Facebook
TwitterThe Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population density grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.
Facebook
TwitterThe Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid estimates population per square km for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic Units, is used to assign population values to grid cells. The population count grids are divided by the land area grid to produce population density grids. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterCensus data reveals that population density varies noticeably from area to area. Small area census data do a better job depicting where the crowded neighborhoods are. In this map, the yellow areas of highest density range from 30,000 to 150,000 persons per square kilometer. In those areas, if the people were spread out evenly across the area, there would be just 4 to 9 meters between them. Very high density areas exceed 7,000 persons per square kilometer. High density areas exceed 5,200 persons per square kilometer. The last categories break at 3,330 persons per square kilometer, and 1,500 persons per square kilometer.This dataset is comprised of multiple sources. All of the demographic data are from Michael Bauer Research with the exception of the following countries:Australia: Esri Australia and MapData ServicesCanada: Esri Canada and EnvironicsFrance: Esri FranceGermany: Esri Germany and NexigaIndia: Esri India and IndicusJapan: Esri JapanSouth Korea: Esri Korea and OPENmateSpain: Esri España and AISUnited States: Esri Demographics
Facebook
TwitterThis dataset contains estimates of the number of persons per square kilometer consistent with national censuses and population registers. There is one image for each modeled year. General Documentation The Gridded Population of World Version 4 (GPWv4), Revision 11 models the distribution of global human population for the years 2000, 2005, 2010, 2015, and 2020 on 30 arc-second (approximately 1 km) grid cells. Population is distributed to cells using proportional allocation of population from census and administrative units. Population input data are collected at the most detailed spatial resolution available from the results of the 2010 round of censuses, which occurred between 2005 and 2014. The input data are extrapolated to produce population estimates for each modeled year.
Facebook
TwitterThe Gridded Population of the World, Version 4 (GPWv4): Population Density, Revision 11 consists of estimates of human population density (number of persons per square kilometer) based on counts consistent with national censuses and population registers, for the years 2000, 2005, 2010, 2015, and 2020.�A proportional allocation gridding algorithm, utilizing approximately 13.5 million national and sub-national administrative Units, was used to assign population counts to 30 arc-second grid cells. The population density rasters were created by dividing the population count raster for a given target year by the land area raster. The data files were produced as global rasters at 30 arc-second (~1 km at the equator) resolution. To enable faster global processing, and in support of research commUnities, the 30 arc-second count data were aggregated to 2.5 arc-minute, 15 arc-minute, 30 arc-minute and 1 degree resolutions to produce density rasters at these resolutions.
Facebook
TwitterAs of 2025, Asia was the most densely populated region of the world, with nearly 156 inhabitants per square kilometer, whereas Oceania's population density was just over five inhabitants per square kilometer.
Facebook
TwitterPopulation data for a selection of countries, allocated to 1 arcsecond blocks and provided in a combination of CSV and Cloud-optimized GeoTIFF files. This refines CIESIN’s Gridded Population of the World using machine learning models on high-resolution worldwide Maxar satellite imagery. CIESIN population counts aggregated from worldwide census data are allocated to blocks where imagery appears to contain buildings.
Facebook
TwitterMIT Licensehttps://opensource.org/licenses/MIT
License information was derived automatically
This layer was created by Duncan Smith and based on work by the European Commission JRC and CIESIN. A description from his website follows:--------------------A brilliant new dataset produced by the European Commission JRC and CIESIN Columbia University was recently released- the Global Human Settlement Layer (GHSL). This is the first time that detailed and comprehensive population density and built-up area for the world has been available as open data. As usual, my first thought was to make an interactive map, now online at- http://luminocity3d.org/WorldPopDen/The World Population Density map is exploratory, as the dataset is very rich and new, and I am also testing out new methods for navigating statistics at both national and city scales on this site. There are clearly many applications of this data in understanding urban geographies at different scales, urban development, sustainability and change over time.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
In the last century, the global population has increased by billions of people. And it is still growing. Job opportunities in large cities have caused an influx of people to these already packed locations. This has resulted in an increase in population density for these cities, which are now forced to expand in order to accommodate the growing population. Population density is the average number of people per unit, usually miles or kilometers, of land area. Understanding and mapping population density is important. Experts can use this information to inform decisions around resource allocation, natural disaster relief, and new infrastructure projects. Infectious disease scientists use these maps to understand the spread of infectious disease, a topic that has become critical after the COVID-19 global pandemic.While a useful tool for decision and policymakers, it is important to understand the limitations of population density. Population density is most effective in small scale places—cities or neighborhoods—where people are evenly distributed. Whereas at a larger scale, such as the state, region, or province level, population density could vary widely as it includes a mix of urban, suburban, and rural places. All of these areas have a vastly different population density, but they are averaged together. This means urban areas could appear to have fewer people than they really do, while rural areas would seem to have more. Use this map to explore the estimated global population density (people per square kilometer) in 2020. Where do people tend to live? Why might they choose those places? Do you live in a place with a high population density or a low one?
