models were used for areas defined by specific XY geographic points, while stability point models were used for areas defined by bounding box coordinate locations. This data release includes ArcGIS Pro map packages containing the binned and color-coded stability point and surface (TIN) models, potential coral restoration locations, and habitat files; maps of each stability model; and data tables containing stability and elevation-change data for the potential coral restoration locations and habitat types. Data were collected under Florida Keys National Marine Sanctuary permit FKNMS-2016-068.
Soil map units are the basic geographic unit of the Soil Survey Geographic Database (SSURGO). The SSURGO dataset is a compilation of soils information collected over the last century by the Natural Resources Conservation Service (NRCS). Map units delineate the extent of different soils. Data for each map unit contains descriptions of the soil’s components, productivity, unique properties, and suitability interpretations. Each soil type has a unique combination of physical, chemical, nutrient and moisture properties. Soil type has ramifications for engineering and construction activities, natural hazards such as landslides, agricultural productivity, the distribution of native plant and animal life and hydrologic and other physical processes. Soil types in the context of climate and terrain can be used as a general indicator of engineering constraints, agriculture suitability, biological productivity and the natural distribution of plants and animals. Data from thegSSURGO databasewas used to create this layer. To download ready-to-use project packages of useful soil data derived from the SSURGO dataset, please visit the USA SSURGO Downloader app. Dataset Summary Phenomenon Mapped:Soils of the United States and associated territoriesGeographic Extent:The 50 United States, Puerto Rico, Guam, US Virgin Islands, Marshall Islands, Northern Marianas Islands, Palau, Federated States of Micronesia, and American SamoaCoordinate System:Web Mercator Auxiliary SphereVisible Scale:1:144,000 to 1:1,000Source:USDA Natural Resources Conservation Service Update Frequency:AnnualPublication Date:December 2024 What can you do with this layer?Feature layers work throughout the ArcGIS system. Generally your work flow with feature layers will begin in ArcGIS Online or ArcGIS Pro. Below are just a few of the things you can do with a feature service in Online and Pro.ArcGIS Online Add this layer to a map in the map viewer. The layer is limited to scales of approximately 1:144,000 or larger but avector tile layercreated from the same data can be used at smaller scales to produce awebmapthat displays across the full scale range. The layer or a map containing it can be used in an application.Change the layer’s transparency and set its visibility rangeOpen the layer’s attribute table and make selections and apply filters. Selections made in the map or table are reflected in the other. Center on selection allows you to zoom to features selected in the map or table and show selected records allows you to view the selected records in the table.Change the layer’s style and filter the data. For example, you could set a filter forFarmland Class= "All areas are prime farmland" to create a map of only prime farmland.Add labels and set their propertiesCustomize the pop-upArcGIS Pro Add this layer to a 2d or 3d map. The same scale limit as Online applies in ProUse as an input to geoprocessing. For example, copy features allows you to select then export portions of the data to a new feature class.Change the symbology and the attribute field used to symbolize the dataOpen table and make interactive selections with the mapModify the pop-upsApply Definition Queries to create sub-sets of the layerThis layer is part of theLiving Atlas of the Worldthat provides an easy way to explore the landscape layers and many other beautiful and authoritative maps on hundreds of topics. Data DictionaryAttributesKey fields from nine commonly used SSURGO tables were compiled to create the 173 attribute fields in this layer. Some fields were joined directly to the SSURGO Map Unit polygon feature class while others required summarization and other processing to create a 1:1 relationship between the attributes and polygons prior to joining the tables. Attributes of this layer are listed below in their order of occurrence in the attribute table and are organized by the SSURGO table they originated from and the processing methods used on them. Map Unit Polygon Feature Class Attribute TableThe fields in this table are from the attribute table of the Map Unit polygon feature class which provides the geographic extent of the map units. Area SymbolSpatial VersionMap Unit Symbol Map Unit TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the table using the Map Unit Key field. Map Unit NameMap Unit KindFarmland ClassInterpretive FocusIntensity of MappingIowa Corn Suitability Rating Legend TableThis table has 1:1 relationship with the Map Unit table and was joined using the Legend Key field. Project Scale Survey Area Catalog TableThe fields in this table have a 1:1 relationship with the polygons and were joined to the Map Unit table using the Survey