Facebook
TwitterIn the middle of 2023, about 60 percent of the global population was living in Asia.The total world population amounted to 8.1 billion people on the planet. In other words 4.7 billion people were living in Asia as of 2023. Global populationDue to medical advances, better living conditions and the increase of agricultural productivity, the world population increased rapidly over the past century, and is expected to continue to grow. After reaching eight billion in 2023, the global population is estimated to pass 10 billion by 2060. Africa expected to drive population increase Most of the future population increase is expected to happen in Africa. The countries with the highest population growth rate in 2024 were mostly African countries. While around 1.47 billion people live on the continent as of 2024, this is forecast to grow to 3.9 billion by 2100. This is underlined by the fact that most of the countries wit the highest population growth rate are found in Africa. The growing population, in combination with climate change, puts increasing pressure on the world's resources.
Facebook
TwitterMonaco led the ranking for countries with the highest population density in 2024, with nearly 26,000 residents per square kilometer. The Special Administrative Region of Macao came in second, followed by Singapore. The world’s second smallest country Monaco is the world’s second-smallest country, with an area of about two square kilometers and a population of only around 40,000. It is a constitutional monarchy located by the Mediterranean Sea, and while Monaco is not part of the European Union, it does participate in some EU policies. The country is perhaps most famous for the Monte Carlo casino and for hosting the Monaco Grand Prix, the world's most prestigious Formula One race. The global population Globally, the population density per square kilometer is about 60 inhabitants, and Asia is the most densely populated region in the world. The global population is increasing rapidly, so population density is only expected to increase. In 1950, for example, the global population stood at about 2.54 billion people, and it reached over eight billion during 2023.
Facebook
Twitterhttps://creativecommons.org/publicdomain/zero/1.0/https://creativecommons.org/publicdomain/zero/1.0/
this graph was created in OurDataWorld:
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F5ba70e2a6c4926d6d6cf25183d04d768%2Fgraph1.png?generation=1721857623801679&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F37881b8889c3e253207b67f0115b704e%2Fgraph2.png?generation=1721857629220811&alt=media" alt="">
https://www.googleapis.com/download/storage/v1/b/kaggle-user-content/o/inbox%2F16731800%2F6391ebd97d7f80974d7acd60a10b914d%2Fgraph3.png?generation=1721857634439762&alt=media" alt="">
Population growth is one of the most important topics we cover at Our World in Data.
For most of human history, the global population was a tiny fraction of what it is today. Over the last few centuries, the human population has gone through an extraordinary change. In 1800, there were one billion people. Today there are more than 8 billion of us.
But after a period of very fast population growth, demographers expect the world population to peak by the end of this century.
On this page, you will find all of our data, charts, and writing on changes in population growth. This includes how populations are distributed worldwide, how this has changed, and what demographers expect for the future. Geographical maps show us where the world's landmasses are; not where people are. That means they don't always give us an accurate picture of how global living standards are changing.
One way to understand the distribution of people worldwide is to redraw the world map – not based on the area but according to population.
This is shown here as a population cartogram: a geographical presentation of the world where the size of countries is not drawn according to the distribution of land but by the distribution of people. It’s shown for the year 2018.
As the population size rather than the territory is shown in this map, you can see some significant differences when you compare it to the standard geographical map we’re most familiar with.
Small countries with a high population density increase in size in this cartogram relative to the world maps we are used to – look at Bangladesh, Taiwan, or the Netherlands. Large countries with a small population shrink in size – look for Canada, Mongolia, Australia, or Russia.
Facebook
Twitterhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApplyhttp://inspire.ec.europa.eu/metadata-codelist/ConditionsApplyingToAccessAndUse/noConditionsApply
Thematic map displays population density. The data is taken from FAO LADA databank.
Facebook
TwitterThe Global Rural-Urban Mapping Project, Version 1 (GRUMPv1): Population Density Grid estimates population per square km for the years 1990, 1995, and 2000 by 30 arc-second (1km) grid cells and associated data sets dated circa 2000. A proportional allocation gridding algorithm, utilizing more than 1,000,000 national and sub-national geographic Units, is used to assign population values to grid cells. The population count grids are divided by the land area grid to produce population density grids. This data set is produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the International Food Policy Research Institute (IFPRI), The World Bank, and Centro Internacional de Agricultura Tropical (CIAT).
Facebook
TwitterThis map features the World Population Density Estimate 2016 layer for the Caribbean region. The advantage population density affords over raw counts is the ability to compare levels of persons per square kilometer anywhere in the world. Esri calculated density by converting the the World Population Estimate 2016 layer to polygons, then added an attribute for geodesic area, which allowed density to be derived, and that was converted back to raster. A population density raster is better to use for mapping and visualization than a raster of raw population counts because raster cells are square and do not account for area. For instance, compare a cell with 185 people in northern Quito, Ecuador, on the equator to a cell with 185 people in Edmonton, Canada at 53.5 degrees north latitude. This is difficult because the area of the cell in Edmonton is only 35.5% of the area of a cell in Quito. The cell in Edmonton represents a density of 9,810 persons per square kilometer, while the cell in Quito only represents a density of 3,485 persons per square kilometer. Dataset SummaryEach cell in this layer has an integer value with the estimated number of people per square kilometer likely to live in the geographic region represented by that cell. Esri additionally produced several additional layers: World Population Estimate 2016: this layer contains estimates of the count of people living within the the area represented by the cell. World Population Estimate Confidence 2016: the confidence level (1-5) per cell for the probability of people being located and estimated correctly. World Settlement Score 2016: the dasymetric likelihood surface used to create this layer by apportioning population from census polygons to the settlement score raster.To use this layer in analysis, there are several properties or geoprocessing environment settings that should be used:Coordinate system: WGS_1984. This service and its underlying data are WGS_1984. We do this because projecting population count data actually will change the populations due to resampling and either collapsing or splitting cells to fit into another coordinate system. Cell Size: 0.0013474728 degrees (approximately 150-meters) at the equator. No Data: -1Bit Depth: 32-bit signedThis layer has query, identify, pixel, and export image functions enabled, and is restricted to a maximum analysis size of 30,000 x 30,000 pixels - an area about the size of Africa.Frye, C. et al., (2018). Using Classified and Unclassified Land Cover Data to Estimate the Footprint of Human Settlement. Data Science Journal. 17, p.20. DOI: https://doi.org/10.5334/dsj-2018-020.What can you do with this layer?This layer is primarily intended for cartography and visualization, but may also be useful for analysis, particularly for estimating where people living above specified densities. There are two processing templates defined for this layer: the default, "World Population Estimated 2016 Density Classes" uses a classification, described above, to show locations of levels of rural and urban populations, and should be used for cartography and visualization; and "None," which provides access to the unclassified density values, and should be used for analysis. The breaks for the classes are at the following levels of persons per square kilometer:100 - Rural (3.2% [0.7%] of all people live at this density or lower) 400 - Settled (13.3% [4.1%] of all people live at this density or lower)1,908 - Urban (59.4% [81.1%] of all people live at this density or higher)16,978 - Heavy Urban (13.0% [24.2%] of all people live at this density or higher)26,331 - Extreme Urban (7.8% [15.4%] of all people live at this density or higher) Values over 50,000 are likely to be erroneous due to spatial inaccuracies in source boundary dataNote the above class breaks were derived from Esri's 2015 estimate, which have been maintained for the sake of comparison. The 2015 percentages are in gray brackets []. The differences are mostly due to improvements in the model and source data. While improvements in the source data will continue, it is hoped the 2017 estimate will produce percentages that shift less.For analysis, Esri recommends using the Zonal Statistics tool or the Zonal Statistics to Table tool where you provide input zones as either polygons, or raster data, and the tool will summarize the average, highest, or lowest density within those zones.
Facebook
TwitterAttribution 4.0 (CC BY 4.0)https://creativecommons.org/licenses/by/4.0/
License information was derived automatically
The population of the world, allocated to 1 arcsecond blocks. This refines CIESIN’s Gridded Population of the World project, using machine learning models on high-resolution worldwide Digital Globe satellite imagery. More information.
There is also a tiled version of this dataset that may be easier to use if you are interested in many countries.