Area Catalog Key and Legend Key fields. Survey Area VersionTabular Version Map Unit Aggregated Attribute TableThe fields in this table have a 1:1 relationship with the map unit polygons and were joined to the Map Unit attribute table using the Map Unit Key field. Slope Gradient - Dominant ComponentSlope Gradient - Weighted AverageBedrock Depth - MinimumWater Table Depth - Annual MinimumWater Table Depth - April to June MinimumFlooding Frequency - Dominant ConditionFlooding Frequency - MaximumPonding Frequency - PresenceAvailable Water Storage 0-25 cm - Weighted AverageAvailable Water Storage 0-50 cm - Weighted AverageAvailable Water Storage 0-100 cm - Weighted AverageAvailable Water Storage 0-150 cm - Weighted AverageDrainage Class - Dominant ConditionDrainage Class - WettestHydrologic Group - Dominant ConditionIrrigated Capability Class - Dominant ConditionIrrigated Capability Class - Proportion of Mapunit with Dominant ConditionNon-Irrigated Capability Class - Dominant ConditionNon-Irrigated Capability Class - Proportion of Mapunit with Dominant ConditionRating for Buildings without Basements - Dominant ConditionRating for Buildings with Basements - Dominant ConditionRating for Buildings with Basements - Least LimitingRating for Buildings with Basements - Most LimitingRating for Septic Tank Absorption Fields - Dominant ConditionRating for Septic Tank Absorption Fields - Least LimitingRating for Septic Tank Absorption Fields - Most LimitingRating for Sewage Lagoons - Dominant ConditionRating for Sewage Lagoons - Dominant ComponentRating for Roads and Streets - Dominant ConditionRating for Sand Source - Dominant ConditionRating for Sand Source - Most ProbableRating for Paths and Trails - Dominant ConditionRating for Paths and Trails - Weighted AverageErosion Hazard of Forest Roads and Trails - Dominant ComponentHydric Classification - Presence Rating for Manure and Food Processing Waste - Weighted Average Component Table – Dominant ComponentMap units have one or more components. To create a 1:1 join component data must be summarized by map unit. For these fields a custom script was used to select the component with the highest value for the Component Percentage Representative Value field (comppct_r). Ties were broken with the Slope Representative Value field (slope_r). Components with lower average slope were selected as dominant. If both soil order and slope were tied, the first value in the table was selected. Component Percentage - Low ValueComponent Percentage - Representative ValueComponent Percentage - High ValueComponent NameComponent KindOther Criteria Used to Identify ComponentsCriteria Used to Identify Components at the Local LevelRunoff ClassSoil loss tolerance factorWind Erodibility IndexWind Erodibility GroupErosion ClassEarth Cover 1Earth Cover 2Hydric ConditionHydric RatingAspect Range - Counter Clockwise LimitAspect - Representative ValueAspect Range - Clockwise LimitGeomorphic DescriptionNon-Irrigated Capability SubclassNon-Irrigated Unit Capability ClassIrrigated Capability SubclassIrrigated Unit Capability ClassConservation Tree Shrub GroupGrain Wildlife HabitatGrass Wildlife HabitatHerbaceous Wildlife HabitatShrub Wildlife HabitatConifer Wildlife HabitatHardwood Wildlife HabitatWetland Wildlife HabitatShallow Water Wildlife HabitatRangeland Wildlife HabitatOpenland Wildlife HabitatWoodland Wildlife HabitatWetland Wildlife HabitatSoil Slip PotentialSusceptibility to Frost HeavingConcrete CorrosionSteel CorrosionTaxonomic ClassTaxonomic OrderTaxonomic SuborderGreat GroupSubgroupParticle SizeParticle Size ModCation Exchange Activity ClassCarbonate ReactionTemperature ClassMoist SubclassSoil Temperature RegimeEdition of Keys to Soil Taxonomy Used to Classify SoilCalifornia Storie IndexComponent Key Component Table – Weighted AverageMap units may have one or more soil components. To create a 1:1 join, data from the Component table must be summarized by map unit. For these fields a custom script was used to calculate an average value for each map unit weighted by the Component Percentage Representative Value field (comppct_r). Slope Gradient - Low ValueSlope Gradient - Representative ValueSlope Gradient - High ValueSlope Length USLE - Low ValueSlope Length USLE - Representative ValueSlope Length USLE - High ValueElevation - Low ValueElevation - Representative ValueElevation - High ValueAlbedo - Low ValueAlbedo - Representative ValueAlbedo - High ValueMean Annual Air Temperature - Low ValueMean Annual Air Temperature - Representative ValueMean Annual Air Temperature - High ValueMean Annual Precipitation - Low ValueMean Annual Precipitation - Representative ValueMean Annual Precipitation - High ValueRelative Effective Annual Precipitation - Low ValueRelative Effective Annual Precipitation - Representative ValueRelative Effective Annual Precipitation - High ValueDays between Last and First Frost - Low ValueDays between Last and First Frost - Representative ValueDays between Last and First Frost - High ValueRange Forage Annual Potential Production - Low ValueRange Forage Annual Potential Production - Representative ValueRange Forage Annual Potential Production - High ValueInitial Subsidence - Low ValueInitial Subsidence - Representative ValueInitial Subsidence -