Facebook
TwitterWorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Facebook
TwitterEstimated density of people per grid-cell, approximately 1km (0.008333 degrees) resolution. The units are number of people per Km² per pixel, expressed as unit: "ppl/Km²". The mapping approach is Random Forest-based dasymetric redistribution. The WorldPop project was initiated in October 2013 to combine the AfriPop, AsiaPop and AmeriPop population mapping projects. It aims to provide an open access archive of spatial demographic datasets for Central and South America, Africa and Asia to support development, disaster response and health applications. The methods used are designed with full open access and operational application in mind, using transparent, fully documented and peer-reviewed methods to produce easily updatable maps with accompanying metadata and measures of uncertainty. Acknowledgements information at https://www.worldpop.org/acknowledgements
Facebook
TwitterThe population density maps presented here for the UNDESERT study areas in Burkina Faso, Benin, Niger and Senegal for 1990, 2000 and 2010 were produced by the Columbia University Center for International Earth Science Information Network (CIESIN) in collaboration with the Centro Internacional de Agricultura Tropical (CIAT). CIESIN/CIAT population density grids are available for the entire globe at a 2.5 arc-minutes resolution (http://sedac.ciesin.columbia.edu/data/collection/gpw-v3/sets/browse). The UNDESERT project (EU FP7 243906), financed by the European Commission, Directorate General for Research and Innovation, Environment Program, aims to improve the Understanding and Combating of Desertification to Mitigate its Impact on Ecosystem Services in West Africa. Humans originate and contribute significantly to desertification processes. Based on the CIESIN/CIAT population density grids we want to illustrate how population density changed in the UNDESERT study areas and countries during the last 20 years. Data for 1990 and 2000 were downloaded from the Gridded Population of the World, Version 3 (GPWv3) consisting of estimates of human population by 2.5 arc-minute grid cells and associated data sets dated circa 2000. Data for 2010 were copied from the Gridded Population of the World, Version 3 (GPWv3) consisting in a future estimate of human population by 2.5 arc-minute grid cells. The future estimate population values are extrapolated based on a combination of subnational growth rates from census dates and national growth rates from United Nations statistics.
Source: http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density. Accessed 28/10/2013 And http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates Center for International Earth Science Information Network (CIESIN)/Columbia University, and Centro Internacional de Agricultura Tropical (CIAT). 2005. Gridded Population of the World, Version 3 (GPWv3): Population Density Grid, Future Estimates. Palisades, NY: NASA Socioeconomic Data and Applications Center (SEDAC). http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-density-future-estimates. Accessed 28/10/2013
Facebook
TwitterWorldPop produces different types of gridded population count datasets, depending on the methods used and end application.
Please make sure you have read our Mapping Populations overview page before choosing and downloading a dataset.
Datasets are available to download in Geotiff and ASCII XYZ format at a resolution of 30 arc-seconds (approximately 1km at the equator)
-Unconstrained individual countries 2000-2020: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population count datasets by dividing the number of people in each pixel by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
-Unconstrained individual countries 2000-2020 UN adjusted: Population density datasets for all countries of the World for each year 2000-2020 – derived from the corresponding
Unconstrained individual countries 2000-2020 population UN adjusted count datasets by dividing the number of people in each pixel,
adjusted to match the country total from the official United Nations population estimates (UN 2019), by the pixel surface area.
These are produced using the unconstrained top-down modelling method.
Data for earlier dates is available directly from WorldPop.
WorldPop (www.worldpop.org - School of Geography and Environmental Science, University of Southampton; Department of Geography and Geosciences, University of Louisville; Departement de Geographie, Universite de Namur) and Center for International Earth Science Information Network (CIESIN), Columbia University (2018). Global High Resolution Population Denominators Project - Funded by The Bill and Melinda Gates Foundation (OPP1134076). https://dx.doi.org/10.5258/SOTON/WP00674
Facebook
TwitterThe Global Population Density Grid Time Series Estimates provide a back-cast time series of population density grids based on the year 2000 population grid from SEDAC's Global Rural-Urban Mapping Project, Version 1 (GRUMPv1) data set. The grids were created by using rates of population change between decades from the coarser resolution History Database of the Global Environment (HYDE) database to back-cast the GRUMPv1 population density grids. Mismatches between the spatial extent of the HYDE calculated rates and GRUMPv1 population data were resolved via infilling rate cells based on a focal mean of values. Finally, the grids were adjusted so that the population totals for each country equaled the UN World Population Prospects (2008 Revision) estimates for that country for the respective year (1970, 1980, 1990, and 2000). These data do not represent census observations for the years prior to 2000, and therefore can at best be thought of as estimations of the populations in given locations. The population grids are consistent internally within the time series, but are not recommended for use in creating longer time series with any other population grids, including GRUMPv1, Gridded Population of the World, Version 4 (GPWv4), or non-SEDAC developed population grids. These population grids served as an input to SEDAC's Global Estimated Net Migration Grids by Decade: 1970-2000 data set.